
Pascal 3.2
Procedure Library

HP 9000
Series 200 and 300
Computers

Pascal 3.2 Procedure Library

HP 9000 Series 200 and 300 Computers

FliOW HEWLETT
~~ PACKARD

HP Part No. 98615-90032
Printed in USA December 1991

Fourth Edition
E1291

@copyright 1980, 1984, 1986 AT&T Technologies, Inc.
UNIX is a registered trademark of Unix System Laboratories Inc. in the USA and other
countries.

@copyright 1979, 1980, 1983, 1985-90 Regents of the University of California
This software is based in part on the Fourth Berkeley Software Distribution under license from
the Regents of the University of California.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted
to this product only. Additional copies of the programs can be made for security and back-up
purposes only. Resale of the programs in their present form or with alterations is expressly
prohibited.

Warranty. The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

This document contains information which is protected by copyright. All rights are
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government is
subject to restrictions as set forth in paragraph (c) (1) (ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and
subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights
clause at FAR 52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Copyright © 1991 by Hewlett-Packard Company

Printing History
New editions of this manual will incorporate all material updated since the previous edition.
The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

December 1986

May 1988

March 1989

May 1990

December 1991

iv

Edition 1.

Updated to include information for Pascal 3.21 support of new display
interfaces (HP98548, 98549, and 98550).

Edition 2. This edition has information for the Pascal 3.22 release
including the VMEbus Interface (HP98646A) and the programming
system reboot.

Edition 3. This edition includes additions and changes for Pascal 3.23
release.

Edition 4. This edition includes additions and changes for the 3.24 and
3.25 releases of the Pascal Workstation.

Table of Contents v

Table of Contents

Chapter 1: Overview
Introduction ... 1-1

Prerequisites .. 1-1
Chapter Overview .. 1-1

Chapter Previews ... 1-2
Overview of Libraries and Modules 1-3

Modules and Libraries -. 1-3
The Librarian .. 1-3
Example Modules '.................................... 1-3
Compiling and Running the Example Program 1-6
Setting Up Mass Storage 1-8
Using the Librarian .. 1-9

Overview of the Procedure Library 1-12
Standard LIBRARY Modules 1-12
The 10 Modules ... 1-14
The INTERFACE Modules 1-14
The GRAPHICS Modules 1-15
The SEGMENTER Module 1-17
The SYSBOOT Function .. 1-17
The VME Modules. .. 1-18
The SCSILIB Module. '. 1-18

Building Your Own Library ... 1-19
General Recommendations 1-19
Specific Recommendations 1-19
Module Dependency Table 1-21
Some Are Needed at Compile Time, Some Aren't 1-21

Chapter 2: Interfacing Concepts
Introduction .. .
Terminology
Why Do You Need an Interface?

Electrical and Mechanical Compatibility.
Data Compatibility
Timing Compatibility
Additional Interface Functions

Interface Overview
HP-IB Interface .
Serial Interface
GPIO Interface

2-1
2-1
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-6
2-6

vi Table of Contents

Data Representations .. 2-7
Bits and Bytes ... 2-7
Representing Numbers ... 2-8
Representing Characters .. 2-9
Representing Signed Integers 2-9
Representing Real Numbers 2-11

Chapter 3: The I/O Procedure Library
Introduction ... 3-1
Pascal I/O .. 3-1
I/O Library Organization ... 3-2

GENERAL .. 3-2
HP-IB .. 3-2
SERIAL .. 3-3
HP PARALLEL ... 3-3

I/O Library Initialization .. 3-3
GENERAL Modules ... 3-4
HP-IB Modules ... 3-5
SERIAL Modules ... 3-6
HP Parallel Module .. 3-6
10DECLARATIONS Module ... 3-6

Range of Interface Select Codes and Device Selectors 3-6
Information about Interface Cards 3-7
Other Types ... 3-10

Chapter 4: Directing Data Flow
Introduction ... 4-1
Specifying a Resource ... 4-1

Simple Device Selectors .. 4-1
Addressed Device Selectors 4-2

Chapter 5: Outputting Data
Introduction ... 5-1
Free-Field Output ... 5-2

Real Expressions ... 5-2
String Expressions .. 5-3
Characters .. 5-4
Words ... 5-4

Formatted Output .. 5-6
STRWRITE ... 5-6

Chapter 6: Inputting Data
Introduction .. 6-1
Free-Field Input ... 6-2

Real Variables ... 6-2
String Variables .. 6-3
Characters .. 6-4
Words ... 6-4
Skipping Data ... 6-5

Formatted Input .. 6-6
STRREAD ... 6-6

Table of Contents vii

Chapter 7: Registers
Introduction ... 7-1
I/O System Registers .. 7-1

10STATUS Function 7-1
Ex.amples ... 7-1
10CONTROL Procedures 7-2
Examples .. ~ .. 7-2
Common Register Definitions 7 -2

Hardware Registers ... 7 -2

Chapter 8: Errors and Timeouts
Introduction ... 8-1
Pascal Event Processing .. 8-2

TRY .. 8-2
RECOVER ... 8-3
ESCAPECODE 8-3
ESCAPE .. ;.. 8-3

I/O Error Handling .. 8-3
IOESCAPECODE ... 8-3
10E_RESULT .. 8-3
10E_ISC '.' .. 8-4
IOERROR_MESSAGE .. 8-4

I/O Timeouts .. 8-5
Setting Up Timeout Events 8-5

I/O Errors .. 8-7

Chapter 9: Advanced Transfer Techniques
Introduction ... 9-1
Buffers 9-1

Buffer Control ... 9-2
Reading Buffer Data ... 9-2
Writing Buffer Data ... 9-3

Serial Transfers .. 9-4
Overlap Transfers ' 9-6

When is the Transfer Finished? 9-6
Special Transfers ... 9-8

Word Transfer ... ~ 9-8
Match Character Transfer 9-8
END Condition Transfer .. 9-8

Chapter 10: HP-IB Interface
Introduction ... 10-1
Initial Installation .. 10-2
Communicating with Devices 10-3

HP-IB Device Selectors .. 10-3
Moving Data Through the HP-IB 10-3

viii Table of Contents

General Structure of the HP-IB 10-3
Example of Bus Sequences 10-5
Addressing Multiple Listeners 10-6
Addressing a Non-Active Controller 10-6

Pascal Control of HP-IB ... 10-7
HP-IB Status ... 10-7
HP-IB Control .. 10-7

General Bus Management .. 10-8
Remote Control of Devices 10-8
Locking Out Local Control 10-9
Enabling Local Control .. 10-9
Triggering HP-IB Devices 10-10
Clearing HP-IB Devices .. 10-10
Aborting Bus Activity .. 10-10
Passing Control .. 10-11
Polling HP-IB Devices .. 10-11

HP-IB Interface Conditions .. 10-13
HP-IB Control Lines ... 10-14

Handshake Lines ... 10-14
Attention Line ... 10-15
The Interface Clear Line 10-15
The Remote Enable Line 10-15
The End or Identify Line'................................ 10-15
The Service Request Line .. 10-16
Determining Bus Line States .. 10-16

Advanced Bus Management 10-18
The Message Concept 10-18
Types of Bus Messages 10-18
Explicit Bus Messages .. 10-22

Summary of HP-IB IOSTATUS and IOCONTROL Registers 10-23
Summary of HP-IB IOREAD_BYTE and IOWRITE~BYTE Registers 10-27
Summary of Bus Sequences 10-37

Chapter 11: Datacomm Interface
Introduction .. 11-1

Prerequisites ... 11-1
Protocol ... 11-2
Data Transfers Between Computer and Interface 11-4

Overview of Datacomm Programming 11-7
Set Baud Rate .. 11-7
Set Stop Bits ... 11-7
Set Character Length ... 11-7
Set Parity .. 11-7
Example Terminal Emulator 11-8

Establishing the Connection 11-10
Determining Protocol and Link Operating Parameters 11-10
Using Defaults to Simplify Programming 11-11
Resetting the Datacomm Interface 11-12
Protocol Selection .. 11-12

Table of Contents Ix

Datacomm Options for Async Communication .. 11-13
Datacomm Options for Data Link Communication 11-1 7
Connecting to the Line 11-19
Connection Procedure 11-20
Initiating the Connection 11-21

Datacomm Errors and Recovery Procedures 11-22
Error Recovery 11-23

Datacomm Programming Helps 11-24
Terminal Prompt Messages 11-24
Secondary Channel, Half-duplex Communication 11-26
Communication Between Desktop Computers 11-26

Cable and Adapter Options and Functions 11-27
DCE and DTE Cable Options 11-27
Optional Circuit Driver/Receiver Functions 11-28

HP 98628 Datacomm Interface IOSTATUS and IOCONTROL Register Summary 11-29
HP 98628 Datacomm Interface IOSTATUS and IOCONTROL Register 11-31

Chapter 12: RS-232 Serial Interface
Introduction .. 12-1
Details of Serial I/O .. 12-2

Baud Rate ... 12-2
Modem Status and Control Lines 12-3
Software Handshake, Parity and Character Format 12-4

Programming Techniques ; 12-5
Overview of Serial Interface Programming 12-5
Initializing the Connection " . .. 12-6
Transferring Data .. 12-8
Data Output .. 12-8
Data Input ... 12-9
Error Detection and Handling 12-9

Special Applications ... 12-11
Sending BREAK Messages 12-11
Redefining Handshake and Special Characters 12-11
Using the Modem Line Control Registers 12-12
IOREAD_BYTE and IOWRITE_BYTE Register Operations 12-14

Status and Control Registers .. 12-14
Serial Interface Hardware Registers .. 12-19

Interface Card Registers 12-19
UART Registers .. 12-20

HP 98626 Cable Options and Signal Functions 12-23
The DTE Cable .. 12-23
The DCE Cable .. 12-24

HP 98644 Interface Differences 12-27
Hardware Differences .. 12-27
Pascal Differences .. 12-29

x Table of Contents

Model 216 and 217 Built-In 98626 Interface Differences 12-30
Hardware Differences ~ .. 12-30
Pascal Differences .. 12-30
Series 300 Built-In 98644 Interface Differences 12-30

Chapter 13: GPIO Interface
Introduction .. 13-1
Interface Description .. 13-2
Interface Configuration .. 13-3

Interface Select Code ... 13-3
Hardware Interrupt Priority .. 13-3
Data Logic Sense .. 13-3
Data Handshake Methods'............................. 13-3

Interface Reset ... 13-14
Outputs and Inputs through the GPIO 13-15

ASCII and Internal Representations 13-15
Using the Special-Purpose Lines 13-18

Driving the Control Output Lines 13-18
Interrogating the Status Input Lines 13-18

GPIO Status and Control Registers 13-20
Summary of GPIO lORE AD_BYTE and IOWRITE_BYTE Registers 13-21

GPIO IOREAD_BYTE Registers 13-21
GPIO IOWRITE_BYTE Register 13-23

Chapter 14: System Devices
Introduction .. 14-1

A Bit of Advice ... 14-1
Supported Features .. 14-2
The SYSDEVS Module .. 14-3
The Example Programs 14-3

Interrupt Processing Overview 14-5
Hooking into Your System 14-5
Enabling Interrupts ... 14-7
System Features. .. 14-8

The Beeper .. 14-9
Beeper Timing .. 14-9

The Clock .. 14-11
Direct Clock Access " 14-16

The Timers ... 14-18
Timer Types .. 14-19
Timer Operations ... 14-19
Using a Timer ... 14-20
A Typical Timer ISR .. 14-21
Multi-Timer Example .. 14-22
Using the Periodic Timer 14-24
System Timer Example 14-26

Table of Contents xi

The Display ... 14-28
Determining Display Type. .. 14-28
Display Status {. .. 14-29
Display Parameters .. 14-30
Changing Display Parameters 14-31
Controlling the Cursor 14-32
Dumping the Display .. 14-32
Last Line Operations .. 14-33
The Menus .. 14-34
The Status Area. .. 14-35
The Runlight .. 14-36
The Debugger Window 14-37

The Keyboard ... 14-42
The Keyboard Hooks .. 14-43
Keyboard Request Hook 14-43
Keyboard ISR Hook ... 14-45
Keyboard Poll Hook. .. 14-46

The Keybuffer ... 14-48
Keybuffer Control .. 14-49
KeybufferVOHooks .. 14-49

Key Translation Services ... 14-51
The Translation Hook 14-51
Modifying the Language Table 14-54

The Knob .. 14-56
Keyboard Hardware ... 14-58

Key-Actions ... 14-62
Typing Aids Program .. 14-66

Powerfail ... 14-75
Battery Features ... 14-76
Powerfail Behavior ... 14-76
Powerfail Real-Time Clock 14-77
Non-Volatile RAM 14-77
Interface to the Host CPU 14-77
Commands to the Battery 14-78

SYSDEVS Listing ~. 14-81

Chapter 15: Segmentation Procedures
Introduction ... 15-1

A Word to the Wise .. 15-1
Using SEGMENTER Procedures 15-2
SEGMENTER Procedure Descriptions 15-3

SEGMENTER Initialization 15-3
Segmentation Free Space 15-3
Segmentation Using the Stack 15-3
Searching for a Procedure Name 15-6
Checking a Procedure Variable 15-6

xii Table of Contents

Loading into the Explicit Code Area 15-7
Loading a Segment onto the Heap 15-8
Unloading a Segment ... 15-9
Unloading All Segments 15-9

SEGMENTER Errors .. 15-10

Chapter 16: HP 98646A VMEbus Support
The HP 98646A VMEbus Interface Software Driver .. 16-1

What is the VMEbus Interface? 16-1
Talking with the VMEbus .. 16-2
Where the VMELIBRARY File is Located 16-2
Using the VMELIBRARY Procedures 16-2
VME_DRIVER Types .. 16-4
VME_DRIVER Procedures .. 16-4
VMEbus Initialization Procedures .. 16-4
VMEbus Read/Write Procedures .. 16-5
VMEbus Interrupt Handling Procedures .. 16-9

VMELIBRARY Errors .. 16-10

Chapter 17: The HP Parallel Interface
Introduction .. 17-1
Bus Description .. 1 7-2

The Data Lines .. 17-3
The Handshake Lines ... 17-4
The Error Lines. .. 17-4
The Status Lines .. 17-4
The Reset Line .. 17-4

Bus Protocols 17-5
Output .. 17-5
Input. .. 17-7
Data Direction Change - Output to Input. .. 17-8
Data Direction Change - Input to Output after Input Completion. 1 7-10
Data Direction Change - Input to Output before Input Completion 17-12
Peripheral Reset and Bidirectional Check .. 17-14

Standard I/O Library Support .. 17-16
Programming Techniques .. 17 -1 7

Overview of HP Parallel Interface Programming 17-17
Initializing the HP Parallel Interface 17-18
Setting Driver Operating Parameters 17-18
Using User ISRs ,........................ 17-22
Input and Output Extensions. .. 17-27
Manually controlling the Handshake Protocols 17-28

PARALLEL_3 Interface Declarations 17-31
10STATUS and 10CONTROL Register Summary 17-36

System Required Registers 17-36
Hardware Status and Control Registers 17-37
Driver Status and Control Registers .. 17 -40
User ISR Status and Control Registers .. 17 -43

IOREAD_BYTE and IOWRITE_BYTE Summary. .. 17-45

Table of Contents xiii

HP Parallel 10READ _BYTE Registers. .. 17-45
HP Parallel 10WRITE_BYTE Registers .. 17-46

Chapter 18: SCSI Programmer's Interface
The SCSI Bus .. 18-1
Files Used to Communicate with the SCSI Bus. .. 18-2
Using the SCSI Programmer's Interface. .. 18-3

SCSI Session. , 18-3
The SessionBlock .. 18-4
Requesting a SCSI Session 18-8
Built-In SCSI Command Support 18-16
Overlapped Sessions .. 18-17
Resetting the SCSI Bus .. 18-20

SCSI Programmer's Interface Summary 18-21

Procedure Library Summary
I/O Procedures
Graphics Procedures

Procedure Library Reference
Introduction ... A-I

Glossary .. A-229

Subject Index .. Subject Index-1

Overview
Chapter

1

Introduction
This manual describes the procedures, functions, constants, and types provided by the Pascal
Procedure Library. It also presents several examples of how to use them in Pascal programs.

The manual is divided into two major parts.

• The first part (Chapters 1 thru 15) is organized by topics. It explains particular programming
concepts rather than individual procedures and functions.

• The second part (the Library Reference) is an alphabetical listing of the individual procedures
and functions, showing syntax and semantic information for each.

Note

Examples that include files may require modification. If your system was
shipped on double-sided 3 1h-inch discs, the name of the disc where the
program is located may not be the same as for other systems. For exam­
ple: the GRAPHICS file on the LIB: disc is on the SYSVOL: double-sided
disc.

Prerequisites
In order to successfully use this manual, you must understand the concept of modules. This chapter
provides an overview of modules. (It is essentially a duplication of the first seven pages of the
Librarian chapter in the Pascal Workstation System manual.) For a more complete description of
modules, read the Modules section of the Compiler chapter in the Pascal Workstation System.
Volume I (about 10 pages of text).

Chapter Overview
The remainder of this chapter contains these sections:

• A preview of each remaining chapter in this manual.

• A general overview of using library modules.

• A description of the modules provided by the Procedure Library.

• Recommendations for building your library.

1-1

1-2 Overview

Chapter Previews
Here are brief descriptions of the rest of the chapters in this manual. There are also recommenda­
tions as to which you may need to read.

Chapter 2: Interfacing Concepts This chapter presents a brief explanation of relevant interfacing
concepts and terminology. This discussion is especially useful for beginning 1/0 programmers, as it
covers much of the why and how of interfacing. Experienced programmers may also want to skim
this material to better understand the terminology used in this manual.

Chapfer 3: 1/0 Procedure Library This chapter presents an introduction to the 110 Procedure
Library. It describes the organization of the 110 library, its major capabilities, and examples of its
use. All 1/0 programmers should read this chapter.

Chapter 4: Directing Data Flow This chapter describes how to specify which computer resource
is to receive data from or send data to the computer by using select codes and device selectors.

Chapter 5: Data Input This chapter desribes methods of sending data to devices. Examples of
free-field and formatted output are given. You may be able to skip sections of this chapter,
depending on your application.

Chapter 6: Data Output This chapter desribes methods of receiving data from devices. Examples
of free-field and formatted input are given. As with the preceding chapter, you may be able to skip
sections of this chapter, depending on your application.

Chapter 7: Registers This chapter describes the purposes of interface registers and how to use
them. Both the hardware and firmware registers are described in general. Specific interface register
definitions are given in the corresponding chapter.

Chapter 8: Errors and Timeouts This chapter describes what you need to do in order to handle
and recover from error and timeout conditions.

Chapter 9: Advanced Transfer Techniques This chapter discusses the high-performance transfer
methods provided in the 110 library. These methods use "buffered" transfer mechanisms; they
include interrupt, fast-handshake, and direct-memory access (DMA) transfer methods.

Chapter 10: HP-IB Interface This chapter describes programming techniques specific to HP-IB
interfaces. Details of HP-IB communications processes are also included to promote better overall
uinderstanding of how this interface may be used. This discussion is valid for the built-in HP-IB
interface, as well as for the optional HP 98624 HP-IB and 98625 High-Speed Disc interfaces.

Chapter 11: Data Communications Interface This chapter describes programming techniques
specific to the HP 98628 Data Communications (or "Datacomm") interface.

Chapter 12: RS-232C Serial Interface This chapter is a programming techniques discussion of
the HP 98626 and 98644 RS-232C Serial interfaces.

Chapter 13: GPIO Interface This chapter describes techniques specific to programming the HP
98622 General-Purpose Input/Output (GPIO) interface.

Overview 1-3

Chapter 14: System Devices This chapter describes using the operating system module named
SYSDEVS to access the built-in "system devices" such as the keyboard, display, clock, and beeper;
it also describes how to access optional devices such as powerfail protection.

Chapter 15: Segmentation Procedures This chapter describes the procedures that provide the
capability of segmenting programs at run-time.

Overview of Libraries and Modules
This section presents some important terms and concepts you will need to know in order to
understand and use modules, and discusses how to use some general example modules. The
subsequent section describes the modules provided in the Pascal Procedure Library.

Modules and Libraries
Modules declare procedures, functions, constants, and types. Once these objects have been de­
clared, you can use them in your programs by importing them. (You will see examples momen­
tarily.)

Libraries are object files. They contain zero or more object modules. Object modules are the
product of the Compiler or Assembler!. For instance, compiling a Pascal source module generates
an object module which is placed in an object file. This file is actually a library, because it contains
an object module. An object file (library) is composed of a directory of names of the module(s) that
it contains, followed by the object modules themselves.

The Librarian
The purpose of the Librarian subsystem is to manage object modules. The Librarian can also
produce object files; however, these files consist of object modules produced by the Compiler or
Assembler. It can create library files and add modules to them or remove modules from them.
Library files are intended to provide a convenient location to store object modules.

Example Modules
For this example, we will be using three example library modules provided on the DOC: disc
shipped with your system. One contains a compiled program (PROG_1.CODE), and the other two
contain compiled modules (MOD~.CODE and MOD_3.CODE).

The DOC: disc also contains the source versions of these modules. Although this chapter will only
be dealing specifically with the object versions, it is a good learning experience to compile the
source versions to see how the Compiler deals with imported modules. One method is briefly
outlined in the next section.

1 Complete descriptions of how to produce and use Pascal and Assembler modules are proVided in the Compiler and Assembler chapters of the
Pascal Workstation System manual.

1-4 Overview

Here are source listings and brief explanations of each of the example modules.

Source Listing ofPROG_l.CODE

PROGRAM Pro.raMOne(OUTPUT);

IMPORT ModuleTwo;

BEGIN
WRITELN;
WRITELN;
WRITELN('*************** Pro.raMOne ***************');
TI",oLines;
WRITELN('*************** Pro.raMOne ***************');

END,

The example program imports ModuleTwo, which declared the procedure named TwoLines. Here
is the source of ModuleTwo, which was compiled and stored in the library (object-code) file named
MOD-2.CODE.

MODULE ModuleTwo;

IMPORT ModuleThree;

E~{PORT

PROCEDURE TwoLines;

IMPLEMENT

PROCEDURE TwoLines;
BEGIN

Source Listing of MOD_2.CODE

WRITELN('I CalTle frolTl ModuleTIAlo and brou.ht this: ');
ThirdLine;

END;

END,

Overview 1-5

ModuleTwo exports procedure TwoLines, which is used by ProgramOne. It also imports
Module Three, which declares procedure ThirdLine and is in the library (object-code) file named
MOD_3.CODE.

MODULE ModuleThree;

D(PORT
PROCEDURE ThirdLine;

IMPLEMENT

PROCEDURE ThirdLine;
BEGIN

Source Listing of MOD_3.CODE

WRITELN(I I caflle f rOfTI ModuleTh ree ');
END;

END.

This module exports procedure ThirdLine, which is imported by Module Two. Notice that it does
not import any modules.

Here are the results of running the program.

*************** ProfraMOne ***************
I caMe frOM ModuleTwo and broufht this:
I caMe frOM ModuleThree
*************** ProfraMOne ***************

Here is what happens when you run ProgramOne. First, ProgramOne prints two blank lines and
then the line of asterisks that contains its name. The procedure TwoLines, imported from
ModuleTwo, is then called; it prints the message: I c aflle f rOfl1 Mo d u 1 e TINO an d b ro 1.1 ~h t t his:.
Procedure ThirdLine, imported from Module Three, is then called; it prints the message:
I c a fll e fro fll Mod u 1 e T h r e e. Control is then returned to TwoLines and then to the program, which
again prints out its name in asterisks.

Let's take a look at what is needed in order for you to compile and run the program.

1-6 Overview

Compiling and Running the Example Program
When a program (or module) imports modules, the imported modules must be accessible at two
times:

• When the program is compiled .

• When the program is loaded and run.

Let's take a look at what happens at these two times.

How the Compiler Finds Imported Modules
At compile time, the Compiler searches for each module imported by the source program (or
module); more specifically, it searches to find each module's "interface text." Here is the order of
the places where the Compiler looks in search of interface text:

1. In the source text being compiled. (The source text of modules and programs can be
combined into one source file, as long as the modules precede the program and are in proper
sequence.)

2. In an object file specified in a SEARCH Compiler option.

3. In the object file currently designated as the System Library.

A module's interface text consists of the following: the MODULE name; the IMPORT section, if
present; and EXPORT section. These sections are part of the object module produced when the
module was compiled or assembled. See the Compiler or Assembler chapters of the Pascal Work­
station System manual for a more complete deSCription of interface text.

The System Library is a special library file that is automatically used by the system. The default
System Library is the file named "LIBRARY" found on the system volume at power-up. You can
also change it with the What command and the Main Command Level.

How these Modules and Program Were Compiled ~
Here is a strategy (and the method actually used) for compiling these source modules and program.
(Note that you will be learning these Librarian operations later in this section, so you will probably
not want to perform this compilation exercise until after working through the examples using the
object modules and program.)

1. Compile ModuleThree first (MOD_3.TEXT); call it MOD_3.CODE for simplicity. Since this
module does not import any others, it will be compiled with no need to search for any
imported module's interface text.

2. Use the Librarian to add the resultant object module (MOD_3.CODE) to the library file
currently designated as the System Library. (Actually, you will be creating a new library into
which you will place Module Three and the modules currently in the System Library; this type
of operation is subsequently explained in this chapter.)

3. After merging these two libraries (into a third new library), you will need to do one of two
things: use the What command to make the resultant library the System Library; or use the
Filer to change the resultant library's name back to the name of the current System Library.

4. Next, compile ModuleTwo (MOD-2.TEXT); call it MOD-2.CODE. The external references
to ModuleThree will be resolved when the Compiler finds the object ModuleThree in the
System Library.

Overview 1-7

5. Then place this compiled module in the System Library as in steps 2 and 3.

6. Compile the program (PROG_l. TEXT). Since both object modules upon which this prog­
ram depends are in the System Library, they will be accessed automatically by the Compiler
when the program is compiled.

7. Run the program. The loader automatically looks in the System Library in order to resolve
the external references; it loads the modules required to complete the program (in this case,
ModuleTwo and ModuleThree).

Since the program and modules have already been compiled and the object files placed on the
DOC: disc, we will not discuss other alternatives of making the source files accessible to the
Compiler. (However, you are again encouraged to do this after learning how to use the Librarian.
See the Compiler chapter of the Pascal Workstation System manual for details.)

Let's look now at how the loader finds imported object modules when the program is to be loaded
for execution.

How the Loader Finds Imported Modules
Since a compiled program contains no record of where the Compiler found the imported modules,
the loader must (by itself) find the imported object modules at load time. Here is the order of the
places where the loader looks:

1. Modules that are part of the object file being loaded.

2. In modules already P-Ioaded in memory, which includes all INITLIB and Operating System
modules. (The loader searches for these modules in reverse order to which they were
P-loaded; in other words, the most-recently loaded modules are searched first.)

3. In the current System Library file.

In order to make all imported modules part of the object file that uses them (alternative 1 shown
above), you have two choices:

• Combine the source modules into one source file (and compile it). You can use the Editor to
add each imported module's source file to the source program. You can also use an INCLUDE
Compiler option in the source program to include each imported module's source file in the
compilation of the program .

• Combine the object modules into one object file. Use the Librarian to combine the program
and imported modules into one object file; you can optionally Link the modules to save space.

With both of these methods, only the file containing the program need be loaded; and when the
program is finished, the memory used by the modules can be reclaimed for other purposes. With
P-Ioaded modules, this is not possible (without re-booting).

If you want to P-Ioad modules to make them accessible to the loader (alternative 2 shown above),
YOll will only need to P-Ioad all modules which are not in one of the three places stated above. In
the example modules already given, ProgramOne imports ModuleTwo, and ModuleTwo imports
ModuleThree. In the second example that follows, you will be creating a library that contains these
two modules and then P-Ioading the library. (You can alternatively P-Ioad MOD_3.CODE and
MOD--2. CODE, in that order, which does not require use of the Librarian.) The loader will then be
able to link the modules contained in the library to any program that imports them at execution
time.

1-8 Overview

In general, the most convenient way to use modules is to place them in the file that is currently
designated as the "System Library" (alternative 3 shown above). This is probably the most com­
mon reason for using the Librarian. In the example that follows, you will add modules Module T wo
and Module Three to the LIBRARY file and then run the program.

Setting Up Mass Storage
With some larger applications, you will need two on-line mass storage volumes when using the
Librarian. If you only have one volume in your system, you may need to set up a memory volume.
This discusson tells why two volumes may be needed and then outlines how to estimate the size of
the 'volumes required.

When you combine the object modules in two libraries using the Librarian, you actually create a
third (new) library and then copy into it the desired modules from the other two libraries. For
instance, suppose that you want to add all of the CONFIG:GRAPHICS modules to the
SYSVOLLIBRARY file. You will first create a new library file, and then add the existing LIBRARY
modules and the GRAPHICS modules to this new library. The volume on which this new library
exists must not be taken off-line during the entire process.

Thus, two separate volumes are often necessary for these two reasons:

• The sum of all source libraries plus the new destination library 'often exceeds the capacity of
one volume.

• The destination volume must not be taken off-line during this entire operation.

Continuing with our example, here is the total amount of space of on-line mass storage required for
the operation (assuming you have only one disc drive).

• All modules in the standard LIBRARY file: approximately 62 sectors

• All modules in the standard GRAPHICS file: approximately 916 sectors

• The new library file: roughly the sum of 62 and 916 sectors

The grand total is over 1956 sectors (over 489 Kbytes). If you only have one mini disc drive
with capacity of about 1050 sectors (about 270 Kbytes), then you will nee4 two volumes for
the process; the second volume will be a memory volume.

In this case, you could create a memory volume with a specified size of 500 blocks, or 250 Kbytes.
(Note that memory volume blocks are 512 bytes each, while mini-disc sectors are 256 bytes each.
See tbe Memvol command in the Overview chapter for more specific details on creating memory
volumes.)

It is usually more convenient to use the memory volume as the destination volume, since that
volume cannot be taken off-line.

The following examples assume that either you have two disc volumes on-line or that you have
created a memory volume of sufficient size. For these examples, a memory volume of 500 blocks is
sufficient.

Overview 1-9

Using the Librarian
The Librarian is provided on the ACCESS: disc shipped with the system. To use the Librarian, you
will first need to put it on-line: either place the disc labeled ACCESS: in a drive, or copy the
LIBRARIAN file to another location (such as a hard disc) and use the What command (at the Main
Command Level) to specify this copy as the system Librarian. After doing either of these, pressing
c=cJ directs the system to load and execute the LIBRARIAN file.

Here is the Librarian's main prompt:

r
Librarian [Rev. 3.2 IS-Jan-8?]

I) 01) i t
P Printout OFF PRINTER:LINK,ASC
o Output file: (none)
8 write to 800t disk
H file Header maximum size:

I n P!.l t f i 1 e : (non e ::0

Copyright 1987 Hewlett-Packard Company.
comm.:lnd?

The commands shown on the left-hand side of the screen are invoked by pressing the correspond­
ing key.

Adding Modules to the System Library
A common way to use library modules is to add them to the current System Library file. Let's
assume that it is the file named LIBRARY for present purposes, although you can change it to any
file by using the What command at the Main Command Level. The general steps in the procedure
used to add modules to LIBRARY are the same as those used to add modules to almost any library.

Here is a brief summary of the steps reqUired:

1. Make a new library file, and copy into it all of the modules currently in LIBRARY.

2. Add Module Three and Module Two to the new file (in this case the order of modules is
arbitrary, since the loader will load them in the right order).

3. Replace the LIBRARY file with this new file.

4. Execute the program, and the modules are loaded automatically for you.

1-10 Overview

A more detailed procedure is given below.

1. Invoke the Librarian. This is done by pressing (IJ from the Main Command Level. (If the
Librarian is not on-line, insert the ACCESS: disc and try again. Remove the ACCESS: disc
once the Librarian has loaded.) Now use the Librarian to create the new library.

2. Put the SYSVOL: disc (or the one containing the LIBRARY file) in the '#3 drive. Press u=J
and then type #3:LI5RARY. and press (Return) or (ENTER) to enter the Input file. You must
include a trailing period to prevent the Librarian from appending the. CODE suffix.

When the Librarian finds the Input file, the display will show the name of the first module in
the file. (You should see the module named RND if you have not yet modified the LIBRARY
file.) If you have a printer, you can press CD to list all of the modules in the Input library.

3. (For this example, we will assume that you are using unit #4 as the second volume;
however, if the LIBRARY file is small enough, you can also put the new library file on drive
#3. We will also assume that the destination volume has enough room for the new library
file.)

Press CO and enter #4:NEWL15. as the Output file. Again, a trailing period prevents the
• CODE suffix from being appended to the file name. If you are using a memory volume, use
the unit number of the memory volume.

(If you are using a disc, this disc must not be removed until you have finished creating the
new NEWLIB file.)

4. Press CO to enter the Edit mode. You should now see this prompt (in the middle of the
screen):

FFi rst fTlodule: RND
UUntil Module: (end of file)

5. You can now transfer all modules in the Input file to the Output file, including the last
module, by pressing CIJ (for Copy).

6. When the preceding transfer is complete, press IT] to append a module to the NEWLIB
Output file. The Librarian prompts with In put f i Ie:. Put the DOC: disc, or whichever disc
now contains ModuleThree, in Unit #3 (not #4, which must not be removed). Enter
#3: MOD_3 as the Input file.

7. The Librarian now prompts with Enter list of fTlodules or = for all. Enter = for all.
After'ModuleThree has been transferred to the NEWLIB library, the Librarian prompts with
Append done t <space> to continue. Press the spacebar to clear the prompt.

Now use steps 6 and 7 again to copy ModuleTwo (in file MOD-.2.CODE) into the NEWLIB
file.

8. Now that all modules have been added to the NEWLIB file, press CO to stop editing and
CD to keep the file.

9 .. You should now verify that the modules were indeed copied to the Output file. Press u=J
and enter #4: NEWL 15 .. as the Input file. Press the spacebar repeatedly to scan through the
modules in the new library file. If you have a printer, press CD to get a File Directory
listing.

10. If all modules are present, then press CO to Quit the Librarian.

Overview 1-11

11. Now you have one of two options to make this library the System Library: you can use the
What command at the Main Level to specify the file named NEWLIB (on the destination
volume) to be the System Library; or you can replace the LIBRARY file on the SYSVOL:
disc with this file. If you choose the second option, it is probably better to keep the current
copy of LIBRARY on the disc; you should'first Change its name to something like OLD LIB
and then Filecopy the NEWLIB file onto the SYSVOL: disc, changing its name to LIBRARY.

12. Make sure that the System Library file is on-line, and then eXecute or Run the program.

As the program is loaded, the imported modules will also be loaded automatically. Here are the
results of running the program.

*************** Pro~raMOne ***************
I caMe froM ModuleTwo and brou~ht this:
I caMe froM ModuleThree
*************** Pro~raMOne ***************

After the program has completed execution, the memory used by both program and modules can
be used for other purposes.

As you can see, the System Library is a special library of object modules that is automatically
accessed by the linking loader at program execution time (and by the Compiler at compile time).
Because of this automatic access, you do not need to use the Permanent-load command to make
this library's contents accessible to the loader. And also because of this automatic access, the
System Library is generally used to store those modules often used in your programs.

Using modules in the Procedure Library is similar to using these example modules. Now that you
know how to use modules, let's look at the specific library files and modules provided with your
system.

1-12 Overview

Overview of the Procedure Library
The modules supplied with the Pascal system provide the- following general categories of
procedures and function:

• Standard procedures

• I/O procedures

• Graphics procedures

• Segmentation procedures

• SYSBOOT function

• VME procedures

• SCSI procedures

Standard LIBRARY Modules
The SYSVOL:LIBRARY file contains the "standard" library modules. It is a small collection of
modules which contain general support procedures and functions for your programs. It has been
made small in order to conserve disc space; however, you can easily add modules to it.

The folloWing modules ar~ contained in the standard LIBRARY file; using .each module is described
momentarily. (The listing was generated by using the Librarian's 'File directory' command).

Librarian [Rev. 3.2 15-Jan-87] 16-Jan-87 14:26:39 p-~'3 e 1

FILE DIRECTORY OF: ~LIBRARY~

Rt-{D 6 15-J-~n-87
.,
--'

2 HPt'l ::: 15-.J-~n-:::7 9
3 UIO 7 15-.J~n-87 17
4 LOCKt'10DULE 7 15-.J-~n-87 24

The first column indicates the ordinal number of the module; for instance, UIO is the third module
in this library file. (The second column shows the module's name.)

The third column indicates the size of the module (in 256-byte sectors).

The fourth column indicates the date the module was produced.

The fifth column shows the sector offset. RND has an offset of 3; since it has a size of 6 sectors,
HPM has an offset of 9 sectors.

Using RND
Module RND must be imported when you use the random number generator. The random number
generator is described in the Library Reference section of this manual under the entries RAND (a
function) and RANDOM (a procedure).

As with most other modules, RND must be accessible at two times: when compiling and when
running programs that import it. If it is in the System Library file at compile time and at run time,
then it will be accessed automatically; see the preceding discussions of how the Compiler and
loader find modules for the other alternatives.

Overview 1-13

In addition, RND imports the SYSGLOBALS module. This module was effectively P-Ioaded at
boot time (it is part of the standard INITLIB file), so you will not need to do anything to make it
accessible to the loader. However, the Compiler still needs to search the module's interface text, so
you will need to)l1ake the interface text accessible to the Compiler. The interface text is in the
CONFIG:INTERFACE file, and you can make it accessible in either of two ways: use a SEARCH
Compiler option in your program, or add the SYSGLOBALS module to the current System Library
file.

Using HPM
Module HPM provides the DISPOSE, NEW, MARK, and RELEASE procedures for managing
dynamic variables in the heap. Techniques for using these procedures are described in the Heap
Management section of the Compiler chapter of Pascal Workstation System, Volume 1. Pre­
cise descriptions of syntax and semantics for the procedures are in the HP Pascal Language
Reference.

The HPM module needs never be imported, because its procedures are "Compiler intrinsics;" thus,
it does not need to be accessible to the Compiler while compiling programs that use its procedures.
However, it needs to be accessible to the loader at run time if you are using the $HEAP _DISPOSE
ON$ Compiler option. In order to make it accessible to the loader, you can do one of three things:
combine the object module with the object program (or module) that imports it; P-Ioad the module;
or add it to the current System Library.

For further details regarding the use of the HEAP _DISPOSE Compiler option, see the Compiler
chapter of the Pascal Workstation System, Volume I.

Using UIO
Module UIO provides the low-level "unit 1/0" capabilities: UNITBUSY, UNITCLEAR, UNITREAD,
UNITWAIT, and UNITWRITE. With these utility procedures and functions, you can read and write
data on sectors of blocked devices which have been assigned unit numbers in the File System. For
further details on these Unit 110 operations, see the Workstation Implementation section of the HP
Pascal Language Reference.

The UIO module need never be imported, because it is a "Compiler intrinsic;" thus, it does not
need to be accessible to the Compiler while compiling programs that use its procedures and
functions. However, it does need to be accessible to the loader at run time. You can do one of three
things: combine the object module with.the object program (or module) that imports it; P-Ioad the
module; or add it to the current System Library.

Using LOCKMODULE
LOCKMODULE provides locking capabilities for 'lockable' files. File locking operations are
described in the SRM Concurrent File Access section of the File System chapter in the Pascal
Workstation System, Volume I.

LOCKMODULE must be imported if you use the file locking operations on LOCKABLE files. As
with most other modules, it must be accessible at two times: when compiling and when running
programs that import it. If it is in the System Library file at compile time and at run time, then it will
be accessed automatically; see the preceding discussions of how the Compiler and loader find
modules for the other alternatives.

1-14 Overview

The 10 Modules
The file named 10 on the LIB: disc (SYSVOL: on double-sided discs) contains modules that
provide I/O procedures and functions. The bulk of this manual describes using the 10 library.
The Library Reference section of this manual lists the module(s} you must IMPORT for each
procedure and function.

If you are using 110 procedures and functions in your programs, then the modules which declare
those procedures and functions must be accessible to the Compiler and loader. If the modules are
in the System Library, then they will automatically be accessed; for alternative methods of making
them accessible, see the beginning of this chapter.

The modules contained in 10 are shown in the following 'File directory' listing generated by the
Librarian.

Librarian [Rev. 3.23 15-Jan-90] 16-Jan-90 '14 :43: 22 page 1

FILE DIRECTORY OF: '10'

1 IODECLARATIONS 18 15-Jan-90 1
2 GENERAL_O 3 15-Jan-90 19
3 IOLIBRARY_KERNE 1 15-Jan-90 22
4 IOCOMASM 3 15-Jan-90 23
5 GENERAL_1 8 15-Jan-90 26
6 HPIB_l 10 15-Jan-90 34
7 GENERAL_2 10 15-Jan-90 44
8 GENERAL_3 9 15-Jan-90 54
9 GENERAL_4 14 15-Jan-90 63

10 HPIB_O 6 15-Jan-90 77
11 HPIB_2 9 15-Jan-90 83
12 HPIB_3 8 15-Jan-90 92
13 SERIAL_O 9 15-Jan-90 100
14 SERIAL_3 11 15-Jan-90 109
15 PARALLEL_3 15 15-Jan-90 120

lhe INTERFACE Modules
The INTERFACE file on the CONFIG: disc (ACCESS: on double-sided discs) contains modules
comprised of only the interface text of several operating system modules. (The interface text
of a module consists of the MODULE name; the IMPORT section, if present; and the EXPORT
section. It is used by the Compiler when compiling programs that depend on the module.) The
INTERFACE file is provided so that your programs can import modules which in turn import
these operating system modules (since the interface text of operating system modules is not
otherwise accessible).

For instance, the SYSGLOBALS module is imported by most of the 10 modules; so when compil­
ing programs that import an 10 module, the SYSGLOBALS module's interface text must be
accessible to the Compiler. To make it accessible to the Compiler, either add the module to the
System Library or specify the INTERFACE library file in a SEARCH Compiler option.

The modules contained in INTERFACE are as follows:

Librarian [Rev, 3,2 1~-0a~-87J

FILE DIRECTORY U~: 'TNTERFRCE'

4 LOADER
5 HF::;E:OOT
6 BOOTDAt'1t'10DULE
7 I [·i I TLOAD
S I SF.~

13 SET
14 ::;YS S
15 S\'::; I CE~:;

1! A:::O
18 CI
19 CI'W

tHT

17
2

14

2

5
9

2

21

i 5-:J·~n-:::7

15-,J",n-:::7
1 5 - :J .~ n - ;:; ?

i 5 - ,J.~ n - ::;:(
15-.)an-;::7
15-1-'·~n-87

i 5 - ,J·",n -::: ('

15-:J·;Jn-S?

2 15-:J.~n-87

.;
't

i5-:J·~n-87

1 5 - :J.~ n - ::: 7

16-Jan-87 14:45:37

Note

2
..,
!

26

42
44

47

61

65
66
87

9(1

91
95

From a technical standpoint, the availability of this interface text gives
you the ability to import these modules in your own programs. Howev­
er, from a practical standpoint, the only module described enough to
allow you to import it is theSYSDEVS module, which is discussed in the
System Devices chapter.

The GRAPHICS Modules

Overview 1-15

The GRAPHICS file on the LIB: disc (SYSVOL: on double-sided discs) contains modules that
provide graphics procedures and functions. The FGRAPHICS file on the FLTLIB: disc provides
the same set of procedures and functions, but they have been optimized for use with the
HP 98635 Floating-Point Math card. (The FGRAPHICS modules have been compiled with the
$ FLOAT _HDW TEST$ Compiler option, which increases the performance of graphics routines
by using the HP 98635 Floating-Point Hardware card, if present. The GRAPHICS modules also
use the card, if present, but the overhead of calling the normal math library routines, which
then test for the card, does not provide the maximum performance.) The FGRAPH20 file on
the FLT20: disc (FLTLIB: on double-sided discs) has been optimized for use on computers
with a MC68020 or MC68030 processor and a MC68881 or MC68882 floating-point math
co-processor.

1-16 Overview

The modules contained in GRAPHICS are as follows:

Librarian [Rev,],2 1S-Jan-87] lS-Jan-8? 14:49:29

FILE DIRECTORY OF: ~GRAPHICS/

GLE_AUTL 6 15-,j.3n-87 3
.. , GLE_UTLS S 1S- ,Jan-:::7 9 :::.

GLE_ T'lPES 22 1S-,J.3n-87 4 7 .;. i

4 GLE_SH:OKE 7 15-,j.3n-87 39
t:"
•• 1 GLE_STE>:;r 7 15-.Jan-87 46
6 GLE ASTE;:.:;r 6 15-,j.3n-87 53
.., GLE_St'lARK 7 15-,J.3n-87 59 I" 1

::: GLE_SCLIF' t:" 15-Jan-87 66 •• 1

9 GLE_ASCLIF' 7 15-J .3n-!::7 71 1

Hi GLE_FILE_IO 7 15-J.3n-87 "",-,
(':'

1 1 GLE_HF'IB_IO 1 .:' 15-,j.3n-87 85 .L':'"

1··' .::.. GLE_HPGL_OUT 20 15-,j.3n-:::7 97
13 GLE_HPGL_ I t·~ 1·:' .:... 15-J.3n-87 117
14 GLE_HPHIL_ABSI 8 15-,J.~n-:::7 p,~

15 GLE_HF'H I L_F.:EL I ::' 15-,j.3n-87 137 '.'

16 GLE_F.:AS_OUT 22 15-IJ.:Jn-~::7 145
17 GLE_AF.:AS_OUT '-It:"

a::,i 15-,j.3n-87 167
1 ,.,

':1 GLEjJWB_ I t·~ 10 15-,j.3n-87 192

19 GLE_GEt·~ 13 15-d.:tn-87 2~~i2

2(1 GLE_GH~I b 15-,j.3n-87 215
21 DGL_ T,"!'F'ES J:"

•• 1 15-J.3n-87 .-,,-, ..
~a::.J.

22 DGL_',}ARS 1 c' '.' 15-,j.3n-87 226
23 DGL_ I BOD'"!' 7 15-Jan-87 244
24 DGL_AUTL 7 15-,j.3n-87 251
25 DGL_TOOLS 6 15-,j.3n-87 258
26 DGL_GH~ 23 15-,j.3n-::::l 264
·)7
':"'1 DGL_F.:ASTEF.: 23 15-,j.3n-87 287
'-11-. DGL_HPGL P 15-,jan-B7 31€1 a::,t,:! .:...

29 DGL_COt·WG_OUT 14 15-,J3n-:::7 322
3~j DGL_Kt·~OB 9 15-,j.3n-87 336
31 DGL_HPGLI 7 15-,J3n-:::7 345 I

7':' DGL_HPHIL_ABSI 7 15-,j.3n-87 352 '.' r:... I

33 DGL _HPH I L _F.~EL I 7 15-,.I.~rl-87 359
34 DGL _COt·~FG_ I t·~ 9 15-,.1.3n-:::7 .:.:t,t,

35 DGL_LIB 42 15-,.I.~n-87 375
36 DGL_POL'l 28 15-,.I.~n-87 417
-:7
,.1 I DGL_HiG! 13 15-,Jan-87 445

If you are using any of the graphics procedures and functions in your programs, then all
GRAPHICS modules through DGL_LIB (Le., the first 35 of the preceding modules) must be
accessible at compile time and at load time. Module DGL_PLOY is only needed if you use
procedures that work with polygons. Module DGLJNQ is only needed if you use the INQ_ WS
procedure.

If the modules are in the System Library, they will be accessed automatically; for alternative
methods o(making these modules accessible, see the beginning of this chapter.

Overview 1-17

The SEGMENTER Module
The SEGMENTER file on the CONFIG: disc (ACCESS: on double-sided discs) contains the SEG­
MENTER module that provides procedures which allow you to dynamically (programmatically)
load, execute, and unload program segments. For instance, you can use these procedures to
segment and run programs in a minimum amount of memory. However, note that it sometimes
requires some very clever programming to accomplish this type of feat. Examples of these
procedures are given in the Segmentation Procedures chapter of this manual.

Here is a 'File directory' listing of the SEGMENTER library file, produced by the Librarian.

Librarian [Rev. 3.0 15-Apr-84J

FILE D I RECTORY OF: I SEGMENTER I

1 ALLOCATE
2 SEGMENTER

5 1 5-Ap r-84
11 15-Apr-84

30-Apr-84 11:58: 2

1
G

pa!1e 1

Module SEGMENTER must be imported in order to use the segmentation procedures. Module
ALLOCATE is only the initialization program for module SEGMENTER, so you will not be import­
ing it.

As with importing most other modules, SEGMENTER must be accessible at two times: when
compiling and when running programs that import it. If it is in the System Library file at compile
time and at run time, then it will be accessed automatically; see the beginning of this chapter for
alternative methods of making it accessible.

The SYSBOOT Function
The SYSBOOT function is found in the library file SYSBOOT on the ACCESS: disc (for double­
sided media) and on the CQNFIG: disc (for single-sided media). The module SYS_BOOT
provides the ability for a program to specify a system to boot. The module SYS_BOOT must
be imported in order to use the SYSBOOT function.

The "Procedure Library Reference" (Appendix A) provides the formal interface description and
the semantics for using the SYSBOOT function.

As with importing most other . modules, SYS_BOOT must be accessible at two times: when
compiling and when running programs that import i~. If it is in the System Library file at compile
time and run time, then it will be accessed automatically; see the beginning of this chapter for
alternative methods of making it accessible.

1-18 Overview

The VME Modules
The VMELIBRARY file found on the SYSVOL: disc for double-sided media and on the LIB:
disc for single-sided media contains the VME_DRIVER and VME_ASM_DRIVER modules.
The module VME_DRIVER contains the procedures that allow you to programmatically use
the VMEbus Interface card (HP 98646A) to communicate with a VMEbus System.

The VME section in this manual describes using the VME_DRIVER module. The appendix
"Procedure Library Reference" in this manual provides a formal interface description of the
VME_DRIVER procedures. The VME_ASM_DRIVER does not contain any export text.

The VM~._DRIVER and 10DECLARATIONS modules must be imported to use the
VME._DRIVER procedures. 10DECLARATIONS is found in the 10 file.

As with importing most other modules, VME_DRIVER and 10DECLARATIONS must be
accessible at two times: when compiling and when running programs that import it. If it is in
the System Library file at compile time and run time, then it will be accessed automatically;
see the beginning of this chapter for alternative methods of making it accessible.

Note that the VME procedures work with the Pascal 3.1 Workstation and later versions.

The SCSILIB Module
The SCSLIB file found on the SYSVOL: disc for double-sided media and on the LIB: disc for
single-sided media contains the SCSILIB module. This module contains the data structures,
procedures and functions necessary to programmatically access a SCSI bus attached to an
HP 98658A or HP 98265A SCSI interface.

The "SCSI Programmer's Interface" chapter of this manual describes how to use the SCSILIB
. module. The "Procedure Library Reference" appendix in this manual provides a formal interface
description of the SCSILIB procedures and functions.

Like most other modules, SCSILIB must be accessible when compiling and running programs
that import it. If included in the System Library file at compile time and run time, it will be
accessed automatically. If SCSI discs are attached to your system, and the SCSIDISC module
is in INITLIB, SCSILIB only needs to be accessible during compile time. For other methods of
making SCSILIB accessible, see the beginning of this chapter.

Overview 1-19

Building Your Own Library
In general, placing modules in the System Library is the simplest way of making modules accessible
to the Compiler and loader. This section gives both general and specific recommendations about
adding modules to this file. This is the primary method of using modules that is described in this
section. Other methods (such as adding object modules to an object program's file) were described
in the beginning of this chapter and in the Compiler chapter of the Pascal Workstation System
manual.

General Recommendations
Only a few modules have been placed in the standard LIBRARY file in order to conserve disc
space. You will probably want to add to it the modules you will be using.

If You Have Large Mass Storage Volumes
If you have a mass storage volume with sufficient capacity (such as a hard disc, an SRM system, or a
dual-sided micro floppy), then you should add to the LIBRARY all the modules in 10, GRAPHICS,
and INTERFACE. That way you will never have to worry about whether or not any module is
accessible.

If You Have Smaller Volumes
If you are using a 5.25-inch disc (with 270-Kbyte capacity) as the system volume, then all of the
modules in the LIBRARY, 10, GRAPHICS, and INTERFACE files will not fit on your disc. Howev­
er, this should only be a problem if you are using both GRAPHICS and 10 modules. (The
LIBRARY, 10, and INTERFACE files will easily fit on one disc). More specific recommendations
follow.

Specific Recommendations
If you really want to conserve space, you should add to the System Library file only the modules
you need to import in order to use procedures in programs and modules. Here are the steps you
will be taking:

1. Make a list of the procedures you will be using.

2. Make a list of the modules that need to be imported in order to use these procedures. You
will find this information in the Procedure Library Reference description of each procedure
(at the back of this manual).

3. Make a list of the modules upon which the imported modules depend. You will find this
information in the following Module Dependency Table. For instance, most Procedure Lib­
rary modules depend on the SYSGLOBALS (Operating System) module.

If possible, you should use an alternate method of accessing the modules upon which the
imported modules depend; for example, use a SEARCH Compiler option to make the
interface text of the SYSGLOBALS module accessible to the Compiler.

4. Create a new System Library file, and add to it only the necessary modules.

Here are specific recommendations for how to make modules from each of the files in the Proce­
dure Library accessible to the Compiler or loader.

1-20 Overview

Making INTERFACE Modules Accessible
You can save quite a bit of disc space by not adding the INTERFACE modules to your System
Library. Since INTERFACE modules are only used by the Compiler, you can make them accessible
by merely specifying the INTERFACE file in a SEARCH Compiler option.

Making LIBRARY Modules Accessible
You can remove the module(s) that you are not using from the standard LIBRARY file.

If you will be using the standard LIBRARY modules named RND and LOCKMODULE, then
module SYSGLOBALS must also be accessible; again, you can use a SEARCH Compiler option
to tell the Compiler where to look for a module's interface text.

Making 10 Modules Accessible
If you are using any 10 modules, then you should have in your System Library only the following
modules: 10DECLARA TIONS; the modules that must be imported in order to use procedures you
have chosen; and any 10 modules upon which the imported modules depend.

For instance, if you will be using the READSTRING procedure, then you will need to import the
GENERAL-.2 module (see the Library Reference entry for this procedure). You will also need
10DECLARA TIONS, and modules GENERAL_l and HPIB_l in the System Library (see the
Module Dependency Table). Module SYSGLOBALS can be found by specifying the INTERFACE
file in a SEARCH Compiler option.

Making GRAPHICS Modules Accessible
If you are using any graphics procedure, then you must have all GRAPHICS modules through
DGL_LIB (Le., the first 35 modules in the GRAPHICS file) in the System Library. The only
modules that you can remove are DGL_POL Y and DGLJNQ; the former is only required if
you will be using polygon graphics procedures, and the latter if using the INQ_ WS procedure.
The INTERFACE modules, such as SYSGLOBALS and SYSDEVS, are not required at compile
time.

Making SEGMENTER Modules Accessible
If you are using segmentation procedures, then you must have both the ALLOCATE and the
SEGMENTER modules in the System Library.

Making the SYS_BOOT Module Accessible
If you are using the SYSBOOT function, then put the SYS_BOOT module in the System
Library.

Making the VME Modules Accessible
If you are using the VMELIBRARY procedures, then put the VME_ASM_DRIVER,
VME_DRIVER, and IODECLARATIONS modules in the System Library. The compiler must
also have access to SYSGLOBALS (in the INTERFACE file on CONFIG: or ACCESS:); again,
you can use the $SEARCH$ compiler option to tell the Compiler where to look for a module's
interface text.

Making the SCSI Module Accessible
If you are using the SCSILIB data structures, procedures, or functions, then put the SCSILIB
module in the System Library. The compiler must also have access to the SYSGLOBALS and
ASM modules, which are in the INTERFACE file (LIB: disc for double-sided media or CONFIG:
disc for single-sided media). Again, you can use the $SEARCH$ compiler option to give the
compiler access to these modules.

Overview 1-21

Module Dependency Table
The Module Dependency Table shows which modules are imported by the standard LIBRARY,
10, GRAPHICS, SEGMENTER, SYS_BOOT, and VME_DRIVER modules.

Module to
Be Imported
LIBRARY Modules:

RND
HPM
UIO
LOCKMODULE

10 Modules:
10DECLARA TIONS
IOCOMASM
GENERAL_O
GENERAL_I
GENERAL.2
GENERAL_3
GENERAL4
HPIB_O
HPIB_I
HPIB.2
HPIB_3
SERIALO
SERIAL3

PARALLEL_3

Module(s) Upon
Which It Depends

SYSGLOBALS

SYSGLOBALS

SYSGLOBALS
SYSGLOBALS, IODECLARA TIONS
SYSGLOBALS, 10DECLARA TIONS
SYSGLOBALS, 10DECLARA TIONS
SYSGLOBALS, IODECLARA TIONS, GENERAL_I, HPIB_I
SYSGLOBALS, 10DECLARA TIONS
SYSGLOBALS, 10DECLARA TIONS, HPIB_I
SYSGLOBALS, IODECLARA TIONS
SYSGLOBALS, 10DECLARA TIONS
SYSGLOBALS, IODECLARA TIONS, HPIB_O, HPIB_I
SYSGLOBALS,IODECLARATIONS, GENERAL_I, HPIB_O, HPIB_I
SYSGLOBALS, 10DECLARA TIONS
SYSGLOBALS, 10DECLARA TIONS
IODECLARATIONS

GRAPHICS, FGRAPHICS, and FGRAPH20 Modules:
DGLLIB ASM, 10DECLARA TIONS, SYSGLOBALS, MINI, ISR, MISC, FS,

SYSDEVS, and all GRAPHICS modules except DGL_INQ and
DGL_POLY

DGLPOLY SYSGLOBALS, SYSDEVS, and all GRAPHICS modules except
DGLINQ

DGL_INQ ASM, SYSGLOBALS, A804XDVR, OGL_TYPES, DGL_VARS,
DGLGEN,GLE_TYPES,GLE_GEN

SEGMENTER Modules:
SEGMENTER LOADER, LOR, SYSGLOBALS, MISC

SYSBOOT

VME_ASM_DRIVER, IODECLARATIONS, SYSGLOBALS

SCSILIB SYSGLOBALS, IODECLARATIONS, ASM

Some Are Needed at Compile Time, Some Aren't
From the table, you can see that several Procedure Library modules depend upon various Operat­
ing System modules (such as SYSGLOBALS, 10DECLARA TIONS, SYSDEVS, and A804XDVR).
However, the table does not show that some of the Procedure Library modules need these
Operating System module(s) only at load time and not at compile time (some also need them at
both times).

Modules such as SYSGLOBALS, SYSDEVS, and A804XDVR are part of the Operating System
that is automatically loaded during the booting process (because they are in the standard INITLIB
file.) Thus, you don't ever need to be concerned about making them accessible to the loader
(unless you somehow remove them from the INITLIB file) .

• The GRAPHICS, FGRAPHICS, and FGRAPH20 libraries require the specified Operating
System modules only at load time (not at compile time) .

• The LIBRARY, 10, and SEGMENTER libraries require the specified modules at both
compile time and at load time. You can make these Operating System modules accessible
to the Compiler by specifying the INTERFACE file in a SEARCH Compiler option or by
adding them to the System Library.

1-22 Overview

Interfacing Concepts
Chapter

2

Introduction
This chapter describes the functions and requirements of interfaces between the computer and its
resources. Most of the concepts in this chapter are presented in an informal manner. Hopefully, all
levels of programmers can gain useful background information that will increase their understand­
ing of the why and how of interfacing.

Terminology
These terms are important to your understanding of the text of this manual. They are not highly
technical, so don't worry about not having a PhD. in computer science to be able to understand
all of them. The purpose of this section is to make sure that our terms have the same meanings.

The term computer is herein defined to be the processor, its support hardware, and the
Pascal-language operating system; together these system elements manage all computer re­
sources. The term computer resource is herein used to describe all of the "data-handling"
elements of the system. Computer resources include: internal memory, CRT display, keyboard,
and disc drive, and any external devices that are under computer control.

The term hardware describes both the electrical connections and electronic devices that make
up the circuits within the computer; any piece of hardware is an actual physical device. The
term software describes the user-written, Pascal-language programs.

2-1

2-2 Interfacing Concepts

(includes operating
system and user
memory)

Internal
Memory

Processor

Data and
Control Buses

CRT
Display

Disc
Drive

Keyboard

Built-In
HP-IB
Interface

Backplane
Connectors

25

Block Diagram of the Computer

Backplane
Connector

HP-IB
Connector

The term 1/0 is an acronym that comes from "Input and Output": it refers to the process of
copying data to or from computer memory. Moving data from computer memory to another
resource is called output. During output, the source of data is computer memory and the
destination is any resource, including memory. Moving data from a resource to computer
memory is input; the source is any resource and the destination is a variable in computer
memory.

The term bus refers to a common group of hardware lines that are used to transmit information
between computer resources. The computer communicates directly with the internal resources
through the data and control buses. The computer backplane is an extension of these internal
data and control buses. The computer communicates indirectly with the external resources
through interfaces connected to the backplane hardware.

Processor
Electronic
Buffering
Hardware

Backplane Hardware

Eight Connectors
in the Card Cage

Interfacing Concepts 2-3

Why Do You Need an Interface?
The primary function of an interface is, obviously, to provide a communication path for data
and commands between the computer and its resources. Interfaces act as intermediaries be­
tween resources by handling part of the "bookkeeping" work, ensuring that this communica­
tion process flows smoothly. The following paragraphs explain the need for interfaces.

First, even though the computer backplane is driven by electronic hardware that generates and
receives electrical signals, this hardware was not designed to be connected directly to external
devices. The electronic backplane hardware has been designed with specific electrical logic
levels and drive capability in mind. Exceeding its ratings will damage this electronic hardware.

Second, you cannot be assured that the connectors of the computer and peripheral are com­
patible. In fact, there is a good probability that the connectors may not even mate properly, let
alone that there is a one-to-one correspondence between each signal wire's function.

Third, assuming that the connectors and signals are compatible, you have no guarantee that the
data sent will be interpreted properly by the receiving device. Some peripherals expect single­
bit serial data while others expect data to be in 8-bit parallel form.

Fourth, there is no reason to believe that the computer and peripheral will be in agreement as to
when the data transfer will occur; and when the transfer does begin the transfer rates will
probably not match. As you can see, interfaces have a great responsibility to oversee the
communication between computer and its resources. The functions of an interface are shown in
the following block diagram.

Computer

r---------------
Interface

...,
I
I

L...

Computer
Compatible
Connector

Logic
Level
Matcher

Interface
Logic

Logic
Level
Matcher

Functional Diagram of an Interface

cab!:f1

D~
Compatible
Connector

I
I

...J

Peripheral
Device

2-4 Interfacing Concepts

Electrical and Mechanical Compatibility
Electrical compatibility must be ensured before any thought of connecting two devices occurs.
Often the two devices have input and output signals that do not match; if so, the interface
serves to match the electrical levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly. All
Series 200/300 interfaces have 100-pin connectors that mate with the computer backplane. The
peripheral end of the interfaces may have unique configurations due to the fact that several types of
peripherals are available that can be operated with the Series 200/300 computers. Most of
the interfaces have cables available that can be connected directly to the device so you don't
have to wire the connector yourself.

Data Compatibility
Just as two people must speak a common language, the computer and peripheral must agree
upon the form and meaning of data before communicating it. As a programmer, one of the
most difficult compatibility requirements to fulfill before exchanging data is that the format and
meaning of the data being sent is identical to that anticipated by the receiving device. Even
though some interfaces format data, most interfaces have little responsibility for matching data
formats; most interfaces merely move agreed-upon quantities of data to or from computer
memory. The computer must generally make the necessary changes, if any, so that the receiv­
ing device gets meaningful information.

Timing Compatibility
Since all devices do not have standard data-transfer rates, nor do they always agree as to when
the transfer will take place, a consensus between sending and receiving device must be made. If
the sender and receiver can agree on both the transfer rate and beginning point (in time), the
process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving device
that it has the data and that the sender can transfer the next data item; this process is known as a
"handshake". Both types of transfers are utilized with different interfaces and both will be fully
described as necessary.

Additional Interface Functions
Another powerful feature of some interface cards is to relieve the computer of low-level tasks,
such as performing data-transfer handshakes. This distribution of tasks eases some of the
computer's burden and also decreases the otherwise-stringent response-time requirements of
external devices. The actual tasks performed by each type of interface card vary widely and are
described in the next section of this chapter.

Interfacing Concepts 2-5

Interface Overview
Now that you see the need for interfaces, you should see what kinds of interfaces are available for
the computers using the Pascal Workstation System. Each of these interfaces is specifically designed
for specific methods of data transfer; each interface's hardware configuration reflects its function.

This section briefly describes only these interfaces:

- HP-IB

- RS 232 Serial

-GPIO

Note that the system also supports programmatic access to the following types of interfaces:

Data Communications
HP Parallel
VME bus
SCSI bus
EPROM Programmer

The HP-IB Interface

Bubble Memory
Video Output
Keyboard Input
Timers and Clocks
Beeper

This interface is Hewlett-Packard's implementation of the IEEE-488 1978 Standard Digital Inter­
face for Programmable Instrumentation. The acronym "HP-IB" comes from Hewlett-Packard
Interface Bus, often called the "bus".

Backplane
Connector

Data and

Hp·IB
Interface

Hardware
and
Firmware

Data

8

Handshake

3

Control

5

Logic and Shield
Grounds

8

o Shielded Cable
~ to Device(s)
c
c
o
()

c
a::
.;,
C\J

Block Diagram of the HP-IB Interface

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. Just about all you need to do is connect the interface cable
to the desired HP-IB device and begin programming. All resources connected to the computer
through the HP-IB interface must adhere to this IEEE standard.

The "bus" is somewhat of an independent entity; it is a communication arbitrator that provides an
organized protocol for communications between several devices. The bus can be configured in
several ways. The devices on the bus can be configured to act as senders or receivers of data and
control messages, depending on their capabilities.

2-6 Interfacing Concepts

The Serial Interface
The serial interface changes 8-bit parallel data into bit-serial information and transmits the data
through a two-wire (usually shielded) cable; data is received in this serial format and is con­
verted back to parallel data. This use of two wires makes it more economical to transmit data
over long distances than to use 8 individual lines.

Backplane
Connector

I

Bit-Serial Data

(In)

Parallel Data
I Parallel/Serial

"I--~~....I" Converter
.-----1-" I (UART)

Serial
Interface
Hardware

I
I

Special Purpose

6

Grounds

7

Block Diagram of the Serial Interface

(5
"0
Q)
c
c
o
()

c
a:
6
l.C)

Shielded Cable
to a Device

Data is transmitted at several programmable rates using either a simple data handshake or no
handshake at all.

The GPIO Interface
This interface provides the most flexibility of the three interfaces. It consists of 16 output-data
lines, 16 input-data lines, two handshake lines, and other assorted control lines. Data is trans­
mitted using several types of programmable handshake conventions and logic sense.

Backplane
Connector

Parallel Data Out
16

Parallel Data In

16

Handshake
GPIO

4
Interface
Hardware Special Purpose

6

Grounds

7

Block Diagram of the GPIO Interface

(5 Shielded Cable "0
Q) to a Device c
c
0
()

c a:
6
l.C)

Interfacing Concepts 2-7

Much of the flexibility of this interface lies in the fact that you have almost direct access to the
internal data bus for outputting and entering data.

Data Representations
As long as data is only being used internally, it really makes little difference how it is repre­
sented; the computer always understands its own representations. However, when data is to be
moved to or from an external resource, the data representation is of paramount importance.

Bits and Bytes
Computer memory is no more than a large collection of individual bits (binary digits), each of
which can take on one of two logic levels (high or low). Depending on how the computer interprets
these bits, they may mean on or not on (off), true or not true (false), one or zero, busy or not busy,
or any other bi-state condition. These logic levels are actually voltage levels of hardware locations
within the computer. The following diagram shows the voltage of a signal line versus time and
relates the logic levels to voltage levels.

Voltage of
a Signal Line

+5v
Logic High

Logic Ground '--_~~ __ --+-___ --+-__ ~ Logic Low
(Ov)

Voltage Levels and Positive-True Logic

In some cases, you want to determine the state of an individual bit (of a variable in computer
memory, for instance). The logical binary functions (BIT_SET, BINCMP, BINIOR, BINEOR,
and BINAND) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer groups
them into multiple-bit entities for the purpose of representing more complex data. Thus, all data
in computer memory are somehow represented with binary numbers.

The computer's hardware can access groups of 16 bits at one time through the internal data
bus; this size group is known as a word. With this size of bit group, 65536 (= 2 i 16) different
bit patterns can be produced. The computer can also use groups of eight bits at a time; this size
group is known as a byte. With this smaller size of bit group, 256 (= 2 i 8) different patterns can
be produced. How the computer and its resources interpret these combinations of ones and
zeros is very important and gives the computer all of its utility.

The computer is also capable of logically handling 32 bits (some models can physically handle
32 bits); this size group is known as a long word and is the Pascal INTEGER type.

2-8 Interfacing Concepts

Representing Numbers
The following binary weighting scheme is often used to represent numbers with a single data
byte. Only the non-negative integers 0 through 255 can be represented with this particular
scheme.

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 0 1 0 1 1 0

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Notice that the value of a 1 in each bit position is equal to the power of two of that position. For
example, a 1 in the Oth bit position has a value of 1 (= 2 i 0), a 1 in the 1st position has a value
of 2 (= 2 i 1), and so forth. The number that the byte represents is then the total of all the
individual bit's values.

Determining the Number Represented

0*2jO = 0
1*2jl= 2
1*2j2= 4 Number represented =
0*2j3 = 0
1 * 2 j 4 = 16 2 + 4 + 16 + 128 = 150
0*2j5 = 0
0*2j6 = 0
1 * 2 i 7 = 128

The preceding representation is used by the "ORO" function when it interprets a byte of data.
The next section explains why the character "A" can be represented by a single byte.

PROGRAM exafT1Ple(input ,output);
VAR number: INTEGER;
BEGIN

nUfTlber := ORD('A') j

WRITELN(' NUfTlber = ',lHlfTlber);
END.

Printed Result

NUfTtb e r = 65

Interfacing Concepts 2-9

Representing Characters
Data stored for humans is often alphanumeric-type data. Since less than 256 characters are
commonly used for general communication, a single data byte can be used to represent a charac­
ter. The most widely used character set is defined by the ASCII standard1

• This standard defines the
correspondence between characters and bit patterns of individual bytes. Since this standard only
defines 128 patterns (bit 7 = 0), 128 additional characters are defined by the Series 200/300
computers (bit 7 = 1). The entire set of 256 characters on the Series 200/300 computers is
hereafter called the "extended ASCII" character set.

When the CHR function is used to interpret a byte of data, its argument must be specified by its
binary-weighted value. The single (extended ASCII) character returned corresponds to the bit
pattern of the function's argument.

PROGRAM exafT1Ple(input ,output);
t.JAR nUfTlbe r : INTEGER;
BEGIN

nUfTlber := 65;
WRITELN(I Character is I ,chr(nufTlber»;

END.

Printed Result

Character is A

Representing Signed Integers
There are two ways that the computer represents signed integers. The first uses a binary
weighting scheme similar to that used by the ORO function. The second uses ASCII characters
to represent the integer in its decimal form.

Internal Representation of Integers
Bits of computer memory are also used to represent signed (positive and negative) integers.
Since the range allowed by eight bits is only 256 integers, a double word (four bytes) is used to
represent integers. With this size of bit group, 4294967 296 (= 2 i 32) unique integers can be
represented.

The range of integers that can be represented by 32 bits can arbitrarily begin at any point on the
number line. With Workstation Pascal, this range of integers has been chosen for maximum utility;
it has been divided as symmetrically as possible about zero, with one of the bits used to indicate the
Sign of the integer.

1 ASCII stands for "American Standard Code for Information Interchange". See the Appendix for the complete table.

2-10 Interfacing Concepts

With this' '2' s complement" notation, the most significant bit (bit 31) is used as a sign bit. A sign
bit of a indicates positive numbers and a sign bit of 1 indicates negatives. You still have the full
range of numbers to work with, but the range of absolute magnitudes is divided in half
(- 2 147 483 648 through 2 147 483 647). The following 32-bit integers are represented using
this 2' s-complement format.

Binary representation Decimal equivalent

1111 1111 1111 1111 1111 1111 1111 1111 -1
0000 0000 0000 0000 0000 0000 0000 0001 1
1111 1111 1111 1111 1111 1111 0000 0001 -255
0000 0000 0000 0000 0000 0000 1111 1111 255

sign bit~ 2t8~ 2 tO J
2 i 30 2t7

The representation of a positive integer is generated according to place value, just as when
bytes are interpreted as numbers. To generate a negative number's representation, first derive
the positive number's representation. Complement (change the ones to zeros and the zeros to
ones) all bits, and then to this result add 1. The final result is the two's-complement representa­
tion of the negative integer. This notation is very convenient to use when performing math
operations. Let's look at a simple addition of 2 two's-complement integers.

Example: 3 + (- 3) = ?

First, + 3 is represented as:
Now generate - 3' s representation:

first complement + 3,
then add 1

- 3's representation:

Now add the two numbers:

final carry
not used

0000 0000 0000 0000 0000 0000 0000 0011

1111 1111 1111 1111 1111 1111 1111 1100
+ 0000 0000 0000 0000 0000 0000 0000 0001

1111 1111 1111 1111 1111 1111 1111 1101

1111 1111 1111 1111 1111 1111 1111 1101
+ 0000 0000 0000 0000 0000 0000 0000 0011

1~ 1~ carryon
0000 0000 0000 0000 0000 0000 0000 0000 all places

Interfacing Concepts 2-11

ASCII Representation of Integers
ASCII digits are often used to represent integers. In this representation scheme, the decimal
(rather than binary) value of the integer is formed by using the ASCII digits a through 9
{CHR(48) through CHR(57), respectively}. An example is shown below.

Example

The decimal representation of the binary value "1000 0000" is 128. The ASCII-decimal
representation consists of the following three characters.

Character

Decimal value
of character

Binary value
of character

Representing Real Numbers

1

49

00110001

2 8

50 56

00110010 00111000

Real numbers, like signed integers, can be represented in one of two ways with the computers.
They are represented in a special binary mantissa-exponent notation within the computers for
numerical calculations. During output and enter operations, they can also be represented with
ASCII-decimal digits.

Internal Representation of Real Numbers
Real numbers are represented internally by using a special binary notation l

. With this method,
all numbers of the REAL data type are represented by eight bytes: 52 bits of mantissa magni­
tude, 1 bit for mantissa sign, and 11 bits of exponent. The following equation and diagram
illustrate the notation; the number represented is 1/3.

Byte

Decimal value
of character

Binary value
of characters

1

63

~0111111

I'

2

213

11010101
..

mantissa sign exponent

3 4 ...

85 85 ...

01010101 01010101 ...

mantissa

1 The internal representation used for real numbers is the IEEE standard 64-bit floating-point notation.

8

85

01010101

2-12 Interfacing Concepts

ASCII Representation of Real Numbers
The ASCII representation' of real numbers is very similar to the ASCII representation of inte­
gers. Sign, radix, and exponent information are included with ASCII-decimC;l.1 digits to form
these number representations. The following example shows the ASCII representation of 1/3.
Even though, in this case, 18 characters are required to get the- same accuracy as the eight-byte
internal representation shown above, not all real numbers represented with this method require
this many characters.

ASCII characters

Decimal value
of characters

0

48 46

3 3

51 51

3 3 3 3 3

51 51 51 51 51

3 3 3 3 3 3 3 3 3

51 51 51 51 51 51 51 51 51

The 110 Procedure Library
Chapter

3

Introduction
This chapter presents an introduction to the 110 Procedure Library. This discussion includes the
organ~zation of the library, major capabilities, and an introduction into the use of the library. The
last sections of this chapter contain a list of module capabilities. It is recommended that you scan
these sections to familiarize yourself with what features are available in the 110 Library.

Pascal 1/0
The Pascal language has been well known for some time as a good high-level language with
modularity and transportability features. However, Pascal has tended to de-emphasize I/O
capabilities, particularly device I/O. I/O capabilities are still not a fundamental part of the
Pascal language on these computers.

Rather than adding specific built-in language features to support 110, graphics, and other useful
extensions, HP Standard Pascal has a general extension mechanism called modules. A module is
very similar to a Pascal PROGRAM in that it can contain CONSTants, TYPEs, VARiables,
PROCEDUREs, and FUNCTIONs.

Various portions of a module can be EXPORTed for anyone to use. The Pascal 110 Procedure
Library is a collection of several modules. When you want to use the capabilities of the 110 library,
you must tell the Compiler which module(s) you want from the 110 library. This is done with the
IMPORT statement.

Here is an example of using the 110 library. Suppose you want to write a program that reads a string
from a device and then writes a string to the same device. The read and write string procedures are
both in the 110 module called GENERAL~. So the program might look like this:

PROGRAM test (INPUT , OUTPUT);
IMPORT GENERAL_Z; { tell the COMPiler which Module}
VAR str: STRING[Z55];
BEGIN

READSTRING(7Z4,~tr) ;
WRITESTRINGLN(7Z4,str) ;

END.

{ read str with CR/LF terMination}
{ write str with CR/LF terMination}

3-1

3-2 The I/O Procedure Library

I/O Library Organization
Each of the 110 Library modules contains related features and capabilities. The 110 library contains
modules that provide general capabilities that are valid for all interfaces and devices and of specific
capabilities that are valid only for a specific interface or type of interface. Reading a character is an
example of a general capability. Checking for ACTIVE CONTROL is an HP-IB specific operation.

The 110 Library is divided into groups: general and interface specific. The interfaces currently
supported in the 110 Library consist of HP-IB, Serial, and Parallel (GPIO) interfaces. In the imple­
mentation of the 110 Library, all the necessary Parallel capabilities are handled in the general
capabilities group. So, the 110 Library consists of three groups:

The I/O Library is divided into four groups:

• GENERAL (includes GPIO)

• HPIB

• SERIAL (includes RS-232 and Datacomm)

• HP Parallel

Note that the GENERAL modules contain all of the necessary capabilities for the GPIO
interface.

GENERAL
The GENERAL group contains the common operations used by all interfaces. This group consists
of the folloWing modules:

Module Capability Example

IODECLARA TIONS common constants. types, vari- what type of card is at interface

IOCOMASM

GENERAL_O

GENERAL_l

GENERAL--2

GENERAL_3

GENERAL_4

HPIB

abIes select code 7

binary operations binary AND of two integers

machine and hardware depen- hardware register access
dent status and control

character 110 input a character

string and numeric 110 input a real number

error messages

transfers and buffers output data via DMA

The HPIB group contains routines that are useful for the built-in and optional HP-IB interfaces.

Module Capability Example

HPIB_O access to HP -IB interface bus lines clear the A TN line

HPIB_l low level bus control send an A TN bus command

HPIB--2 HP-IB messages send selective device clear

HPIB_3 high level bus status and control request bus service

The I/O Procedure Library 3-3

SERIAL
The SERIAL group contains the capabilities specific to serial interfaces. Currently, the'
HP 98626, HP 98644, and HP 98628 are supported.

Module Capability Example

SERIAL_O

SERIAL_3

access to serial interface lines

high level serial control

set Clear To Send

set baud rate to 2400

HP PARALLEL
The HP PARALLEL group contains capabilities specific to the HP Parallel interface. Currently,
this interface is provided with the Series 300 Model 345 and 375 computers only.

Module Capability

templates for IOCONTROL and IOSTATUS
registers; high level status and control

Example

set peripheral type

Each module is a separate entity in the Pascal system. Being separate, only those modules
imported from the system library are used in the running of an application program. This
partitioning of the library minimizes the size of the program. The Pascal system, in normal
programming, will load and link all the modules that you have imported. You only need to
explicitly import the appropriate modules and use their procedures and functions.

I/O Library Initialization
The 110 Library provides a setup procedure, IOINITIALIZE, and a clean up procedure,
IOUNINITIALIZE. Both procedures operate in a very similar manner. They perform the
following operations:

• Reset all interfaces.

• Stop all transfers.

• Release all 110 resources (such as DMA channels).

A well written Pascal program that uses the 110 Library will include these procedures. These
procedures are in the GENERAL_l module. The example program from the previous section
rewritten would look like:

. _ .. -
". -_ :: :-. .:..:

.... -

-:-"-::;-, ...
: .:. f"::.. .. 1.::"':"".:

.-

;·· . .:.::: . .::L . .:-· ... :·".: . ..: ..

.... :: L_ l ::...:.... :

~.'. ,-. ,-':

.. - - .. - - -

'!--" ... :::,
-

The 110 system is used by the rest of the Pascal system for 110 operations. Because of this use,
IOINITIALIZE is called by the system when power is first applied to the computer. Also,
because 110 errors can occur during normal operation, the STOP and CLR 110 keys call
IOUNINITIALIZE to clean up the 110 system state. This information leads to the fact that it is, in
many instances, unnecessary to call IOINITIALIZE and IOUNINITIALIZE. It is, however,
strongly recommended that you use these procedures. The use of the set-up and clean-up
procedures will make your programs more resistant to hardware and firmware problems and to
programming errors in software.

3-4 The I/O Procedure Library

GENERAL Modules
GENERAL modules contain the capabilities that are useful for all interfaces. For syntax and seman­
tics information refer to the reference section in the back of this manual.

MODULE iocomasm
FUNCTION biLset
FUNCTION binand
FUNCTION binior
FUNCTION bineor
FUNCTION bincmp
FUNCTION binasl
FUNCTION binasr

FUNCTION binlsl
FUNCTION binlsr

MODULE generaLO
FUNCTION ioread_word
PROCEDURE iowrite_word
FUNCTION ioread_byte
PROCEDURE iowrite_byte
FUNCTION iostatus
PROCEDURE iocontrol

MODULE generaL!
PROCEDURE ioinitialize
PROCEDURE iouninitialize
PROCEDURE ioreset
PROCEDURE readchar
PROCEDURE writechar
PROCEDURE readword
PROCEDURE writeword
PROCEDURE seLtimeout

MODULE generaL2
PROCEDURE readnumber
PROCEDURE writenumber
PROCEDURE readstring
PROCEDURE readstring_until
PROCEDURE writestring
PROCEDURE readnumberln
PROCEDURE writenumberln
PROCEDUREwille~rin~n
PROCEDURE readuntil
PROCEDURE skipfor

MODULE generaL3
FUNCTION ioerroLmessage

MODULE generaL4
PROCEDURE aborLtransfer
PROCEDURE transfer
PROCEDURE transfeLword
PROCEDURE transfeLuntil
PROCEDURE transfeLend
PROCEDURE iobuffer
PROCEDURE buffeLreset,
FUNCTION buffeLspace
FUNCTION buffeLdata
PROCEDURE readbuffer
PROCEDURE write buffer
PROCEDURE readbuffeLstring
PROCEDURE writebuffeLstring
FUNCTION buffeLactive
FUNCTION isc_active

Is a bit set in a 32-bit integer?
Logical AND of two 32-bit integers.
Logical OR of two 32-bit integers.
Exclusive OR of two 32-bit integers.
Logical complement of a 32-bit integer.

Read a 16-bit interface register.
Write a 16-bit interface register.
Read an 8-bit interface register.
Write an 8-bit interface register.
Read the firmware interface register.
Write the firmware interface register.
Returns arithmetically left-shifted argument.
Returns arithmetically right-shifted argument.

Returns logically left-shifted argument.
Returns logically right-shifted argument.

Reset the entire 110 system.
Reset the entire 110 system.
Reset a single interface card.
Read a character from an interface.
Write a character to an interface.
Read a 16-bit word from an interface.
Write a 16-bit word to an interface.
Set up an interface timeout value.

Read a real number.
Write a real number.
Read a string.
Read a string until a character match.
Write a string.
Read a real number until a LF occurs.
Write a real number with a CR/LF.
Write a string with a CR/LF.
Read until a character match.
Skip over a number of characters.

What is the error message for a specific 110 error?

Stop a transfer.
Transfer a block of data as bytes.
Transfer a block of data as words.
Transfer in until a match character.
Transfer using a card condition.
Create a transfer buffer.
Reset the buffer space.
How much space is left in the buffer.
How much data is left in the buffer.
Read a character from a buffer.
Write a character to a buffer.
Read a string from a buffer.
Write a string to a buffer.
Is there a transfer active on the buffer?
Is there a transfer active on the interface?

The I/O Procedure Library 3-5

HPIB Modules
HPIB modules contain routines that are useful for the built-in and optional HP-IB interfaces. For
syntax and semantics information refer to the reference section in the back of this manual.

MODULE hpib_O
PROCEDURE seLhpib
PROCEDURE cleaLhpib
FUNCTION hpib~ine

MODULE hpib_l
PROCEDURE send_command
FUNCTION my_address
FUNCTION active_controller
FUNCTION system_controller
FUNCTION end_set

MODULE hpib_2
PROCEDURE aborLhpib
PROCEDURE clear
PROCEDURE listen
PROCEDURE local
PROCEDURE 10caLIockout
PROCEDURE pass_control
PROCEDURE ppolLconfigure
PROCEDURE ppolLunconfigure
PROCEDURE remote
PROCEDURE secondary
PROCEDURE talk
PROCEDURE trigger
PROCEDURE unlisten
PROCEDURE untalk

MODULE hpib_3
FUNCTION requested
FUNCTION ppoll
FUNCTION spoIl
PROCEDURE requesLservice
FUNCTION listener
FUNCTION talker
FUNCTION remoted
FUNCTION locked_out

Set an HP-IB hardware line.
Clear an HP-IB hardware line.
Is an HP-IB hardware line set?

Send an A TN command.
What is my bus address?
Am I active controller?
Am I system controller?
Was EOI received with the last byte?

Stop all bus activity.
Send clear command to a device.
Send listen command to a device.
Send local command to a device.
Send lockout command to all devices.
Pass active control to a device.
Configure PPOll response of a device.
Remove PPOll response of a device.
Send remote command to a device.
Send a secondary command.
Send talk command to a device.
Send trigger command to a device.
Send unlisten command to all devices.
Send untalk command to all devices.

Is SRQ asserted?
What is the bus parallel poll byte?
What is the device serial poll byte?
Request bus service (via SRQ).
Am I a listener?
Am I a talker?
Is REN being asserted?
Am I in the local lockout state?

3-6 The I/O Procedure Library

SERIAL Modules
SERIAL modules contain the capabilities specific to serial interfaces. Currently,the HP 98626 and
98644 Serial and HP 98628 Datacomm cards are supported. For syntax and semantics informa­
tion, refer to the reference section in the back of this manual.

MODULE seriaLO
PROCEDURE seLserial
PROCEDURE clear_serial
FUNCTION seriaLline

MODULE seriaL3
PROCEDURE seLbaud_rate
PROCEDURE seLstop_bits
PROCEDURE seLchaLlength
PROCEDURE seLparity
PROCEDURE send_break
PROCEDURE aborLserial

Set a serial line.
Clear a serial line.
Is a serial line set?

Set the interface baud rate.
Set the interface number of stop bits.
Set the interface character length.
Set the interface parity.
Send a serial BREAK.
Stop all serial activity.

HP PARALLEL Module
The HP PARALLEL module contains capabilities specific to the HP Parallel interface. Cur­
rently this interface is provided with the Series 300 Model 345 and 375 computers only. For
syntax and semantics information, refer to the "Procedure Library Reference" (Appendix A).

MODULE paralleL3

PROCEDURE set_user _isr
PROCEDURE clear_user _isr
FUNCTION nack_set

Register a user ISR proc('dur('
Unregister a user ISR procedur('
Was nack line pulsed with last byt(' r('­
ceived?

This module also provides types and constants which act as templates for the HP Parallel
IOCONTROL and IOSTATUS registers. Refer to "The HP Parallel Interface" chapter in this
manual.

IODECLARATIONS Module
Most of the I/O Library consists of modules that contain procedures and functions. However, the
IODECLARA TIONS module is a module of constants, types, and variables. This module is used by
the rest of the I/O Library for range checking, common variables, and I/O system tables. IODEC­
LARA TIONS is also of use to you, the programmer, for various reasons. This section will not fully
discuss the IODECLARA TIONS module. It will only discuss few points of general interest.

The useful information in IODECLARATIONS relates to interface information. Typical questions
about interfaces include:

• What is the range of interfaces?

• Is there an interface on interface select code 12?

• Is the interface on interface select code 15 a serial interface?

• Is the interface on interface select code 15 an HP 98626 serial interface, an HP 98644
serial interface, or an HP 98628 serial interface?

The deSCriptions that follow will show the actual Pascal code used to define the various constants,
types and variables.

The I/O Procedure Library 3-7

Range of Interface Select Codes and Device Selectors
This range is supported by several constants and types. The 110 Library supports various select
codes, as described in the next chapter. The interface select code range is from 0 through 31. There
are two constants that define this range:

CONST IOMINISC
I OMA){ I SC

o ;
31 ;

In addition to defining the upper and lower limits of select codes there are type definitions that
support interface select code and device variables. These type definitions are:

TYPE TYPE_ISC
TY PE_DEl.J I CE

IOMINISC •• IOMAXISC ;
IOMINISC •• IOMAXISC*100+99;

These type definitions are used in the 110 Library for interface select code and device para­
meters. With the compiler option $RANGE ON$, which is the default, the compiler will emit a
range check for your parameters. So, if you tried to use an interface select code of 45, the
program would generate an error. You can use the type definitions for interface select code and
device variables, if you desire. It is also possible to use integer variables and other integer
subranges for interface select code and device variables.

Information about Interface Cards
There is a table defined in the IODECLARATIONS module that contains common information
about all interface cards in the computer. This table is called ISC_ TABLE and is an array of
structured elements, a compound data type. The definition of this table is:

ISC_TABLE PACKED ARRAY [TYPE_ISCJ
OF isc_table_type;

The compound data type ISC_ T ABLE_ TYPE contains several pieces of information. The de­
finition of this type is:

TYPE isc_table_type = RECORD
i o_d rt)_pt r:
i 0_ trllP_pt r:
CARD_TYPE
user_tirlle
CARD_ID
card_ptr

END;

"'drit)er;
rllerllo n';

-32768 •• 32767;
INTEGER;
-32768 •• 32767;
,', card;

{ ptr to drivers}
{ ptr to R/W }

{ for tiMeout }

{ card addr }

The table contains pointers to the actual drivers, driver read/write memory space, user specified
timeout value and a pointer to the physical address of the interface card in the computer's
memory. The table also contains the type of card and card id information. You should only
need to examine the card type and card id. '

Note
All of' this information is for system use. Do not modify any table
entries.

3-8 The I/O Procedure Library

The following program lists the type of card and card id for all interface select codes.

PROGRAM list_cards (INPUT, OUTPUT);
IMPORT IOOECLARATIONS;
VAR isc: TYPE_ISC;
BEGIN

FOR isc := IOMINISC TO IOMAXISC DO
WRITELN('card', is c : 2 ,

, is of type' ISC_TABLE[isc].CARD_TYPE:4,
, IAlith an id of 'tlSC_TABLE[iscLCARD_ID:4);

END.

This program is not useful because the values for card type and id are integers and you do not know
what each value means. The IODECLARA TIONS module has a series of pre-defined constants for
the card type and id.

The CARD_TYPE field contains information about the generic card type-whether the card is
Serial, HP-IB, etc. The constants are as follows:

CONST

no_card 0
otheLcard

s}'steflLca rd Z
hpib_card = 3
9pio_card 4
serial_card = :5
9raphics_card 6
srfTl_card 7
bubble_card 8
eprOflLPr9fllr 9

scsi card 10;
pIleI_card 11;

The CARD_ID field contains hardware specific information. For example, the id will inform you
whether an HPIB_CARD is the internal interface or an optional 98624 plug-in card. This should
only be necessary if you are doing low-level operations to the interfaces.

Note
The appearance of a card id in the following list does not imply Pascal
support for the specified interface. The cards are mentioned because
they may be supported by other languages which run on this machine.

The constants are defined as follows:

CONST

hp88G28_dsndl -7;
hp88G28 -G;
hp_datacolTlfTl -5;
hp88G20 -£I;
i nte rnal_f~bd -3;
internal_crt ,., . -'-,
internal_hpib -1 ;

no_id 0;

hp88G2£1 1 ; { HP-IB }

hp88G2G ,., .
'- , { Serial }

hp88G22 3 ; { GPIO }

hp88G23 £I ; { BCD }

hpPARALLEL 6; {parallel}
hp98658 7' {scsi - also includes hp98265} ,
hp88G25 8 ; { Fast Disc }

hp88G28_as>'nc 20; { Serial }

hpGATOR 25; { bit-ITlapped alpha/graphics
hp88253 27; { EPROM pro 9 ralTlfTle r }

hp88G27 28; { Color output }

hp88258 30; { Bubble }

hp88G£I£I GG; { Serial }

A program to determine card type and id is shown below.

PROGRAM List_cards (INPUT,OUTPUT);

IMPORT
IODECLARATIONS;

I,JAR
Isc T>'pe_Isc;

BEGIN
FOR Isc := IOMinIsc TO IOMaxIsc DO

BEGIN
IF Isc_Table[Isc].Card_Type > SysteM_Card THEN

BEGIN

WRITE('Card at 'tlsc:2,' is of type: I);

CASE Isc_Table[Isc].Card_Type OF
HPIB_Card: WRITE(' HP-IB ');
GPIO_Card: WRITE(' GPIO I);

Serial_Card: WRITE(' Serial ');
Graphics_Card: WRITE(' Graphics ');
SRM_Card: WRITE(' SRM I);

Bubble_Card: WRITE(' Bubble ');
EPROM_PrgITlr: WRITE(' EPROM ');
OTHERWISE WRITE('Other I);

END; { CASE Card_Type}

}

The I/O Procedure Library 3-9

3-10 The I/O Procedure Library

WRITE(, Card_ID: ') ;
CASE Isc_Table[Iscl.Card_ID OF

HP88253: WRITE(, HP 88253 ') ;
HP88258: WRITE(, HP 88258 ') ;
HP88622: WRITE(' HP 88622 ') ;
HP88623: WRITE(, HP 88623 ') ;
HP8862ll: WRITE(, HP 8862ll ') ;
Inte rnaLHPIB: WRITE(, built-in ') ;
HP88625: WRITE(' HP 88625 ') ;
HP88626: WRITE(, HP 88626 ') ;
HP88627: WRITE(, HP 88627 ') ;
H P88628_A S HI C : WRITE(, HP 88628 - ASHIC') ;
HP88628: WRITE(, HP 88628 ') ;
HP886llll: WRITE(, HP 88Gllll ') ;
OTHERWISE WRITE(, Other ') ;

END; { CASE Card_ID }

WRITELN;

END; { IF •• BEGIN}

END; {FOR •• BEGIN}

END.

Other Types
In addition to the previously specified information there are some pre-defined types used through­
out the 110 Library. These type definitions are:

la_BIT
la_BYTE
la_woRD
la_STRING

0 •• 15 j

0 •• 255 j
-32768 •• 32767
STRING[255]j

Directing Data Flow
Chapter

4

Introduction
This chapter describes how to specify which computer resource is to send data to the computer or
receive data from the computer. There are three main resources for the source and destination of
data:

• Internal devices

• External devices

• Mass storage files

The 110 Library is used for accessing internal and external devices and is discussed here. The Pascal
system has other methods for accessing mass storage files and these commands are covered in the
Pascal Workstation System manual.

Specifying a Resource
The procedures and functions that perform 110 have a device selector parameter as a part of the
parameter list. This parameter has two forms: a simple device selector and an addressed device
selector.

Simple Device Selectors
Devices include the built-in CRT and keyboard, external printers and instruments, and all other
physical entities that can be connected to the computer through an interface. Thus, each device
connected to the computer can be accessed through its interface. Each interface has a unique
number by which it is identified, known as its interface select code. The internal devices are
accessed with the following, permanently assigned interface select codes.

Device

CRT Display
Keyboard
Built-in HP-IB
Built-in Serial

Select Code

1
2
7
9

4-1

4-2 Directing Data Flow

Optional interfaces all have switch-settable select codes. These interfaces cannot use select
codes 0 through 7; the valid range is 8 through 31. The following settings on optional interfaces
have been made at the factory but can be changed to any other unique select code. See the
interface's installation manual for further instructions.

Device Select Code

98624A HP -IB 8
98626 Serial 9
98644 Serial 9
98622A GPIO 12
98625A Disc 14
98658A SCSI 14
98265A SCSI 14
98628A Datacomm 20
98629A SRM 21
HP Parallel 23

An example program using interface select codes is shown below:

PROGRAM selectcode (INPUT t OUTPUT);
IMPO~T GENERAL_2;
VAR str : STRING[255];
BEGIN

WRITESTRING(1 t'type sOMethin~ - terMinated by the ENTER key');
REAOSTRING_UNTIL(CHR(l~) t2tstr);
WRITESTRING(12 t 'fl1essa~e f rOfll keyboard - ');
WRITESTRINGLN(12tstr) ;

END.

Addressed Device Selectors
Each device on an HP-IB interface has an address by which it is uniquely identified. The
addressed device selector is a combination of the interface select code and the device's bus
address. This combination is:

interface select code * 100 + device bus address = addressed device selector

A printer with a bus address of 1 on the internal HP-IB interface (which is an interface select
code of 7) would be accessed with a device selector of 701.

An example program using an addressed device selector is shown below:

PROGRAM device (INPUT t OUTPUT);
IMPORT GENERAL_2;
VAR nUM : REAL;
BEGIN

READNUMBERLN(724tnUM) ;
WRITESTRING(701 t'readin!l' frcuI1 lJoltfl1eter - ');
WR I TENUMBERLN (701 tl"l U(11) ;

END.

Note

SCSI select code and device addresses do not match the HP-IB ad­
dressed device selector. Refer to "The SCSI Programmer's Interface"
chapter in this manual.

Outputting Data
Chapter

5

Introduction
The preceding chapter described how to identify a specific device as the destination of data in a
WRITESTRING procedure. Even though a few examples were shown, the details of how the data is
sent was not discussed. This chapter describes the topic of outputting data to devices.

There are two general classes of output operations. The first type, known as "free field" output,
uses the computer's default data representation. The second class provides precise control over
each character to be sent and is called "formatted" output.

The 110 Library is a separate set of procedures and functions. As such, it does not have variable
length or variable type parameter lists. In Pascal there are normal "print" facilities called WRITE
and WRITELN (for write line) that can have a variable list. Some examples are:

WRITELN('hello there') j

WRITELN('the l.!alue received IAlas 'ti) j

WRITE(i,' tifTles ',j,' is equal to 'ti*j)j
WRITE(client.naroe,' has' ,client.eyecolor,' eyes ') j

Note that there are no requirements for what types of constants, variables, or expressions are
allowed in a list, nor are there any requirements for their order in a list.

Because of this restriction on the variability of lists, the 110 Library only normally supports a small
set of types. These types are:

• Real expressions

• Strings (up to 255 characters)

• Characters (8 bits)

• Words (16 bits)

The procedures that handle these types will only handle one of the type. These operations can be
used in a series to get the effect of a list.

5-1

5-2 Outputting Data

Free Field Output
As mentioned in the previous section, there are four main types supported directly by the 110
Library output facility. These are:

• Real Expressions

• String Expressions

• Characters

• Words

Real Expressions
There are two output procedures for real expressions: WRITENUMBER and WRITENUMBERLN.
Both operate in an identical fashion except that WRITENUMBERLN appends a carriage return and
line feed to the characters sent to the device. The form of these procedures is:

WRITENUM6ER
WRITENUM6ERLN

device_selector, nUMeric_expression);
device_selector, nUMeric_expression);

Both procedures are in the 110 Library module GENERAL~. The device selector can be a simple
interface select code or it can contain addreSSing information. The numeric expression can be any
valid expression including simple real, integer, or integer subrange variables, numeric constants,
and numeric expressions. An example program follows:

PROGRAM realexpression (INPUT,OUTPUTI;
IMPORT IOOECLARATIONS,

BEGIN

GENERAL_2;
REAL;
INTEGER;
TY PE_DEI.J ICE;

device:=701 ;
i : = 12 ;
a:=12.311;
WRITENUMBERLN(device,il;
WRITENUMBERLN(device,al;
WRITENUMBERLN(device,123111;
WRITENUMBERLN(device,a+123111;
WRITENUMBERLN(device,i+121;

END.

This program will produce the following output:

1.20000E+001
1.231100E+001
1.231100E+003
1.211S311E+003
2.1I0000E+001

Outputting Data 5-3

The example program did not use WRITENUMBER. This is because there are no additional
characters sent with the ASCII character sequence. Two numbers sent with two consecutive
WRITENUMBERs might look like:

1.234S6E+1238.876S4E-321

Notice that there is no separator. The examples toward the end of this section will show
examples of WRITENUMBER. Be sure that you remember that the real number can be pre­
ceded by a minus sign.

String Expressions
There are two output procedures for string expressions: WRITESTRING and
WRITESTRINGLN. Both operate in an identical fashion except that WRITESTRINGLN
appends a carriage return and line feed to the characters sent to the device. The form of these
procedures is:

WRITESTRING
WRITESTRINGLN

device_specifier, strinf_expression
device_specifier, strinf_expression

Both procedures are in the I/O Library module GENERAL~. The device selector can be a simple
interface select code or it can contain addressing information. The string expression can be any
valid expression including simple string variables. string constants, and string expressions. An
example program follows:

PROGRAM strinfs (INPUT,OUTPUT);
IMPORT IODECLARATIDNS,

1,lAR s
t
device

BEGIN

GENERAL_2;
STRING[255];
STRING[32];
TYPE_DEI,IICE;

device:=701;
s:='first strinf';
t:='second strinf';
WRITESTRING (device ,s);
WRITESTRINGLN(device ,t);
WRITESTRING (device, 'this is a st rinf constant and ');
WRITESTRINGLN(device,'this is the '+s);
WRITESTRINGLN(device ,'both '+s+' and the '+t);

END.

This program will produce the following output:

first strinfsecond strinf
this is a strinf constant and this is the first strinf
both first strinf and the second strinf

5-4 Outputting Data

Characters
There is a single output procedure for single characters: WRITECHAR. The form of this proce­
dures is:

WRITECHAR (interface_select_code, character_expression);

The procedure is in the 110 Library module GENERAL_I. The interface select code cannot be a
device specifier (like 701). Refer to the HP-IB section regarding bus addre~sing. The' character
expression can be a character variable, character constant, or character expression. An
example program follows:

PROGRAM characters (INPUT,OUTPUT);
IMPORT IODECLARATIONS,

GENERAL_l ,
GENERAL_2;

VAR c CHAR;
i ,j INTEGER;
device
isc

BEGIN
isc:=7;
de l.Ji c e : = 70 1 ;
WRITESTRING(del.!ice,/SOfTle characters <');
WRITECHAR(isc,/x/) ;
c : = '}, I ;

WRITECHAR(isc,c) ;
J:=ORD(/Z/);
WRITECHAR(isc ,ch r(J);
FOR i:=85 TO 90 DO WRITECHAR(isc,chr(i));
WR I TESTR I NGLN (is c , '> I) ;

END.

This program will produce the following output:

SOMe characters <xyzABCDEFGHIJKLMNOPQRSTUVWXYZ>

Words
There is a single output procedure for 16 bit words. It is WRITEWORD. The form of this
procedures is:

WRITEWORD (interface_select_code, word_expression);

The procedure is in the I/O Library module GENERAL_I. The first parameter must be an interface
select code; it cannot be a device selector (like 701). Refer to the HP-IB section regarding bus
addressing. The word expression can be a word, integer, or integer subrange variable, integer
constant, or integer expression. The evaluated value must be in the range of - 32768 to 32767.

Outputting Data 5-5

The procedure has two different behaviors, depending on what type of interface it is used with.
When used with a GPIO interface (HP 98622), this procedure will send a single 16 bit quantity
over the 16 data lines on the interface. This procedure will send two consecutive bytes for all
other interface types - most significant byte first, least significant byte last. An example pro­
gram for an HP-IB interface follows:

PROGRAM words (INPUT,OUTPUT);
IMPORT IODECLARATIONS,

TYPE short
I.JAR c

id
x
y

del.lice
isc

BEGIN
isc:=7;

GENERAL_1,
GENERAL_2;
-32768 •• 32767;
CHAR;
INTEGER;
IO_WORD;
short;
TYPE_DEVICE;
TYPE_ISC;

device:=701;
WRITESTRING(del.lice, 'SOITle characters <');
x:=65*256+66;
WR I TEWORD (is c 'x) ;
WRITEWORD(isc,67*256+68) ;
J:=68*256+70;
WRITEWORD<isc ,J);
J:=ORD('z');
FOR i:=65 TO 75 DO WRITEWORD(isc,J*256+i);
WRITESTRINGLN(isc,')') ;

END.

This program will produce the following output:

SOMe characters <ABCDEFzAzBzCzDzEzFzGzHzlzJzK)

The following program is an example of how to use the "free field" procedures together to get
effect of a full parameter list:

PROGRAM strin~s (INPUT,OUTPUT);
IMPORT IODECLARATIONS,

GENERAL_1,
GENERAL_2;

VAR SIt STRING[255];
x REAL;
device
isc

BEGIN

TYPE_DEVICE;

device:=701;
isc :=7;
s: = 'Ran !:Ie 1 ;T ri ~~e r1 ;NI.lITlbe r';
x:=100j
t:='Store'j
WRITESTRING
WRITENUMBER
WRITESTRING
WRITECHAR

END.

(del.lice 's);
(is c 'x) j

(is c ,t) ;
(isc ,chr(10»;

5-6 Outputting Data

This program will produce the following output sequence:

Ran~el;Tri~~erl;Numberl.00000E+002Store

Formatted Output
The previous "free field" procedures are adequate for a large number of applications. There
are, however, a large number of applications that need the "formatted" output capability. The
110 Library does not directly provide this capability. Formatted output is achieved with the use
of the built in procedure STRWRITE.

STRWRITE
The STRWRITE procedure is a version of the standard Pascal procedure WRITE. The differ­
ence is that STRWRITE sends the character stream to a string variable, as opposed to an output
file. The form of STRWRITE is as follows:

STRWRITE (strin~_I.'ariable, startin~_char, next_char_'.lar'oo.outputlist...);

The string variable is the destination for the output operation. The starting character position is an
integer expression that indicates which character in. the string is the start of the output area. The
next character variable will contain, after the execution of STRWRITE, the next available character
in the string for a successive STRWRITE or other string operation. For additional information, refer
to The HP Pascal Language Reference.

The following program is an example of how to use STRWRITE to produce formatted output:

PROGRAM formatted (INPUT,OUTPUT);
IMPORT IODECLARATIONS,

TYPE color
'.JAR s,narlle

pos,n
e}' e s
del.lice

BEGIN

GENERAL_2;
(blue, brown , ~reen , red);
STRING[2SS];
INTEGER;
color;
TYPE_DEl.' I CE;

del,lice:=701;

name :='John Smith';
n : = 12;
e}'es :=blue;

STRWRITE(stl,pos, narlle,' is employee IHlIllber ',n:lI);
SETSTRLEN(s,pos-l) ;
WRITESTRINGLN(del,lice,s) ;

STRWRITE(s tl ,pos, ' and has ' ,e}'es,' eyes ');
SETSTRLEN(s,pos-l);
WRITESTRINGLN(del,lice,s) ;

END.

This program will produce the following output:

John Smith is employee number 12
and has BLUE eyes

Inputting Data
Chapter

6

Introduction
There are two general classes of input operations. The first type, known as "free-field" input, uses a
default interpretation of the data to be input. The second class provides precise control over each
character to be received and is called "formatted" input.

The 110 Library is a separate set of procedures and functions. As such, it does not have variable
length or variable type parameter lists. However, in Pascal there are normal "input" facilities, called
READ and READLN (for read line), that can have a variable length list. Some examples are as
follows:

READ(naMe); FOR i:= 1 TO 100 DO READ(Mychar[iJ);
READ(I}oltase ,frequency); READLN(profT1Pt);

Note that there are no requirements for what types of variables are allowed in the list, nor are there
any reqUirements on the order of variables on the list. Because of this restriction on the variability of
lists, the 110 Library only normally supports a small set of input data types. These types are as
follows:

• Real variables

• Strings (Up to 255 characters)

• Characters (8 bits)

• Words (16 bits)

In addition to these data types, the 110 Library supports some field skipping facilities. The proce­
dures that handle these types and facilities will only handle one operation at a time. However these
operations can be used in a series to get the effect of a list.

6-1

6-2 Inputting Data

Free-Field Input
As mentioned in the previous section, there are four main data types supported directly by the I/O
Library input facility:

• Real Variables

• String Variables

• Characters

• Words

Real Variables
There are two input procedures for real variables: READNUMBER and READNUMBERLN. Both
operate in an identical fashion except that READNUMBERLN searches for a line feed termination
from the device. The form of these procedures is:

READNUMBER
READNUMBERLN

device_selector, numeric_expression);
device_selector, numeric_expression);

Fundamental to understanding how these procedures work is the concept of termination. The
READNUMBER procedures will skip over any number of non-numeric characters until a numeric
character is found. Then, up to 255 numeric characters will be read in as an ASCII representation of
a real number. Numeric characters are defined to be the following characters:

0 5 E
1 6 e
2 7 +
3 8
4 9 period

space

When reading numbers, the terminating conditions are:

• Any non-numeric character after numeric characters have been read, or

.255 numeric characters read.

Note
Note that spaces are not considered to be "non-numeric" characters,
and therefore will not terminate numbers. Erroneous results may occur
if you try to use them to terminate or delimit numbers, because these
procedures do not report receiving erroneously formatted numbers.

Inputting Data 6-3

Both procedures are in the 110 Library module GENERAL~. The first parameter can be either a
simple interface select code or a device selector that contains addressing information. The variable
must be a real variable {including a real array element}. An example program follows:

PROGRAM realvariable (INPUT, OUTPUT);
IMPORT IODECLARATIONS,

a : REAL;
BEGIN

{ input COMes froM keyboard}
WRITELN('T}'pe in a real nUfTlber, terfTlinated by a non-nufTleric character');
READNUMBER (1 ,a) ;
WRITELN;
WRITELN('Here is the l.Jalue }'OU entered: ',a);

WRITELN('T}'pe in a real lHIfTlber, terfTlinated b}' CTRL-j');
REAONUMBERLN(l ,a);
WRITELN;
WRITELN('Here is the value }'OU entered: ',a);

END.

String Variables
There are two input procedures for string variables: READSTRING and READSTRING_UNTIL.
Both operate in a similar manner except that READSTRING_UNTIL searches for a specified
termination character where the READSTRING uses some default terminations.

The form of the READSTRING procedure is:

READSTRING (device_selector, strin~_variable);

The READSTRING procedure will read characters into a string until one of the following termina­
tion conditions are encountered:

• A line feed is received.

• A carriage return and a line feed are received.

• The string variable is filled.

The line feed or carriage return and line feed are NOT placed in the string variable. The form of the
READSTRING_UNTIL procedure is:

READSTRING_UNTIL (terMination_character,
device_selector, strin~_variable);

The READSTRING_UNTIL procedure will read in characters into a string until one of the following
termination conditions are encountered:

• The match character is received.

• The string variable is filled.

The termination character is placed into the string variable.

6-4 Inputting Data

Both procedures are in the 110 Library module GENERAL_2. An example program follows:

PROGRAM strin~variable (INPUTtoUTPUTl;
IMPORT IoDECLARATIoNSt

I.JAR s
t

BEGIN

GENERAL_Z;
: STRING[Z55];
: STRING[8];

{ the keyboard is the input device}

WRITELN('enter a strin~ terfrlinated IAlith a control-J');
READSTR I NG (1 t S) ;
WRITELN('~'ou entered ('tSt'> as ~'our strin~');

WRITELN('enter a strin~ of 8 characters');
READSTR I NG (1 t t) ;
WRITELN('~'ou entered ('ttt'> as ~'our strin~');

WRITELN('enter a strin~ terfrlinated IAlith an ENTER (carria~e return)');
READSTR I NG_UNT I L< c h r (13) tl t S) ;
WRITELN('~'ou entered ('tSt'> as ~'our strin~');

END.

Characters
There is a single input procedure for single characters-READCHAR. The form of this proce­
dures is:

READ CHAR (interface_select_codet character_variable);

The procedure is in the liD Library module GENERAL_I. The interface select code cannot be a
device specifier (like 701). Refer to the HP-IB section regarding bus addressing. The variable
must be a character variable. An example program follows:

PROGRAM characters (INPUTtoUTPUT);
IMPORT IoDECLARATIoNSt

GENERAL_1;
VAR c : CHAR;
BEGIN

REPEAT
READ CHAR (1 t c) ;
WRITELN;
WRITELN('~'ou t~'ped 'tCt' IAlhich is character 'toRo(c):3);

UNTIL c=CHR(13);
WRITELN('done');

END.

Words
READWORD is the input procedure for 16-bit words. The form of this procedures is:

READWoRD (interface_select_codet inte~er_variable);

Inputting Data 6-5

The procedure is in the I/O Library module GENERAL_I. The first parameter must be an interface
select code; it cannot be a device selector that contains addressing information (like 701). Refer to
the HP-IB section regarding bus addressing. The variable must be an integer variable. The returned
value will be in the range of - 32 768 to 32 767.

The procedure has two different behaviors, depending on what type of interface it is used with.
When used with an HP 98622 GPIO interface, this procedure will read a single 16-bit quantity
from the 16 data lines on the interface. This procedure will read two consecutive bytes for all
other interface types - most significant byte first, least significant byte last. An example program
for a GP-IO interface follows:

PROGRAM words (INPUT,OUTPUT);
IMPORT IODECLARATIONS,

GENERAL_1;
VAR x : INTEGER;
BEGIN

READWORD (12 'x) ;
WRITELN('the INord reCeil)ed 1.las

END.

Skipping Data

, 'x: 7) ;

There are applications where you want to skip over a block of data and do not wish to store the
information. The 110 Library has two procedures to support skipping over data: READUNTIL
and SKIPFOR.

The READ UNTIL procedure skips over data until a match character is received. It is of the form:

READUNTIL (terMination_charactert device_selector);

The SKIPFOR procedure skips over a specified number of characters. It is of the form:

SKIPFDR (skip_countt device_selector);

The skip count is an integer expression. Both procedures are in 110 Library module
GENERAL_2.

6-6 Inputting Data

Formatted Input
The previous "free field" procedures are adequate for a large number of applications. There
are, however, a large number of applications that need the "formatted" input capability. The
110 Library does not directly provide this capability. Formatted input is achieved with the use of
the built in procedure STRREAD.

STRREAD
The STRREAD procedure is a version of the standard Pascal procedure READ. The difference
is that STRREAD reads the character stream from a string variable, as opposed to an input file.
The form of STRREAD is as follows:

S T R REA D (s t r i n 9 _I) a ria b 1 e, s tar tin 9 _ c h a r, n ext _ c h a r _ I,J a r , ... input list. ..) ;

The string' variable is the source for the input operation. The starting character position is an
integer expression that indicates which character in the string is the start of the data to be read.
The next character variable will contain, after the execution of STRREAD, the next available
character in the string for a successive STRREAD or other string operation. For additional
information, refer to the HP Pascal Language Reference manual.

The following program is an example of how to use STRREAD to produce formatted input.

PROGRAM formatted (INPUT,OUTPUT) j
IMPORT IODECLARATIONS,

TYPE color
1,lAR s

t
pas

GENERAL_Zj
(blue, brown, green, red) j

STRING[lZ]j
STRING[8] j
INTEGER;

e}'es color;
BEGIN

WRITELN('enter 8 alphabetic characters');
WRITELN('and then t}'pe the characters BLUE');

READSTR I NG (1 ,s) ;

STRREAD(s t1 ,pas, t ,e}'es);

WRITELN('the string is ',t,' and the e)'es are' ,e)'es);

END.

Registers
Chapter

7

Introduction
There are two classes of registers available to the Pascal 110 Library: hardware registers and I/O
system registers. Hardware registers are actual registers located on the 110 cards, while I/O system
registers are maintained by the Pascal 110 system. 110 system registers are often concatenations of
bits in hardware registers, maintained and accessed by 110 system routines.

The hardware registers are accessed with the low-level 10READ-.BYTE and 10READ_WORD
functions and 10WRITE-.BYTE and 10WRITE_WORD procedures. The 110 system registers are
accessed with the higher-level 10STATUS function and 10CONTROL procedure.

In most instances, it is unnecessary for the programmer to access the 110 system registers. Some
of the more common register operations are supported in high level procedures and functions.
It is best to use the high level procedures and functions when possible because these are more
easily understood and are more transportable. Refer to the chapters that deal with the specific
interface for the high level procedures and functions.

I/O System Registers
The I/O System registers are called the status and control registers. In previous desktop
computers and in the current Series 200/300 HP BASIC language, these registers are accessed
with the BASIC STATUS and CONTROL statements. In the Pascal system most of the I/O
system registers have the same definitions as the BASIC system. This is only mentioned in
case you already have an understanding of the BASIC registers.

The IOSTATUS Function
A status register is read with the 10STATUS function. To read a register, specify the interface and
the register number of interest in the parameter list. Only a single register may be examined with
each invocation of 10STATUS.

Examples
interface := 12;
register := 0; { reg 0 is card id }
i := IOSTATUS(interface,register); { get interface id }

WRITELN('bus state is 'tIOSTATUS<7 ,7»; {get HP-IB bus state}

7-1

7 -2 Registers

The IOCONTROL Procedure
A control register is written with the IOCONTROL procedure. It is necessary to specify the
interface and the register number, and the value to be written in the parameter list. Only a single
register may be modified with each invocation of IOCONTROL.

Examples
interface := 7;
re!1ister := 3;
IOCONTROl(inte rface, re!1iste r ,5);

IOCONTROL(7,O,1) ;

Common Register Definitions

{ Built-in HP-IB. }
{ Re!1ister 3 sets address. }
{ Set address to 5. }

{ Reset HP-IB interface. }

The status and control registers are very interface dependent both in number and definition of
the registers. There are two registers that are defined for all except two interfaces:

• status register 0 (for card identification)

• control register 0 (to reset the interface card)

The keyboard and CRT (interface select codes 1 and 2) do not have status and control registers
implemented.

Hardware Registers
The hardware registers are accessed by the system. It is, therefore, dangerous for you to access
these registers unless you have a complete understanding of both the register definition and of the
consequences of accessing the hardware registers. Their locations and definitions are given in
subsequent chapters that describe each interface's registers. The IOREAD_BYTE and
lOW RITE_BYTE perform an eight-bit (byte) operation on the computer backplane. The
IOREAD_WORD and IOWRITE_WORD perform a 16-bit (word) operation on the computer
backplane.

Errors and Timeouts
Chapter

8

Introduction
There are two types of events supported in the Pascal I/O Library:

• I/O Errors

• I/O Timeouts

These I/O events are handled via the TRY jRECOVER event handling mechanism. Refer to
the Compiler chapter of the Pascal Workstation System. Volume I for additional information on
TRY jRECOVER.

Note that timeouts are only available on handshake operations. There is no timeout facility on the
advanced transfers. Also note that the Datacomm interface control blocks use the TRY/RECOVER
mechanism.

8-1

8-2 Errors and Timeouts

Pascal Event Processing
Pascal's event handling mechanism is very much different from that found in BASIC or HPL on
Series 200/300 computers. BASIC and HPL are interpreted languages. At the end of each program
line, there is a call to a system routine that checks for the occurrence of events. If one has occurred
(and is enabled to initiate a program branch), then the appropriate branch is taken. The Pascal
Compiler does not generate code at the end of each line to check for events. Pascal takes advan­
tage of a hardware feature that allows an event to escape from whatever code is currently being
executed to a previously defined event handler. An example program that uses this event handling
is as follows:

$SYSPROG ON$ { enable optional COMPiler features}
PROGRAM errors (INPUT,OUTPUT);

I,JAR a : REAL;
BEGIN

TRY
a : = 1;
a := aiel; { this should

get executed');
{ this is the

generate an error}
WRITELN('This should not

RECOI,JER event handler }
BEGIN

WRITELN('I hal)e gotten an error');
WRITELN('The escape code is ',ESCAPECOOE);
ESCAPE(ESCAPECOOE); { pass error on

END;

WRITELN('PrOgralTl finished norlllally');
END.

When run, this program will generate a CRT screen similar to the following:

I have gotten an error
The es~ape code is -5

error -5: divide by zero
PC value: -444080

The error handling in Pascal depends on four language features:

-TRY

-RECOVER

- ESCAPECODE

- ESCAPE

}

These features are not in the normal Pascal language. To access these features it is necessary to turn
on a Compiler option called SYSPROG. This Compiler option enables error handling and several
other system features. Refer to the Compiler chapter of the Pascal Workstation System manual for
additional information about $SYSPROG ON$.

TRY
TRY defines the start of a block of code that is to be handled by a following RECOVER block. This
block of code may contain anything· including procedure and function calls. If any error occurs, it
will be handled by the RECOVER block, unless there is a nested TRY IRECOVER block. TRY 1
RECOVER blocks may be nested to any level. The inner-most RECOVER block will receive
control.

Errors and Timeouts 8-3

If no error occurs in a TRY IRECOVER block then the next statement following the RECOVER
block is executed.

RECOVER
RECOVER defines the start of the error handling code. The RECOVER code must be a simple
statement or a BEGIN/END block.

ESCAPECODE
ESCAPECODE is an INTEGER variable that contains the error code from the last error. System
errors have negative values. User errors should have positive values.

ESCAPE
ESCAPE is a procedure that generates an error escape. It has a single INTEGER parameter. When
ESCAPE is executed it places the parameter into the ESCAPECODE variable and generates an
error. This error will be trapped by a RECOVER block, if any.

1/0 Error Handling
110 errors are just one of several error conditions that can occur in the Pascal system. Because of the
multitude of errors that can happen within device 110, only one ESCAPECODE has been allocated
for use by the 1/0 Library. When ESCAPECODE has the value - 26, the error was an 1/0 error.

The 1/0 Library uses some additional variables and functions for the various errors that it can
generate:

• 10ESCAPECODE

• 10E_RESUL T
.IOE_ISC

• 10ERROFLMESSAGE

JOESCAPECODE
10ESCAPECODE is an integer constant with the value - 26. This constant is compared with the
ESCAPECODE to determine if the ESCAPE was due to an 110 error. The constant
10ESCAPECODE is defined in the 110 Library Module 10DECLARA TIONS.

JOE_RESULT
10E_RESUL T is an integer variable. This variable contains the specific 110 error code, if any. The
variable 10E_RESUL T is defined in the 110 Library Module 10DECLARA TIONS. A listing of
current error codes and their messages is in the last section in this chapter. For each error code, the
1/0 Library has defined a constant for that error. For example, when 10E_RESUL T has the value
11, the error is that there is no firmware to support the interface card in the system. This error has a
constant defined in IODECLARA TIONS called ioe_no_driver that is defined to have the decimal
value 11.

8-4 Errors and Timeouts

10E_ISC is an integer variable. This variable contains the interface select code of the last interface to
generate an 1/0 error. If the error was not due to an interface problem, then 10E_ISC will contain
the value 255 (which is NO_ISC). The variable 10E_ISC is defined in the 110 Library Module
10DECLARA TIONS.

IOERROR~ESSAGE

10ERROILMESSAGE is a string function. This function has one INTEGER parameter that should
contain the 110 error code 10E_RESUL T. The function returns a string that is the English error
message associated with the specific error code. The string function 10ERROILMESSAGE is in the
1/0 Library Module GENERAL_3. A listing of current error codes and their messages is in the last
section in'this chapter.

The follOWing program is an example of handling an 110 error using the TRY IRECOVER mechan­
ism used with the features of the 110 Library. This program attempts to write a string out to an
HP-IB interface without first addressing the interface card as a talker.

$SYSPROG ON$ { enable optional COMPiler features}
PROGRAM io_errors (INPUT,OUTPUT);

IMPORT IOOECLARA~IONS,

BEGIN
TRY

GENERAL_l,
GENERAL_2,
GENERAL_3;

IOINITIALIZE; { put I/O SYsteM into Known state}
WRITESTRINGLN(7,'1 aM not sendin~ address inforMation');
WRITELN('This should not ~et executed');

RECOVER { this is the event handler }
BEGIN

WRITELN('I have ~otten an error');
WRITELN('The escape code is ',ESCAPECOOE);
IF ESCAPECOOE=IOESCAPECOOE

THEN BEGIN
WRITELN('The error IAlas an I/O error');
WRITELN(10ERROR_MESSAGE(IDE_RESULT),' on isc ',IOE_ISC);

END
ELSE BEGIN

ESCAPE(ESCAPECODE) j {pass error on }
END;

END;
WRITELN('Pro~ralTl finished norITlall}");

END.

When run, this program will generate a CRT screen similar to the following:

I have ~otten an error
The escape code is -28
The error was an I/O error
not addressed as talker on isc
Pro~raM finished norMally

7

Note that the program finished normally. The path that was executed inside the RECOVER
block did not perform an ES~APE. Therefore, the statement immediately following the
RECOVER block is executed next.

Errors and Timeouts 8-5

It is important to structure your TRY IRECOVER blocks in a manner similar to the one just
shown. This is necessary because all errors go through the TRY IRECOVER mechanism. If you
do not check the cause of the error with ESCAPECODE, you might trap an error meant for
some other TRY IRE COVER or an error you did not expect.

I/O Timeouts
A timeout occurs when the handshake response from any external device takes longer than a
specified amount of time to complete. The time specified for the timeout is usually the max­
imum time that a device can be expected to take to respond to a handshake during an I/O
statement.

Setting Up Timeout Events
The SET_TIMEOUT procedure in Module GENERAL_1 has two parameters, the interface
select code and a single REAL parameter that is the time that the I/O Library will wait for an
operation to complete. This parameter is the time in seconds. The parameter can range from 0
thru 8191 seconds with a resolution of .001 seconds. The default timeout value is 0, which is
interpreted by the I/O Library as a timeout period of infinity-the system will wait forever for the
operation to complete.

The timeout event is just another I/O error. The timeout error has the I/O error code
(lOE_RESUL T) of 17 (1/0 error constant ioe_timeout).

8-6 Errors and Timeouts

A sample program trapping timeouts follows. This program will try to send some data to a
device ten times and will then stop.

$SYSPROG ON$ { enable optional compiler features}
PROGRAM tirrleouts (INPUT ,OUTPUT);

IMPORT IOOECLARATIONS,
GENERAL_I,
GENERAL_2,
GENERAL_3;

VAR attempt INTEGER;
success: BOOLEAN;

BEGIN
IOINITIALIZE;
SET_TIMEOUT(7,1.0) ;
atterrlPt := 1;
success := FALSE;
REPEAT

TRY

timeout of 1 second on isc 7

WRITESTRINGLN(724,'This device does not exist on the bus');
success := TRUE;

}

RECOVER { this is the event handler }
BEGIN

IF ESCAPECODE=IOESCAPECODE
THEN BEGIN

IF (IDE_RESULT IDE_TIMEOUT AND (IOE_ISC = 7
THEN BEGIN

IORESET (7) ; { because interface is in a bad state}
WRITELN('timeout #' ,atterrlPt :2);
atteMPt := attempt+l;

END
ELSE BEGIN

WR I TELN (I OERROR _MESSAGE (I OE_RESUL T) ,'on is c I, I OE_ I SC) ;
ESCAPE(ESCAPECODE) ;

END;

END;
END
ELSE BEGIN

ESCAPE(ESCAPECODE) ;
END;

UNTIL (attempt)10) OR success;
WRITELN('ProSrarrl finished ');
IOUNINITIALIZE;

END.

{ pass error on

{ clean UP interface state

When run, this program will generate a CRT screen similar to the following:

tirTleout #
tirTleout # 2
tirTleout # 3
timeout # 4
tirTleout # 5
timeout # G
timeol.lt # 7
tirrleout # 8
tirrleout # 9
timeout #10
ProSram finished

}

}

Errors and Timeouts 8-7

I/O Errors
The following list contains the error codes in the I/O Library. The error code value is stored in
the system variable IOE_RESULT. This list also contains the text of the error message produced
by the GENERAL_3 string function IOERROR_MESSAGE. The name of the error is a constant
that is declared in the IODECLARATIONS module. The errors from 306 through 327 are HP
98628A Datacomm and HP 98626A RS-232 interface errors.

Name Value Error Message

ioe_no_error 0 no error
ioe_no_card 1 no card at select code
ioe_noLhpib 2 interface should be hpib
ioe_noLact 3 not active controller / commands not supported
ioe_noLdvc 4 should be device not sc
ioe_no-space 5 no space left in buffer
ioe_no_data 6 no data left in buffer
ioe_bacLtfr 7 improper transfer attempted
ioe-1sc_busy 8 the select code is busy
ioe_buLbusy 9 the buffer is busy
ioe_bacLcnt 10 improper transfer count
ioe_bacLtmo 11 bad timeout value / timeout not supported
ioe_no_driver 12 no driver for this card
ioe_no_dma 13 nodma
ioe_no_word 14 word operations not allowed
ioe_noLtalk 15 not addressed as talker / write not allowed
ioe_noLlstn 16 not addressed as listener / read not allowed
ioe_timeout 17 a timeout has occurred / no device
ioe_noLsctl 18 not system controller
ioe_rds_wtc 19 bad status or control
ioe_bad-Sct 20 bad set/clear/test operation
ioe_crcLdwn 21 interface card is dead
ioe_eocLseen 22 end/eod has occurred
ioe_misc 23 miscellaneous - value of param error
ioe_dc_fail 306 dc interface failure
ioe_dc_usart 313 USART receive buffer overflow
ioe_dc_ovfl 314 receive buffer overflow
ioe_dc_clk 315 missing clock
ioe_dc_cts 316 , CTS false too long
ioe_dc_car 317 lost carrier disconnect
ioe_dc-ilct 318 no activity disconnect
ioe_dc_conn 319 connection not established
ioe_dc_conf 325 bad data bits/par combination
ioe_dcJeg 326 bad status /control register
ioe_dcJVal 327 control value out of .range

8-8 Errors and Timeouts

Notes

Advanced Transfer Techniques
Chapter

9

Introduction
This chapter discusses advanced transfer techniques. These transfers are intended primarily for two
main applications:

• Where the computer is much faster than the device being communicated with

• Where the computer is slower than the device being communicated with

This chapter includes discussions on buffers, serial transfers, overlap transfers and special forms of
transfers.

Buffers
Buffers are the data area where the transfer procedures read and write the data that is being
transferred. This area is actually in two pieces. One piece is the control block for the buffer. The
other is the memory where data is actually stored.

The control block is a user variable. This variable must be of the type BUF _INFO_ TYPE which is
defined in the 110 Library module IODECLARA TIONS. This block of information contains various
fields including a pOinter to the actual data area.

The data area is not allocated when the BUF _INFO_TYPE variable is declared. The data area is
allocated at program execution time with the execution of a procedure called IOBUFFER. This
procedure is of the form:

The size in bytes is an integer value and can be of any size that the memory in your computer can
create. The IOBUFFER procedure, at program execution time, will allocate the data area and
initialize the various pointers in the buffer control block (a variable of BUF _INFO_TYPE). IOBUF­
FER and all other 110 Library transfer procedures are in the GENERAL_4 module.

The data area that is allocated is allocated with the NEW facility. Refer to the HP PascaJ Language
Reference for more information on NEW and its related capabilities. In particular, be careful of the
MARK and RELEASE facilities since these can affect the buffer space.

9-1

9-2 Advanced Transfer Techniques

Once a buffer has been declared and allocated, it is necessary to be able to read and write the
buffer. The 110 Library, as with normal input and output, has a small number of procedures and
functions to access the buffer space. These procedures and functions are:

• BUFFER_RESET

• BUFFER_SPACE

• BUFFER_DATA

• READ BUFFER

• WRITEBUFFER

• READ BUFFER_STRING

• WRITEBUFFER_STRING

Buffer Control
Necessary aspects of buffer control are empty and fill pointers. When data is written into the
buffer, the fill pointer is incremented. When data is read from the buffer the empty pointer is
incremented. When these two pointers meet, there is no data in the buffer.

The procedure BUFFER_RESET puts the empty and fill pointers back to the start of the
buffer-effectively clearing it of data. The form of this procedure is:

BUFFER_RESET (buffer_control_blocK);

The integer function BUFFER_SPACE returns the number of bytes that are available at the end
of the buffer from the fill pointer to the end of the buffer. This function is of the form:

BUFFER_SPACE (buffer_control_block);

The integer function BUFFER_DATA returns the number of bytes of data that are available in
the buffer from the empty pointer to the fill pointer. This function is of the form:

Reading Buffer Data
There are two procedures that read buffer data: READBUFFER and READBUFFER_STRING.
READBUFFER reads a single character. READBUFFER_STRING reads a string. The form of
these procedures is:

READBUFFER (buffer_control_block, character_var);
READBUFFER_STRING (buffer_control_blocK, strin~_var,

character_count);

The READBUFFER_STRING will read the specified number of characters from the buffer into
the string variable.

Advanced Transfer Techniques 9-3

Writing Buffer Data
There are two procedures that write buffer data: WRITEBUFFER and
WRITEBUFFER_STRING. WRITEBUFFER writes a single character.
WRITEBUFFER_STRING writes c. string. The form of these procedures is:

WRITEBUFFER (buffer_control_blocKt character);
WRITEBUFFER_STRING (buffer_control_blocKt strin~);

The WRITEBUFFER_STRING will write the entire number of characters from the string ex­
pression into the buffer.

The folloWing is an example program showing the creation and use of a buffer:

PROGRAM buffers (INPUTtOUTPUT);
IMPORT IODECLARATIONSt

IJAR buffer
i
c

BEGIN

BUF_INFO_TYPE;
INTEGER;
CHAR;

IOBUFFER(buffertl00) ;
BUFFER_RESET(buffer) ;

FOR i:=65 TO 80 DO

{ create a 100 character buffer}
{ MaKe sure it is eMPty }

WRITEBUFFER(buffertchr(i»; { put character data in the buf }
WRITEBUFFER_STRING(buffert'hello'); { put a strin~ in the buffer }

WHILE BUFFER_DATA(buffer»O DO BEGIN
READBUFFER(buffertc); { dUITlP out the buffer b}' char }
WRITE(c) ;

END; {of WHILE DO BEGIN}
WRITELN;

END.

This program will produce the following screen on the CRT:

ABCDEFGHIJKLMNOPQRSTUVWXYZhello

9-4 Advanced Transfer Techniques

Serial Transfers
Serial transfers are those that complete before the next Pascal line is executed. This is the
normal approach that Pascal uses in program execution. This type of transfer is useful in the
application where you have a high speed data transfer where the computer is slower than or the
same speed as the device.

The procedure that performs a data transfer to and from a buffer is the TRANSFER procedure.
It has the following form:

TRANSFER (device, transfer_Mode, direction,
buffer_control_block, count);

The "device" parameter is the device selector (like 12 or 701) described in previous chapters. The
"count" parameter is the number of bytes to be transferred by the procedure. The "buffer control
block" parameter is the buffer variable of type BUF _INFO_ TYPE.

The "direction" parameter is of a special type and can have two values: FROM~EMORY and
TO--.MEMORY. So a direction of FROM~EMORY is an output transfer and TO~EMORY is an
input transfer.

The "transfer mode" parameter is also of a special type. For serial transfers it can have the values:

• SERIAL_DMA

• SERIAL_FHS

• SERIAL-FASTEST

The DMA mode specifies a direct memory access transfer. The FHS mode specifies a fast hand­
shake transfer. The FASTEST mode specifies that if DMA is installed and available for the transfer,
then it should be used, otherwise a FHS transfer will occur. Some interfaces do not support DMA
transfers (like the Datacomm interface). Those interfaces, when a FASTEST transfer is requested,
will give a FHS transfer since they cannot do DMA.

The DMA mode transfer can only transfer 1 through 65 536 bytes of data. The fast handshake
transfer can be of arbitrary size.

Advanced Transfer Techniques 9-5

An example program using a serial transfer to a printer is:

PROGRAM transfers (INPUT,OUTPUT);
IMPORT IODECLARATIONS,

I.IAR buffer
i ,j

c
BEGIN

GENERAL_a;
BUF_INFO_TYPE;
INTEGER;
CHAR;

IOBUFFER(buffer,100) ;

FOR j:=l TO 5 DO BEGIN

BUFFER_RESET(buffer) ;
FOR i:=65 TO 90 DO

WRITEBUFFER(buffer,chr(i)) ;
WRITEBUFFER(buffer,chr(13)) ;
WRITEBUFFER(buffer,chr(10)) ;
TRANSFER(701,SERIAL_FASTEST,

FROM_MEMORY,buffer,

{ create a 100 character buffer}

{ make sure it is empty }

{ put character data in the buf }
{ put in a carriage return }
{ put in a line feed }

buffer_data(buffer)); {send all of the data in buf }
WRITELN('this line will not be printed until the transfer is done');

END; { of FOR DO BEGIN}

END.

This program will produce the following on the CRT:

this line IAIi 11 not be printed
this line will not be printed
this line ... Ii 11 not be printed
this line IN ill not be printed
this line IN ill not be printed

and this on the PRINTER:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUI.IWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

until the transfer
until the transfer
until the t ransfe r
until the t ransfe r

·until the transfer

is done
is done
is done
is done
is done

9-6 Advanced Transfer Techniques

Overlap Transfers
Serial transfers are useful for high-speed applications. The computer will not continue execu­
tion of the program until the transfer is complete. For lower speed applications, this is not
adequate. The Pascal 110 Library provides an overlap transfer mechanism. This mechanism
allows for the program to continue execution while the transfer is continuing. The overlap
transfer mechanism is identical to the serial transfer. Its form is:

TRANSFER (del,lice, t ransfe r_ITlode, di rection,
buffer_control_block, count);

All of the parameters are the same as for other types of transfers, with the exception of the
"transfer_mode" parameter. For overlap transfers, the parameter can have the following values:

Transfer Mode Value

OVERLAP _INTR
OVERLAP _DMA
OVERLAP _FHS
OVERLAP_FASTEST
OVERLAP

Meaning

Interr,upt transfer
dma transfer
Interrupt on first byte fast handshake on rest
dma if available, else use overlap_fhs
dma if available, else use overlap_intr

The overlap fast handshake mode has also been called burst mode, because it does not
consume any CPU time until the first byte is transferred. The overlap mode is provided so that if
your application requires a data transfer to execute concurrently with the program execution,
then you will get the most efficient method available.

The DMA mode transfer can only transfer 1 through 65536 bytes of data. The other transfer
modes can be of arbitrary size.

When is the Transfer Finished?
There are two BOOLEAN functions which can tell you if a transfer is still occurring between a
buffer and an interface. These are:

and

Either function returns TRUE if the transfer is still active.

Advanced Transfer Techniques 9-7

The following program is an example of an overlap transfer. This program does not do anything
useful with the spare time available to it.

PROGRAM overlaped (INPUT,OUTPUT);
IMPORT IODECLARATIONS,

GENERAL_a;
VAR buffer BUF_INFO_TYPE;

i , j
c

BEGIN

INTEGER;
CHAR;

IOBUFFER(buffer,100) ; { create a 100 character buffer}

FOR j:=l TO 5 DO BEGIN

WHILE BUFFER_BUSY(buffer) DO
BEGH~

WRITELN(/waiting for transfer to finish/);
HiD.:

BUFFER_RESET(buffer) ;
FOR i:=65 TO 90 DO

{ maKe sure it

{ put character

is empty

data in the buf WRITEBUFFER(buffer,chr(i» ;
WRITEBUFFER(buffer,chr(13»;
WRITEBUFFER(buffer,chr(10» ;
TRANSFER(701,OVERLAP_INTR,

{ put in a carrialte re turn

FROM_MEMORY,buffer,
buffer_data(buffer»;

END; { of FOR DO BEGIN}

END.

{ put

{ send

in a line feed

all of the data

This program will produce the following on the PRINTER:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

in buf

}

}

}

}

}

9-8 Advanced Transfer Techniques

Special Transfers
In addition to the block transfers that were described above, there are three additional versions
of transfer. They are:

• word transfers

• match character transfers

• END condition transfers

Word Transfer
The GPIO interface can support 16 bit data transfers. The TRANSFER_WORD procedure
simultaneously transfers 2 bytes over the GPIO interface. The form of this procedure is:

TRANSFER_WORD (device, transfer_Mode, direction,
buffer_control_block, count);

All of the parameters are the same with the exception of the count which now contains the
16-bit word count to be transferred. All the transfer modes, overlap and serial, are the same
as a regular transfer.

Match Character Transfer
This transfer procedure will transfer data into the computer until a match character is found.
Note that this transfer, called TRANSFER_UNTIL, is an input only transfer. The form of the
procedure is:

TRANSFER_UNTIL (terMination_char, device, transfer_Mode,
direction, buffer_control_block);

The termination character is the match character that will stop the transfer. The transfer will
also stop when there is no more room in the buffer. All of the other parameters are the same.
Most of the transfer modes, overlap and serial, are the same as a regular transfer - except
that DMA transfers are not allowed. Note that there is NO count parameter. The direction
must be TO_MEMORY.

END Condition Transfer
This transfer procedure will transfer data into the computer until an interface condition occurs
or it will transfer data out with the last data byte being sent with an interface condition. This
transfer is TRANSFER_END and has the form:

TRANSFER_END (device, transfer_'llode, di rection,
buffer_control_block) ;

All of the parameters are the same. Note that there is NO count. The transfer will send all the
available data followed by the condition or will receive data until the end condition occurs or
the buffer fills up. All the transfer modes, overlap and serial, are the same as a regular transfer.
The end condition is device dependent. An example of an end condition is the EOI condition
on HP-IB.

The HP-IB Interface
Chapter

10

Introduction
This chapter describes the techniques necessary for programming the HP-IB interface. Many of the
elementary concepts have been discussed in previous chapters. This chapter describes the specific
details of how this interface works and how it is used to communicate with and control systems
consisting of various HP-IB devices.

The HP-IB (Hewlett-Packard Interface Bus), commonly called the "bus", provides compatibility
between the computer and external devices conforming to the IEEE 488-1978 standard. Electrical,
mechanical, and timing compatibility requirements are all satisfied by this interface.

Data

8
HP-IB
Interface

Handshake (5 Shielded Cable
3 t)

to Device(s) Q)

Hardware c
Backplane c

and 0
Connector Firmware Control

()

c
5 a::

J,
C\I

Logic and Shield
Grounds

8

The HP-IB interface is both easy to use and allows great flexibility in communicating data and
control information between the computer and external devices. It is one of the easiest methods to
connect more than one device to the same interface.

10-1

10-2 HP-IB Interface

Initial Installation
Refer to the HP-IB Installation Note for information about setting the switches and installing an
external HP-IB interface. Once the interface has been properly installed, you can verify that the
switch settings are what you intended by running the following program. The defaults of the
internal HP-IB interface can also be checked with the program. The results are displayed on the
CRT.

PROGRAM checK_hpib (INPUT t OUTPUT);
IMPORT IODECLARATIONSt

HPIfLl ;
VAR isc: TYPE_ISC;
BEGIN

WRITELN('Enter HP-IB interface select code');
READLN (is c) ;

IF ISC_TABLE[isc].CARD_TYPE <> HPIB_CARD
THEN BEGIN

END.

WRITELN('The interface at .isc 'tisc:2t' is not an HP-IB interface');
END
ELSE BEGIN

WRITELN('The interface at isc 'tisc:2t' is an HP-IB interfa~e');

IF ISC_TABLE[isc].CARD_ID = HP88624
THEN W R I TEL N (, an d is an 0 p t i on a I t ext ern a lin t e r f ace ')
ELSE WRITELN(' and is the standardt built in interface');

WRITE('The interface is ');
IF NOT SYSTEM_CONTROLLER(isc) THEN WRITE('NOT ');
WRITELN('the s}'sterTl controller');

WRITE('The interface has a bus address of 'trTl}'_address(isc) :2);

END; { of IF THEN/ELSE}

The terms system controller and bus address are described in the following sections. The
internal HP-IB has a jumper that is set at the factory to make it a system controller. Refer to
the installation manual for the computer (or the installation manual for the board on which the
interface is found) for information about the use of this jumper.

HP-IB Interface 10-3

Communicating with Devices
This section describes programming techniques used to output data to and enter data from
HP-IB devices. General bus operation is also briefly described.

HP-IB'Device Selectors
Since the HP-IB allows the interconnection of several devices, each device must have a means
of being uniquely accessed. Specifying just the interface select code of the HP-IB interface
through which a device is connected is not sufficient to identify that device on the bus.

Each device connected to the bus has an address by which it can be identified., This address
must be unique to allow individual access of each device. Most HP-IB devices have a set of
switches that are used to set its address. Those that do not have switches, like the built in hiP-IB
interface in the computer, have a pre-set bus address. So, when a particular HP-IB device is to
be accessed, it must be identified with both its interface and its bus address.

The interface select code is the first part of an HP-IB device selector. The interface select code oJ the
internal HP-IB is 7. The second part of an HP-IB device selector is the device's bus address. This
address is the range of 0 through 30. As described in the Directing Data Flow chapter, interface. 7,
device address 17 would have a device selector of 717. Interface 10, device address 2 would have a
device selector of 1002.

Moving Data Through the HP-IB
Data is output from and entered into the computer through the output and input procedures
described in earlier chapters. All the information in these chapters applies directly to the Hp:..IB
interface. The advanced transfer techniques described in the preceding chapter also apply to the
HP-IB interface.

Example

PROGRAM hpib_io (INPUTtOUTPUT);
IMPORT GENERAL_2;
VAR a : REAL;

i : INTEGER;
BEGIN

WRITESTRINGLN(701 t'rllessag'e to a printer');
WRITESTRINGLN(724t'R1T1N1S') ;
FOR i:= 1 TO 100 DO BEGIN

READNUMBER (724ta);
WRITELN('the reading' frorll the I.lOltrlleter is 'ta:6:2);

END; { of FOR DO BEGIN}
END.

General Structure of the HP-IB
Communications through the HP-IB are made according to a: precisely defined set of rules.
These rules help to ensure that only orderly communication may, take place on 'the bus. For
conceptual purposes, the organization of the HP-IB can be compared to that of-a commiUee.A
committee has certain "rules of order" that govern' the manner in which 'business >,:is to be
conducted. For the HP-IB, these rules of order are the IEEE 488-1978 standard.

10-4 HP-IB Interface

One member, designated the "committee chairman," is set apart for the purpose of conducting
communications between members during the meetings. This chairman is responsible for over­
seeing the actions of the committee and generally enforces the rules of order to ensure the
proper conduct of business. If the committee chairman cannot attend a meeting, he designates
some other member to be "acting chairman."

On the HP-IB, the system controller corresponds to the committee chairman. The system
controller is generally designated by setting a switch on the interface and cannot be changed
under program control. However, it is possible to designate an "acting chairman" on the
HP-IB. On the HP-IB, this device is called the active controller, and may be any device
capable of directing HP-IB activities, such as a desktop computer.

When the system controller is first turned on or reset, it assumes the role of active controller.
Thus, only one device can be designated system controller. These responsibilities may be
subsequently passed to another device while the system controller tends to other business. This
ability to pass control allows more than one computer to be connected to the HP-IB at the same
time.

In a committee, only one person at a time may speak. It is the chairman's responsibility to
"recognize" which one member is to speak. Usually, all committee members present always
listen; however, this is not always the case on the HP-IB. One of the most powerful features of
the bus is the ability to selectively send data to individual (or groups of) devices.

Imagine slow note takers and fast note takers on the committee. Suppose that the speaker is
allowed to talk no faster than the slowest note taker can write. This would guarantee that
everybody gets the full set of notes and that no one misses any information. However, requiring
all presentations to go at that slow pace certainly imposes a restriction on our committee,
especially if the slow note takers do not need the information. Now, if the chairman knows
which presentations are not important to the slow note takers, he can direct them to put away
their notes for those presentations. That way, the speaker and the fast note taker(s) can cover
more items in less time.

A similar situation may exist on the HP-IB. Suppose that a printer and a flexible disc are
connected to the bus. Both devices do not need to listen to all data messages sent through the
bus. Also, if all the data transfers must be slow enough for the printer to keep up, saving a
program on the disc would take as long as listing the program on the printer. That would
certainly not be a very effective use of the speed of the disc drive if it was the only device to
receive the data. Instead, by "unlistening" the printer whenever it does not need to receive a
data message, the computer can save a program as fast as the disc can accept it.

During a committee meeting, the current chairman is responsible for telling the committee
which member is to be the talker and which is (are) to be the listener(s). Before these assign­
ments are given, he must get the attention of all members. The talker and listener(s) are then
designated, and the next data message is presented to the listener(s) by the talker. When the
talker has finished the message, the designation process may be repeated.

HP-IB Interface 10-5

On the HP-IB, the active controller takes similar action. When talker and listener(s} are to be
designated, the attention signal line (A TN} is asserted while the talker and listener(s} are being
addressed. A TN is then cleared, signaling that those devices not addressed to listen may ignore
all subsequent data messages. Thus, the ATN line separates data from commands; com­
mands are accompanied by the A TN line being true, while data messages are sent with the A TN
line false.

On the HP-IB, devices are addressed to talk and addressed to listen in the following orderly
manner. The active controller first sends a single command which causes all devices to unlisten.
The talker's address is then sent, followed by the address(s} of the listener(s}. After all listeners
have been addressed, the data can be sent from the talker to the listener(s}. Only device(s}
addressed to listen accept any data that is sent through the bus (until the bus is reconfigured by
subsequent addressing commands).

The data transfer, or data message, allows for the exchange of information between devices on
the HP-IB. Our committee conducts business by exchanging ideas and information between
the speaker and those listening to his presentation. On the HP-IB, data is transferred from the
active talker to the active listener(s) at a rate determined by the slowest active listener on
the bus. This restriction on the transfer rate is necessary to ensure that no data is lost by any
device addressed to listen. The handshake used to transfer each data byte ensures that all data
output by the talker is received by all active listeners.

Examples of Bus Sequences
Most data transfers through the HP-IB involve a talker and only one listener. For instance,
when an input or output procedure is used to send data to or from a device, the following
sequence of commands is sent through the bus.

WRITESTRINGLN (701 t 'Data') ;

1. The unlisten command is sent.

2. The talker's address is sent (the computer's talk address).

3. The listener's address is sent (address 01).

4. The data bytes "D", "a", "t", "a" ,carriage return and line feed are sent.

READSTRING(724tMessage) ;

1. The talker's address is sent (talk address for device 24).

2. The unlisten command is sent.

3. The listener's address is sent (the computer listen address).

4. The data bytes are transferred.

10-6 HP-IB Interface

Addressing Multiple Listeners
HP-IB allows more than one device to listen as data is sent through the bus. The Pascal I/O Library
supports this capability in the following way. It is necessary for you to address the bus yourself. The
procedures to do this addressing exist in the module HPIB~. The following example shows how to
address the computer as a talker and several devices as listeners.

UNLISTEN(isc)j
TALK (i sCtMY _ADDRESS (i SC)) j
LISTEN (isc tadd ress_l) j
LISTEN (isc tadd ress_2) j
LISTEN (isc tadd ress_3) j
WRITESTRINGLN(isct'This ITleSSage sent to three listeners.') j

An example where the computer is one of several devices listening to some incoming data is :

UNLISTEN(isc) j
TALK (isctaddress_l)j
LISTEN (isc tMY_ADDRESS(isc)) j
LISTEN (isc tadd ress_2) j
LISTEN (isc tadd ress_3) j
READSTRING(isc tstr) j

The UNLISTEN, TALK and LISTEN procedures are in the liD Library module HPIB_2.

Addressing a Non-Active Controller
The bus standard states that a non-active controller cannot perform any bus addressing. When
only the interface select code is specified in an input or output procedure, no bus addressing
occurs.

If the computer currently is not the active controller, it can still act as a talker or listener,
provided it has been previously addressed. So, if an input or output procedure is executed
while the computer is not an active controller, the computer first determines whether or not it is
an active talker or listener. If not addressed to talk or listen, the computer waits until it is
properly addressed and then performs the operation. Examples of non-controller liD are:

READCHAR(7tc) j { If not a listenert then wait until addressed to listen. }
WRITESTRINGLN(7t'This ITleSSage sent after I'ITI addressed to taUi.');
READSTRING_UNTIUCHR(13) t7 tstr);

If the computer is the active controller, it proceeds with the data transfer without addressing
which devices are talker and listener(s}. If the bus has not been configured properly (the
controller not being addressed as a talker or listener), an error is reported. The escapecode is
- 26 O/O} and the io error is 15 or 16 (not addressed as a talker or listener). The folloWing
program shows a typical use of this non-addressing approach.

WRITESTRINGLN(705t'This goes to del.dce 5 on isc 7.');
LISTEN(7t1);
WRITESTRINGLN(7t'This goes to devices 1 and 5. ');
LISTEN(7 t20);
FOR i : = 1 TO 10 DO

WRITESTRINGLN (7t'These ten lines gO to devices 1t 5t and 20.');

HP-IB Interface 10-7

Pascal Control of HP-IB
The Pascal I/O Library has a number of procedures and functions for controlling the HP-IB. You
have already seen a number of them in the preceding examples. These capabilities are broken
down into two major groups - status and control.

HP-IB Status
Normal use of HP-IB requires three main status facilities:

• What is my address?

• Am I system controller?

• Am I active controller?

The function MY -.ADDRESS returns the current device address of the specified interface. This
integer function is in module HPIB_l. It has the form:

MY_ADDRESS (interface_select_code);

The function SYSTE~CONTROLLER returns a TRUE or FALSE depending on whether or not
the interface is set to be the system controller. This boolean funCtion is in module HPIB_l, and has
the form:

SYSTEM_CONTROLLER (interface_select_code);

The function ACTIVE_CONTROLLER returns a TRUE or FALSE depending on whether or not
the interface is currently the active controller. This boolean function is in module HPIB_l, and has
the form:

ACTIVE_CONTROLLER (interface_select_code);

HP-IB Control
Normal use of HP-IB requires five main control facilities:

• Send untalk

• Send unlisten

• Send a talk command

• Send a listen command

• Send a secondary command

The UNTALK and UNLISTEN procedures send the appropriate command on the bus. These
procedures are in the HPIB_2 module. The interface must be active controller for them to
complete. They have the form:

UN TALK interface_select_code) ;

UNLISTEN interface_select_code) ;

10-8 HP-IB Interface

The TALK, LISTEN and SECONDARY commands send a talk, listen or secondary command.
These procedures are in the HPIB_2 module. The interface must be an active controller form
for them to complete. They have the form:

TALK interface_select_code t address);

LISTEN interface_select_code t address);

SECONDARY interface_select_code t address);

General Bus Management
The HP-IB standard provides several mechanisms that allow managing the bus and the devices
on the bus. Here is a summary of the procedures that invoke these control mechanisms.

ABO RT _ H PI B is used to abruptly terminate all bus activity and reset all devices to power-on
states.

CLEAR is used to set all (or only selected) devices to a pre-defined, device-dependent state.

LOCAL is used to return all (or selected) devices to local (front-panel) control.

LOCAL_LOCK OUT is used to disable all devices' front-panel controls.

PAS S_C 0 N T R 0 L is used to pass active control to another device on the bus.

P POLL is used to perform a parallel poll on all devices (which are configured and capable of
responding).

P POL L_C 0 NFl G U R E is used to setup the parallel poll response of a particular device.

PPOLL_UNCONF I GURE is used to disable the parallel poll response of a device (or all devices
on an interface).

REMOTE is used to put all (or selected) devices into their device-dependent, remote modes.

SEND_COMMAND is used to manage the bus by sending explicit command messages.

S POL L is used to perform a serial poll of the specified device (which must be capable of
responding).

TR I GGER is used to send the trigger message to a device (or selected group of devices).

These procedures (and functions) are described in the following discussion. However, the
actions that a device takes upon receiving each of the above commands are, in general,
different for each device. Refer to a particular device's manuals to determine how it will
respond. Detailed descriptions' of the actual sequence of bus messages invoked by these state­
ments are contained in "Advanced Bus Management" near the end of this chapter.

Remote Control of Devices
Most HP-IB devices can be controlled either from the front panel or from the bus. If the device's
front-panel controls are currently functional, it is in the Local state. If it is being controlled
through the HP-IB, it is in the Remote state. Pressing the front-panel "Local" key will return the
device to Local (front-panel) control, unless the device is in the Local Lockout state (described
in a subsequent discussion).

HP-IB Interface 10-9

The Remote message is automatically sent to all devices whenever the system controller is
powered on, reset, or sends the Abort message. A device also enters the Remote state
automatically whenever it is addressed. The REMOTE procedure also outputs the Remote
message, which causes all (or specified) devices on the bus to change from local control to
remote control. The interface must be configured as the system controller to execute the
REMOTE procedure. The REMOTE procedure is in module HPIB_2.

Examples

REMOTE (7)

REMOTE (700)

Locking Out Local Control
The Local Lockout message effectively locks out the "local" switch present on most HP-IB
device front panels, preventing a device's user from interfering with system operations by
pressing buttons and thereby maintaining system integrity. As long as Local Lockout is in effect,
no bus device can be returned to local control from its front panel.

The Local Lockout message is sent by executing the LOCAL_LOCKOUT procedure. This message
is sent to all devices on the specified bus, and it can only be sent by the interface when it is the active
controller. This procedure is in module HPIB-.2.

Examples

LOCAL_LOCKOUT (7)

Enabling Local Control
DUring system operation, it may be necessary for an operator to interact with one or more devices.
For instance, an operator might need to work from the front panel to make special tests or to
troubleshoot. And, in general, it is good systems practice to return all devices to local control upon
conclusion of remote-control operations. Executing the LOCAL procedure returns the specified
devices to local (front-panel) control. The interface must be the active controller to send the
LOCAL message. This procedure is in module HPIB-.2.

Examples

LOCAL (7)

LOCAL (801)

If primary addressing is specified, the Go-to-Local message is sent only to the specified device(s}.
However, if only the interface select code is specified, the Local message is sent to all devices on the
specified HP-IB interface and any previous Local Lockout message (which is still in effect) is
automatically cleared. The interface must be the system controller to send the Local message (by
specifying only the interface select code).

10-10 HP-IB Interface

Triggering HP-IB Devices
The TRIGGER procedure sends a Trigger message from the controller to a selected device or
group of devices. The purpose of the Trigger message is to initiate some device-dependent
action; for example, it can be used to trigger a digital voltmeter to perform its measurement
cycle. Because the response of a device to a Trigger Message is strictly device-dependent,
neither the Trigger message nor the interface indicates what action is initiated by the device.
This procedure is in module HPIB_2.

Examples

TRIGGER (7)

TR I GGER (707);

Specifying only the interface select code outputs a Trigger message to all devices currently
addressed to listen on the bus. Including device addresses in the statement triggers only those
devices addressed by the statement.

Clearing HP-IB Devices
The CLEAR procedure provides a means of "initializing" a device to its predefined, device­
dependent state. When the CLEAR procedure is executed, the Clear message is sent either to
all devices or to the specified device, depending on the information contained within the device
selector. If only the interface select code is specified, all devices on the specified HP-IB interface
are cleared. If primary-address information is specified, the Clear message is sent only to the
specified device. Only the active controller can send the Clear message. This procedure is in
module HPIB_2.

Examples

CLEAR (7)

CLEAR (700)

Aborting Bus Activity
The ABORT _HPIB procedure may be used to terminate all activity on the bus and return all the
HP-IB interfaces of all devices to a reset (or power-on) condition. Whether this affects other modes
of the device depends on the device itself. The interface must be either the active or the system
controller to perform this function. If the system controller (which is not the current active controller)
executes this statement, it regains active control of the bus. This procedure is in module HPIB-2.
Only the interface select code may be specified; device selectors which contain primary­
addressing information (such as 724) may not be used. This procedure,.1s in module HPIB-2.

Examples

ABORT_HPIB (7)

Note
When ABORT_HPIB is executed (as well as other "universal" HP-IB
commands), all devices on the specified bus are affected. This may
cause undesired behavior with those devices.

HP-IB Interface 10-11

Passing Control
The PASS_CONTROL procedure will pass current active control to another device on the bus.
The interface must be active controller. This procedure is in module HPIB_2.

Examples

PASS_CONTROL (720)

Polling HP-IB Devices
The parallel poll is the fastest means of gathering device status when several devices are
connected to the bus. Each device (with this capability) can be programmed to respond with
one bit of status when parallel polled, making it possible to obtain the status of several devices
in one operation. If a device responds affirmatively to a parallel poll, more information as to its
specific status can be obtained by conducting a serial poll of the device.

Configuring Parallel Poll Responses
Certain devices can be remotely programmed by the active controller to respond to a parallel
poll. A device which is currently configured for a parallel poll responds to the poll by placing its
current status on one of the bus data lines. The logic sense of the response and the data-bit
number can be programmed by the PPOll_CONFIGURE procedure. If more than one device
is to respond on a single bit, each device must be configured with a separate PPOll_CONFI­
GURE procedure. This procedure is in module HPIB_2.

Example

Note

Use of PPOLL CONFIGURE may interfere with the Pascal Operating Sys­
tem, especially if an external disc is being used. Be very careful.

PPOLL_CONFIGURE (705tMasK)

The value of the mask (any numeric expression can be specified) is first rounded and then used
to configure the device's parallel response. The least significant 3 bits (bits 0 through 2) of the
expression are used to determine which data line the device is to respond on (place its status
on). Bit 3 specifies the "true" state of the parallel poll response bit of the device. A value of 0
implies that the device's response is 0 when its status-bit message is true.

Example

The folloWing statement configures device at address 01 on interface select code 7 to respond
by placing a 0 on bit 4 when its status response is "true".

PPOLL_CONFIGURE (701 t4)

10-12 HP-IB Interface

Conducting a Parallel Poll
The PPOLL function returns a single byte containing up to 8 status bit messages of all devices on
the bus capable of responding to the poll. Each bit returned by the function corresponds to the
status bit of the device(s) configured to respond to the parallel poll. (Recall that one or more devices
can respond on a single line.) The PPOLL function can only be executed on an interface that is
currently the active controller. This function is in module HPIB_3.

Example

Response:=PPOLL(7)

Disabling Parallel Poll Responses
The PPOLL_UNCONFIGURE procedure gives the interface (as active controller) the capability of
disabling the parallel poll responses of one or more devices on the bus.

Note

Use of PPOLL ... UNCONFIGURE may interfere with the Pascal Operating
System, especially if an external disc is being used. Be very careful.

Examples

The following statement disables device 5 only.

PPOLL_UNCONFIGURE (705)

This statement disables all devices on interface select code 8 from responding to a parallel poll.

PPOLL_UNCONFIGURE (8)

If no primary addressing is specified, all bus devices are disabled from responding to a parallel
poll. If primary addressing is specified, only the specified devices (which have the parallel poll
configure capability) are disabled.

Conducting a Serial Poll
A sequential poll of individual devices on the bus is known as a serial poll. One entire byte of
status is returned by the specified device in response to a serial poll. This byte is called the
Status Byte message and, depending on the device, may indicate an overload, a request for
service, or a printer being out of paper. The particular response of each device depends on the
device.

The SPOLL function performs a serial poll of the specified device; the interface must be the active
controller. This function is in module HPIB_3.

Examples

Response:=SPOLL(724)

HP-IB Interface 10-13

HP-IB Interface Conditions
The HP-IB interface can be in various states at various times. It is desirable for the programmer
to know about this state information. The major conditions of interest are:

• Is a device requesting service?

• Am I a talker?

• Am I a listener?

• What remote/local state am I in?

These conditions are supported by the following 1/0 Library functions in the HPIB_3 module.
All of these functions are boolean functions and will return an appropriate TRUE or FALSE
indication depending of the condition state.

function

REQUESTED
TALKER
LISTENER
REMOTED
LOCKED_OUT

interface_select_code
interface_select_code
interface_select_code
interface_select_code
interface_select_code

meaning

Is SRQ asserted?
Am I a talker?
Am I a listener?
Is HEN asserted?
Am I in a locked out state?

The REQUESTED function requires that the interface be active controller. TheHEMOTED
function requires that the interface not be system controller. The LOCKED_OUT function
requires that the interface not be active controller. An example program segment follows.

WHILE REQUESTED(isc) DO
FOR i:=O TO 7 DO BEGIN

IF BIT_SET(SPOLL(isc*100+i) tG)
THEN WRITELN('de\,Jice 'ti:2t' requesting ser\)ice ');

END; { of FOR DO BEGIN}

10-14 HP-IB Interface

HP-IB Control Lines

Device A

Able to talk,
listen, and
control

(e,g"
calculator)

Device B

Able to talk
and listen

(e,g"

multimeter)

Device C

Only able to
listen

(e,g" signal
generator)

Device D

Only able to
talk

(e,g" counter)

iiiii iii (
'< ,., -I--

.A

K ,.,
~

1--1-< t i'-

K

~I-< f'r--

~

.....
K.

~

~
I---~

D-

Data Bus
es) (8 Lin -(r---D

Data B
Transf

yte
er
01 Contr

Gener
Interfa

Manage

al
ce
ment

~}DI01 .. ,8

-DAV
NRFD
NDA C
IFC
ATN
SRQ
REN
EOI

Handshake Lines
The preceding figure shows the names given to the eight control lines that make up the HP-IB.
Three of these lines are designated as the "handshake" lines and are used to control the timing
of data byte exchanges so that the talker does not get ahead of the listener(s). The three
handshake lines are as follows.

DAV Data Valid
NRFD Not Ready for Data
NDAC Not Data Accepted

HP-IB Interface 10-15

The HP-IB interlocking handshake uses the lines as follows. All devices currently designated
as active listeners would indicate when they are ready for data by using the NRFO line. A device
not ready would pull this line low (true) to signal that it is not ready for data, while any device
that is ready would let the line float high. Since an active low overrides a passive high, this line
will stay low until all active listeners are ready for data.

When the talker senses that all devices are ready, it places the next data byte on the data lines
and then pulls OAV low (true). This tells the listeners that the information on the data lines is
valid and that they may read it. Each listener then accepts the data and lets the NOAC line float
high (false). As withNRFD, only when all listeners have let NDAC go high will the talker sense
that all listeners have read the data. It can then float OAV (let it go high) and start the entire
sequence over again for the next byte of data.

The Attention Line (ATN)
Command messages are encoded on the data lines as 7 -bit ASCII characters, and are distin­
gUished from normal data characters by the logic state of the attention line (ATN). That is, when
A TN is false, the states of the data lines are interpreted as data. When A TN is true, the data
lines are interpreted as commands. The set of 128 ASCII characters that can be placed on the
data lines during this ATN-true mode are divided into four classes by the states of data lines
0106 and 0107. These classes of commands are shown in a table in the section called "Adv­
anced Bus Management".

The Interface Clear Line (IFC)
Only the system controller can set the IFC line true. By asserting IFC, all bus activity is uncon­
ditionally terminated, the system controller regains the capability of active controller (if it has
been passed to another device), and any current talker and listeners become unaddressed.
Normally, this line is only used to terminate all current operations, or to allow the system
controller to regain control of the bus. It overrides any other activity that is currently taking
place on the bus.

The Remote Enable Line (REN)
This line is used to allow instruments on the bus to be programmed remotely by the active
controller. Any device that is addressed to listen while REN is true is placed in the Remote mode
of operation.

The End or Identify Line (EOI)
Normally, data messages sent over the HP-IB are sent using the standard ASCII code and are
terminated by the ASCII line-feed character, CHR(10). However, certain devices may wish to
send blocks of information that contain data bytes which have the bit pattern of the line-feed
character but which are actually part of the data message. Thus, no bit pattern can be desig­
nated as a terminating character, since it could occur anywhere in the data stream. For this
reason, the EOI line is used to mark the end of the data message.

10-16 HP-IB Interface

The EOI line is not directly supported by the input and output procedures. It is supported in
advanced transfers by the TRANSFER_END procedure.

The 110 Library does provide access to the EOI line at a lower level. The state of the EOI line
after the last byte read is stored in the system and can be viewed with the END_SET boolean
function which is module HPIB_l. An example of this function is:

UNLISTEN(7) ;
TALK(7,20);
LISTEN (7 , MY _ADDRESS (7)) ;
REPEAT

READCHAR (7 , c [i]) ;
UNTIL END_SET(7);

The 110 Library also provides a facility for setting the EOI line with a byte to be sent. This is
provided with the procedure SET _HPIB which is in module HPIB_O. An example use of this
procedure is:

UNLISTEN(7) ;
TALK(7,MY_ADDRESS(7» ;
LISTEN(7,ll) ;
FOR i:=l TO STRLEN(str)-l DO WRITECHAR(7,str[i]);
SET_HPIB(7,EOI_LINE) ;
WRITECHAR(7,str[STRLEN]) ;

After the character output occurs, the EOI line will be set false automatically.

The Service Request Line (SRQ)
The active controller is always in charge of the order of events that occur on the HP-IB. If a
device on the bus needs the controller's help, it can set the service request line true. This line
sends a request, not a demand, and it is up to the controller to choose when and how it will
service that device. The REQUESTED function tells the controller whether it is being requested.
The procedure to request the· service is the REQUEST _SERVICE procedure in the module
HPIB_3. This procedure is of the form:

The response byte is an integer value in the range of 0 through 255. If bit 6 of this byte is set, the
SRQ line will be asserted by this interface. If bit 6 is not set, then this device will not assert the
SRQ line. The interface must not be active controller to request service.

Determining Bus-Line States
IOSTATUS register 7 contains the current states of all bus hardware lines. Reading this register
returns the states of these lines.

bus_lines := IOSTATUS(7,7);

HP-IB Interface 10-17

Status Register 7
Most significant Bit

Bus Control and Data Lines
Least Significant Bit

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

ATN OAV NOAC* NRFO* EOI SRQ** IFC REN
True True True True True True True True

Value = Value = Value = Value = Value = Value = Value = Value =
-32768 16384 8192 4096 2048 1 024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0108 0107 0106 0105 0104 0103 0102 0101

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

* Only if addressed to TALK, else not valid.
* * Only if Active Controller, else not valid.

Note
Due to the way the bi-directional buffers work, NDAC and NRFD are
not accurately read by this IOSTATUS function unless the interface
is currently addressed to talk. Also, SRQ is not accurately shown
unless the interface is currently the active controller.

10-18 HP-IB Interface

Advanced Bus Management
Bus communication involves both sending data to devices and sending commands to devices
arid the interface itself. "General Structure of the HP-IB" stated that this communication must
be made in an orderly fashion and presented a brief sketch of the differences between data and
commands. However, most of the bus operations described so far in this chapter involve
sequences of commands and/or data which are sent automatically by the computer when
HP-IB statements are executed. This section describes both the commands and data sent by
HP-IB statements and how to construct your own, custom bus sequences.

The Message Concept
The main purpose of the bus is to send information between two (or more) devices. These
quantities of information sent from talker to listener(s) can be thought of as messages. Howev­
er, before data can be sent through the bus, it must be properly configured. A sequence of
commands is generally sent before the data to inform bus devices which is to send and which is
(or are) to listen to the subsequent message(s). These commands can also be thought of as
messages.

Most bus messages are transmitted by sending a byte (or sequence of bytes) with numeric
values of 0 through 255 through the bus data lines. When the Attention line (ATN) is true, these
bytes are considered commands; when ATN is false, they are interpreted as data. Bus com­
mand groups and their ASCII characters and codes are shown in "Bus Commands and
Codes".

Types of Bus Messages
The messages can be classified into twelve types. This computer is capable of implementing all
twelve types of interface messages. The following list describes each type of message.

1. A Data message consists of information which is sent from the talker to the listener(s)
through the bus data lines.

2. The Trigger message causes the listening device(s) to initiate device-dependent action(s).

3. The Clear message causes either the listening device(s) or all of the devices on the bus to
return to their deVice-dependent "clear" states.

4. The Remote message causes listening devices to change to remote program control when
addressed to listen.

5. The Local message clears the Remote message from the listening device(s) and returns
the device(s) to local front-panel control.

6. The Local Lockout message disables a device's front-panel controls, preventing a de­
vice's operator from manually interfering with remote program control.

7. The Clear Lockout/Local message causes all devices on the bus to be removed from
Local Lockout and to revert to the Local state. This message also clears the Remote
message from all devices on the bus.

8. The Service Request message can be sent by a device at any time to signify that the
device needs to interact with the the active controller. This message is cleared by sending
the device's Status Byte message, if the deviCe no longer requires service.

HP-IB Interface 10-19

9. A Status Byte message is a byte that represents the status of a single device on the bus.
This byte is sent in response to a serial poll performed by the active controller. Bit 6
indicates whether the device is sending the Service Request message, and the remaining
bits indicate other operational conditions of the device.

10. A Status Bit message is a single bit of device-dependent status. Since more than one
device can respond on the same line, this Status Bit may be logically combined and/or
concatenated with Status Bit messages from many devices. Status Bit messages are
returned in response to a parallel poll conducted by the active controller.

11. The Pass Control message transfers the bus management responsibilities from the active
controller to another controller.

12. The Abort message is sent by the system controller to assume control of the bus uncon­
ditionally from the active controller. This message terminates all bus communications,
but is not the same as the Clear message.

These messages represent the full implementation of all HP-IB system capabilities; all of these
messages can be sent by this computer. However, each device in a system may be designed to
use only the messages that are applicable to its purpose in the system. It is important for you to
be aware of the HP-IB functions implemented on each device in your HP-IB system to ensure
its operational compatibility with your system.

10-20 HP-IB Interface

Bus Commands and Codes
The table below shows the decimal values of IEEE-488 command messages. Remember that
ATN is true during all of these commands. Notice also that these commands are separated into
four general categories: Primary Command Group, Listen Address Group, Talk Address
Group, and Secondary Command Group. Subsequent discussions further describe these com­
mands.

Decimal ASCII Interface
Value Character Message Description

PCG Primary Command Group
1 SOH GTl Go to local
4 EOT SDC Selected Device Clear
5 ENQ PPC Parallel Poll Configure
8 BS GET Group Execute Trigger
9 HT TCT Take Control
17 DC1 llO local lockout
20 DC4 DCl Device Clear
21 NAK PPU Parallel Poll Unconfigure
24 CAN SPE Serial Poll Enable
25 EM SPD Serial Poll Disable

LAG Listen Address Group
32-62 Space through > Listen Addresses 0 through 30

(Numbers & Special Chars.)
63 ? UNl Unlisten

TAG Talk Address Group
64-94 @ through t Talk Addresses 0 through 30

(Uppercase ASCII)

95 _ (underscore) UNT Untalk

SCG Secondary Command Group
, through - Secondary Commands 0 through 30

96-126 (lowercase ASCII)

127 DEL Ignored

HP-IB Interface 10-21

Address Commands and Codes
The following table shows the ASCII characters and corresponding codes of the Listen Address
Group and Talk Address Group commands. The next section describes how to send these
commands.

Address Characters Address Code Address Switch Settings

Listen Talk Decimal (5) (4) (3) (2) (1)

Space ((l.' 0 0 0 0 0 0
! A 1 0 0 0 0 1
" B 2 0 0 0 1 0
C 3 0 0 0 1 1
$ D 4 0 0 1 0 0
% E 5 0 0 1 0 1
& F 6 0 0 1 1 0 ,

G 7 0 0 1 1 1
(H 8 0 1 0 0 0
) I 9 0 1 0 0 1
* J 10 0 1 0 1 0
+ K 11 0 1 0 1 1
, L 12 0 1 1 0 0
- M 13 0 1 1 0 1

N 14 0 1 1 1 0
/ 0 15 0 1 1 1 1
0 P 16 1 0 0 0 0
1 Q 17 1 0 0 0 1
2 R 18 1 0 0 1 0
3 S 19 1 0 0 1 1
4 T 20 1 0 1 0 0
5 U 21 1 0 1 0 1
6 V 22 1 0 1 1 0
7 W 23 1 0 1 1 1
8 X 24 1 1 0 0 0
9 Y 25 1 1 0 0 1

Z 26 1 1 0 1 0
, [27 1 1 0 1 1
< / 28 1 1 1 0 0
=] 29 1 1 1 0 1
> i 30 1 1 1 1 0

10-22 HP-IB Interface

Explicit Bus Messages
Any' 'A TN" command can be sent in any order with a procedure called SEND_COMMAND.
This procedure will send the specified command on the bus. The interface must be active
controller. The form of the procedure is:

SEND_COMMAND (interface_select_code t cOMMand_character);

The command character is a normal character expression in the range of CHR(O) through
CHR(255). You should be very careful when using this procedure because you can put devices
into bad or unknown states. The procedure is in module HPIB_l.

Example

SEND_COMMAND (7 t '? ') ; { send unlisten }

SEND_COMMAND (7 t ' _ ') ; { send untal.' }

SEND_COMMAND (7 t ' ! ') ; { send d l,l c 01 listen }

SEND_COMMAND(7t'U') ; { send d l,l c 21 t a I ., }

HP-IB Interface 10-23

Summary of HP-IB IOSTATUS and
IOCONTROL Registers

Status Register 0
Most Significant Bit

Bit 7 Bit 6

" "
Value = 128 Value = 64

Control Register 0
Most Significant Bit

Bit 7 Bit 6

Bit 5 Bit 4 Bit 3

" " "
Value = 32 Value = 16 Value = 8

Bit 5 Bit 4 Bit 3

Any Bit Will Reset Interface

Card Identification
Least Significant Bit

Bit 2 Bit 1 Bit"

" " 1

Value = 4 Value = 2 Value = 1

Interface Reset
Least Significant Bit

Bit 2 Bit 1 Bit"

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Status Register 1
Most Significant Bit

Bit 7 Bit 6

Interrrupts Interrupt
Enabled Requested

Value = 128 Value = 64

Control Register 1
Most Significant Bit

Bit 7 Bit 6

Device SRQ
Dependent 1 = I did it

Status " = I didn't

Value = 128 Value = 64

Bit 5
1

Bit 4

Interrupt
Level

Value ~ 321 Value ~ 16

Bit 5
1

Bit 4
1

Bit 3

"
Value = 8

Bit 3 [

Interrupt and DMA Status
Least Significant Bit

Bit 2 Bit 1 Bit"

DMA DMA

" Channel 1 Channel "
Enabled Enabled

Value = 4 Value = 2 Value = 1

Serial Poll Response Byte
Least Significant Bit

Bit 2 [Bit 1 [Bit"

Device Dependent Status

Value ~ 32[Value ~ 16[Value ~ 8 [Value ~ 4 I Value ~ 2 [' Value ~ 1

10-24 HP-IB Interface

Control Register 2
Most Significant Bit

Bit 7 Bit 6

0108 0107
1 = True 1 = True

Value = 128 Value = 64

Status Register 3
Most Significant Bit

Bit 7 Bit 6

System Active
Controller Controller

Value = 128 Value = 64

Control Register 3
Most Significant Bit

Bit 7
1

Bit 6

Not Used

Bit 5

0106
1 = True

Value = 32

Bit 5

0

Value = 32

1
Bit 5

Value ~ 1281 Value ~ 641 Value ~ 32

Bit 4

0105
1 = True

Value = 16

Bit 4
1

Bit 3

0104
1 = True

Value = 8

Bit 3
1

1

Parallel Poll Response Byte
Least Significant Bit

Bit 2 Bit 1 Bit 0

0103 0102 0101
= True 1 = True 1 = True

Value = 4 Value = 2 Value = 1

Controller Status and Address
Least Significant Bit

Bit 2
1

Bit 1
1

Bit 0

Primary Address of Interface

Value ~ 161 Value ~ 8 1 Value ~ 4 1 Value ~ 2 1 Value ~ 1

Set My Address
Least Significant Bit

Bit 4
1

Bit 3
1

Bit 2
1

Bit 1
1

Bit 0

Primary Address

,

Value ~ 161 Value ~ 8 1 Value ~ 4 1 Value ~ 2 1 Value ~ 1

Status Register 4
Most Significant Bit

Bit 15 Bit 14

Parallel
Active Poll

Controller Configuration
Change

Value = Value =
-32768 16384

Bit 7 Bit 6

Trigger Handshake
Received Error

Value = 128 Value = 64

Status Register 5
Most Significant Bit

Bit 15 Bit 14

Parallel
Active Poll

Controller Configuration
Change

Value = Value =
-32768 16384

Bit 7 Bit 6

Trigger Handshake
Received Error

Value = 128 Value = 64

Bit 13 Bit 12

My Talk My Listen
Address Address

Received Received

Value = Value =
8192 4096

Bit 5 Bit 4

Unrecognized
Secondary

Universal
Command

Command
While

Addressed

Value = 32 Value = 16

Bit 13 Bit 12

My Talk My Listen
Address Address
Received Received

Value = Value =
8192 4096

Bit 5 Bit 4

Unrecognized
Secondary

Universal
Command

Command
While

Addressed

Value = 32 Value = 16

HP-IB Interface 10-25

Interrupt Status

Bit 11 Bit 10 Bit 9 Bit 8

Remote/
Talker/

EOI Listener
Received

SPAS Local
Address

Change
Change

Value = Value = Value = Value =
2048 1 024 512 256

Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit 0

Unrecognized
Clear

Addressed
SRO IFC

Received
Command

Received Received

Value = 8 Value = 4 Value = 2 Value = 1

Interrupt Enable Mask

Bit 11 Bit 10 Bit 9 Bit 8

Remote/
Talker/

EOI Listener
Received

SPAS Local
Address

Change
Change

Value = Value = Value = Value =
2048 1 024 512 256

Least Significant Bit

Bit 3 Bit 2 Bit 1 Bit 0

Unrecognized
Clear

Addressed
SRO IFC

Received
Command

Received Received

Value = 8 Value = 4 Value = 2 Value = 1

10-26 HP-IB Interface

Status Register 6
Most Significant Bit

Bit 15 Bit 14

REM LLO

Value = Value =
- 32768 163,84

Bit 7 Bit 6

System Active
Controller Controller

Bit 13 Bit 12

ATN LPAS
True

Value = Value =
8192 4096

Bit 5 Bit 4

0

Interface Status

Bit 11 Bit 10 Bit 9 Bit 8

TPAS LADS TAOS *

Value = Value = Value = Value =
2048 1 024 512 256

Least Significant Bit

1
Bit 3

1
Bit 2

1
Bit 1

1
Bit 0

Primary Address of Interface

Value = 128 Value = 64 Value = 32 Value ~ 161 Value ~ 8 1 Value ~ 4 1 Value ~ 2 I Value ~ 1

* Least-significant bit of last address recognized

Status Register 7
Most Significant Bit

Bit 15 Bit 14 Bit 13 Bit 12

ATN OAV NOAC* NRFO*
True True True True

Value = Value = Value = Value =
-32768 16384 8192 4096

Bit 7 Bit 6 Bit 5 Bit 4

0108 0107 0106 0105

Value = 128 Value = 64 Value = 32 Value = 16

* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.

Status Register 8
Most Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4

Value = 128 Value = 64 Value = 32 Value = 16

Bit 11

EOI
True

Value =
2048

Bit 3

0104

Value = 8

Bit 3

Value = 8

Bus Control and Data Lines

Bit 10 Bit 9 Bit 8

SRO** IFC REN
True True True

Value = Value = Value =
1 024 512 256

Least Significant Bit

Bit 2 Bit 1 Bit 0

0103 0102 0101

Value = 4 Value = 2 Value = 1

Unrecognized Command
Least Significant Bit

Bit 2 Bit 1 Bit 0

Value = 4 Value = 2 Value = 1

HP-IB Interface 10-27

Summary of HP-IB IOREAD--BYTE and
IOWRITE--BYTE Registers

IOREAD Registers
Register 1 - Card Identification
Register 3 - Interrupt and DMA Status
Register 5 - Controller Status and Address
Register 17 - Interrupt Status 0 1

Register 19 - Interrupt Status 11
Register 21 - Interface Status
Register 23 - Control-Line Status
Register 29 - Command Pass-Through
Register 31 - Data-Line Status 1

HP IOREAD_BYTE Register 1 Card Identification
Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Future Use
Jumper 0 0 0 0 0 0
Installed

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2

Bit 7 is set (I) if the "future use" jumper is installed and clear (O) if not.

Bits 6 through 0 constitute a card identification code (= 1 for all HP-IB cards).

Note
This register is only implemented on external HP-IB cards. The inter­
nal HP-IB, at interface select code 7, "floats" this register (Le., the
states of all bits are indeterminate).

Bit 0

1

Value = 1

HP-IB IOREAD_BYTE Register 3
Most Significant Bit

Interrupt and DMA Status
Least Significant Bit

Bit 7 Bit 6 Bit 5
1

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Interrupt Interrupt Interrupt
X X DMA1 DMA0

Enabled Request Level

Value = 128 Value =,64 Value ~ 321 Value ~ 16 Value = 8 Value = 4 Value = 2 Value = 1

1 Indicates that an IOREAD_BYTE operation will change the state of the interface.

10-28 HP-IB Interface

Bit 7 is set (1) if interrupts are currently enabled.

Bit 6 is set (1) when the card is currently requesting service.

Bits 5 and 4 constitute the card's hardware interrupt level (a switch setting on all external cards,
but fixed at level 3 on the internal HP-IB).

Bit 5 Bit 4 Hardware Interrupt
Level

0 0 3
0 1 4
1 0 5
1 1 6

Bits 3 ilnd 2 are not used (indeterminate).

Bit 1 is set (1) if DMA channel one is currently enabled.

Bit 0 is set (1) if DMA channel zero is currently enabled.

Note
Bits 7, 5, 4, 3, 2, and 1 are not implemented on the internal HP-IB
(interface select code 7).

HP-IB IOREAD_BYTE Register 5
Most Significant Bit

Controller Status and Address
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4
1

Bit 3
1

Bit 2
1

Bit 1
1

Bit 0

System
Not

HP-IB Primary Address of Interface II

Controller
Active X

(MSB) (LSB)
Controller

Value = 128 Value = 64 Value = 32 Value = 161 Value = 8 1 Value = 4 1 Value = 2 1 Value = 1

Bit 7 is set (1) if the interface is the System Controller.

Bit 6 is set (1) if the interface is not the current Active Controller and clear (0) if it is the Active
Controller.

Bit 5 is not used.

Bits 4 through 0 contain the card's Primary Address switch setting. The following bit patterns
indicate the specified addresses.

HP-IB Interface 10-29

Bit Primary
43210 Address

00000 0
00001 1

1 1 101 29
1 1 110 30
1 1 111 (not allowed)

Note
Bits 5 through 0 are not implemented on the internal HP-IB.

HP-IB IOREAD_BYTE Register 17
Most Significant Bit

MSB of Interrupt Status
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MSB LSB Byte
Ready

End
Remote/ My

Interrupt Interrupt Received
for Next

Detected
SPAS Local Address

Byte Change Change

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Bit 7 set (1) indicates that an interrupt has occurred whose cause can be determined by reading
the contents of this register.

Bit 6 set (1) indicates that an interrupt has occurred whose cause can be determined by reading
Interrupt Status Register 1 (I0READ_BYTE Register 19).

Bit 5 set (1) indicates that a data byte has been received.

Bit 4 set (1) indicates that this interface is ready to accept the next data byte.

Bit 3 set (1) indicates that an End (EOI with ATN = 0) has been detected.

Bit 2 set (1) indicates that the Serial-Poll-Active State has been entered.

Bit 1 set (1) indicates that a Remote/Local State change has occurred.

Bit 0 set (1) indicates that a change in My Address has occurred.

10-30 HP-IB Interface

HP-IB IOREAD_BYTE Register 19
Most Significant Bit

LSB of Interrupt Status
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Unrecognized
Secondary My Address

Trigger Handshake Command
Command Clear Received SRQ IFC

Received Error Group. While Received (MLAorMTA) Received Received
Addressed

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Bit 7 set (1) indicates that a Group Execute Trigger command has been received.

Bit 6 set (1) indicates that an Incomplete-Source-Handshake error has occurred.

Bit 5 set (1) indicates that an unidentified command has been received.

Bit 4 set (1) indicates that a Secondary Address has been sent in while in the extended­
addressing mode.

Bit 3 set (1) indicates that the interface has entered the Device-Clear-Active State.

Bit 2 set (1)·· indicates that My Address has been received.

Bit 1 set (1) indicates that a Service Request has been received.

Bit 0 set (1) indicates that the Inteface Clear message has been received.

HP-IB IOREAD_BYTE Register 21
Most Significant Bit

Interface Status
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

ATN
REM LLO

True
LPAS TPAS LADS

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4

Bit 7 set (1) indicates that this Interface is in the Remote State.

Bit 6 set (1) indicates that this interface is in the Local Lockout State.

Bit 5 set (1) indicates that the A TN signal line is true.

Bit 1

TADS

Value = 2

Bit 4 set (1) indicates that this interface is in the Listener-Primary-Addressed State.

Bit 3 set (1) indicates that this interface is in the Talker-Primary-Addressed State.

Bit 2 set (1) indicates that this interface is in the Listener-Addressed State.

Bit 1 set (1) indicates that this interface is in the Talker-Addressed State.

Bit 0

LSB of
Last

Address

Value = 1

Bit 0 set (1) indicates that this is the least -significant bit of the last address recognized by this
interface.

HP-IB IOREAD_BYTE Register 23
Most Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4

ATN OAV NOAC* NAFO*
True True True True

Value = 128 Value = 64 Value = 32 Value = 16

*Only if addressed to TALK, else not valid.
**Only if Active Controller, else not valid.

Bit 3 Bit 2

EOI SAO**
True True

Value = 8 Value = 4

HP-IB Interface 10-31

Control-Line Status
Least Significant Bit

Bit 1 Bit 0

IFC AEN
True True

Value = 2 Value = 1

A set bit (1) indicates that the corresponding line is currently true; a 0 indicates that the line is
currently false.

HP-IB IOREAD_BYTE Register 29
Most Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4

0108 0107 0106 0105

Value = 128 Value = 64 Value = 32 Value = 16

Bit 3

0104

Value = 8

Bit 2

0103

Command Pass-Through
Least Significant Bit

Bit 1 Bit 0

0102 0101

Value = 4 Value = 2 Value = 1

This register can be read during a bus holdoff to determine which Secondary Command has
been detected.

HP-IB IOREAD_BYTE Register 31
Most Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4

0108 0107 0106 0105

Value = 128 Value = 64 Value = 32 Value = 16

Bit 3 Bit 2

0104 0103

Value = 8 Value = 4

Bus Data Lines
Least Significant Bit

Bit 1 Bit 0

0102 0101

Value = 2 Value = 1

A set bit (1) indicates that the corresponding HP -IB data line is currently true; a 0 indicates the
line is currently false.

10-32 HP-IB Interface

HP-IB IOWRITE_BYTE Registers
Register 3 - Interrupt Enable
Register 1 7 - MSB of Interrupt Mask
Register 19 - LSB of Interrupt Mask
Register 23 - Auxiliary Command Register
Register 25 - Address Register
Register 27 - Serial Poll Response
Register 29 - Parallel Poll Response
Register 31 - Data Out Register

HP-IB IOWRITE_BYTE Register 3
Most Significant Bit

Bit 7 Bit 6 Bit 5

Enable
X X

Interrupt

Bit 4

X

Value = 128 Value = 64 Value = 32 Value = 16

Bit 3 Bit 2

X X

Value = 8 Value = 4

Interrupt Enable
Least Significant Bit

Bit 1 Bit 0

Enable Enable
Channel 1 Channel 0

Value = 2 Value = 1

Bit 7 enables interrupts from this interface if set (1) and disables interrupts if clear (0).

Bits 6 through 2 are "don't cares" (Le., their values have no effect on the interface's opera­
tion).

Bit 1 enables DMA channell if set (1) and disables if clear (0).

Bit 0 enables DMA channel 0 if set (1) and disables if clear (0).

Note
Bits 7 through 1 are not implemented on the internal HP-IB interface
and thus have no effect on the interface's operation.

IOWRITE_BYTE Register 17 MSB of Interrupt Mask
Setting a bit of this register enables an interrupt for the specified condition. The bit assignments
are the same as for the MSB of Interrupt Status Register (lOREAD Register 17), except that bits
7 and 6 are not used.

IOWRITE_BYTE Register 19 LSB of Interrupt Mask
Setting a bit of this register enables an interrupt for the specified condition. The bit assignments
are the same as for the LSB of Interrupt Status Register (lOREAD Register 19).

HP-IB Interface 10-33

HP-IB IOWRITE_BYTE Register 23 Auxiliary Command Register
Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4
1

Bit 3
1

Bit 2
1

Bit 1
1

Bit 0

Set X X Auxiliary Command Function

Value = 128 Value = 64 Value = 32 Value ~ 161 Value ~ 8 1 Value ~ 4 1 Value ~ 2 1 Value ~ 1

Bit 7 is set (1) for a Set operation and clear (0) for a Clear operation.

Bits 6 and 5 are "don't cares".

Bits 4 through 0 are Auxiliary-Command-Function-Select bits. The following commands can
be sent to the interface by sending the specified numeric values.

Decimal
Value

o
128

1

129

2
130

3
131

4
132

5
133

6

134

7
135

8
136

9
137

10
138

Clear Chip Reset.
Set Chip Reset.

Description of
Auxiliary Command

Release ACDS holdoff. If Address Pass Through is set, it indicates an invalid second­
ary has been received.
Release ACDS holdoff; If Address Pass Through is set,. indicates a valid secondary
has been received.

Release RFD holdoff.
Same command as decimal 2 (above).

Clear holdoff on all data.
Set holdoff on all data.
Clear holdoff on EOI only.

Set holdoff on EOI only.

Set New Byte Available (nba) false.
Same command as decimalS (above).

Pulse the Group Execute Trigger line, or clear the line if it was set by decimal
command 134.
Set Group Execute Trigger line.

Clear Return To Local (rtl).
Set Return To Local (must be cleared before the device is able to enter the Remote
state).

Causes EOI to be sent with the next data byte.
Same command as decimal 8 (above).

Clear· Listener State (also cleared by decimal 138).
Set Listener State.

Clear Talker State (also cleared by decimal 137).
Set Talker State.

(Continued)

10-34 HP-IB Interface

Decimal
Value

11
139

12
140

13
141

14
142

15
143

16
144

17

145

18

146

19
147

20
148

21
149

22
150

Description of
Auxiliary Command

Go To Standby (gts; controller sets ATN false).
Same command as decimal 11 (above).

Take Control Asynchronously (tea; ATN true).
Same command as decimal 12 (above).

Take Control Synchronously (tcs; A TN true).
Same command as decimal 13 (above).

Clear Parallel Poll.
Set Parallel Poll (read Command-Pass-Through register before clearing).

Clear the Interface Clear line (IFC).
Set Interface Clear (lFC maintained> 100 jJ.s).

Clear the Remote Enable (REN) line.
Set Remote Enable.

Request control (after TCT is decoded, issue this to wait for ATN to drop and receive
control) ..
Same command as decimal 17 (above).

Release control (issued after sending TCT to complete a Pass Control and set A TN
false).
Same command as decimal 18 (above).

Enable all interrupts.
Disable all Interrupts.

Pass Through next Secondary Command.
Same command as decimal 20 (above).

Set Tl delay to 10 clock cycles (2 jJ.S at 5 MHz).
Set Tl delay to 6 clock cycles (1.2 jJ.S at 5 MHz).

Clear Shadow Handshake.
Set Shadow Handshake.

HP-IB Interface 10-35

HP-IB IOWRITE_BYTE Register 25
Most Significant Bit

Address Register
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4
1

Bit 3
1

Bit 2
1

Bit 1

Enable
Disable Disable

Dual
Listen Talker

Primary Address
Addressing

Value = 128 Value = 64 Value = 32 Value = 161 Value = 8 1 Value = 4 1 Value = 2

Bit 7 set (1) enables the Dual-Primary-Addressing Mode.

Bit 6 set (1) invokes the Disable-Listen function.

Bit 5 set (1) invokes the Disable-Talker function

1
Bit 0

1 Value = 1

Bits 4 through 0 set the device's Primary Address (same address bit definitions as READIO
Register 5).

HP-IB IOWRITE_BYTE Register 27
Most Significant Bit

Serial Poll Response Byte
Least Significant Bit

Bit 7 Bit 6 Bit 5
1

Bit 4
1

Bit 3
1

Bit 2
1

Bit 1

Device
Request

Dependent Device-Dependent Status
Status

Service

Value = 128 Value = 64 Value = 321 Value = 161 Value = 8 1 Value = 4 1 Value = 2

Bits 7 and 5-0 specify the Device-Dependent Status.

Bit 6 sends an SRQ if set (1).

Note
Given an unknown state of the Serial Poll Response Byte, it is neces­
sary to write the byte with bit 6 set to zero followed by a write of the
byte with bit 6 set to the desired final value. This will insure that a
SRQ will be generated if one was desired.

1
Bit 0

1 Value = 1

10-36 HP-IB Interface

HP-IB IOWRITE_BYTE Register 29
Most Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4

0108 0107 0106 0105

Value = 128 Value = 64 Value = 32 Value = 16

Bit 3 Bit 2

0104 0103

Value = 8 Value = 4

Parallel Poll Response
Least Significant Bit

Bit 1 Bit 0

0102 0101

Value = 2 Value = 1

A 1 sets the appropriate bit true during a Parallel Poll; a 0 sets the corresponding bit false.
Initially, and when Parallel Poll is not configured, this register must be set to all zeros.

HP-IB IOWRITE_BYTE Register 31
Most Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4

0108 0107 0106 0105

Value = 128 Value = 64 Value = 32 Value = 16

Bit 3 Bit 2

0104 0103

Value = 8 Value = 4

Data-Out Register
Least Significant Bit

Bit 1 Bit 0

0102 0101

Value = 2 Value = 1

HP-IB Interface 10-37

Summary of Bus Sequences
The following tables show the bus activity invoked by executing HP-IB statements and func­
tions. The mnemonics used in these tables were defined in the previous section of this chapter.

Note that the bus messages are sent by using single lines (such as the ATN line) and multi-line
commands (such as DCL). The information shows the state of and changes in the state of the
ATNline during these bus sequences. The tables implicitly show that these changes in the
state of A TN remain in effect unless another change is explicitly shown in the table. For
example, if a statement sets ATN (true) with a particular command, it remains true unless the
table explicitly shows that it is set false (ATN). The ATN line is implemented in this manner to
avoid unnecessary transitions in this signal whenever possible. Itshould not cause any dilemmas
in most cases.

ABORT_HPIB

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

IFC (duration ATN
Active ~100~sec) MTA

Controller REN UNl
ATN ATN

Error Error

IFC (duration
Not Active ~100 ~sec)* No
Controller REN Action

ATN

* The IFC message allows a non-active controller (which is the system controller) to become the active controller.

CLEAR
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN

Active ATN
MTA ATN

MTA
UNl UNl

Controller DCl lAG
DCl

lAG
SDC SOC

Not Active Error
Controller

10-38 HP-IB Interface

LOCAL
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN

, Active REN
MTA

ATN
MTA

" Controller ATN UNL
GTL

UNL
LAG LAG

.' GTL GTL

. ,:1" ", " \

, Not Active REN
Error Error

Controller

LOCAL_LOCKOUT
System Controller Not System Controller

:' Interface Select Primary Addressing Interface Select Primary Addressing
\ ' Code Only Specified Code Only Specified

Active ATN
Error

ATN
Error

Controller LLO LLO

Not Active Error
Controller

PASS_CONTROL

,System Controller Net System Controller
Interface Select Primary Addressing Interface Select Primary Addressing

Code Only Specified Code Only Sj>ecified

ATN ATN ATN ATN
Active TCT UNL TCT UNL

Controller ATN I' TAG ATN TAG
TCT TCT
ATN ATN

~

Not Active
Error

Controller
'v.

HP-IB Interface 10-39

PPOLL
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN & EOI ATN & EOI
(duration~25ILs) (duration~25ILs)

Active Read byte
Error

Read byte
Error

Controller EOI EOI
Restore A TN to Restore A TN to
previous state previous state

Not Active
Error

Controller

PPOLL_CONFIGURE
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
MTA MTA

Active
Error

UNL
Error

UNL
Controller LAG LAG

PPC PPC
PPE PPE

Not Active Error
Controller

PPOLL_UNCONFIGURE
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified·

ATN ATN
MTA MTA

Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG

PPC PPC
PPD PPD

Not Active Error
Controller

10-40 HP-IB Interface

REMOTE

System Controller Not System Controller
Interface Select Primary Addressing Interface Select I Primary Addressing

Code Only Specified Code Only Specified

REN

Active
ATN

REN MTA Error
Controller

ATN UNL
LAG

Not Active
REN Error Error Controller

SPOll

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
UNL UNL
MLA MLA
TAD TAD

Active
Error

SPE
Error

SPE
Controller ATN ATN

Read data Read data
ATN ATN
SPD SPD
UNT UNT

Not Active
Error

Controller

TRIGGER
System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN

Active ATN UNL ATN
MTA

Controller GET LAG GET
UNL

GET LAG
GET

Not Active
Error

Controller

The Datacomm Interface
Chapter

11

Introduction
The HP 98628 Data Communications Interface enables your desktop computer to communi­
cate with any device that is compatible with standard asynchronous or HP Data Link data
communication protocols. Devices can include various modems or link adapters, as well as
equipment with standard RS-232C or current loop links.

This chapter discusses both asynchronous and Data Link protocols, and programming techni­
ques. Subject areas that are similar for both protocols are combined, while information that is
unique to one protocol or the other is separated according to application.

Prerequisites
It is assumed that you are familiar with the information presented in Data Communication
Basics (98046-90005), and that you understand data communication hardware well enough to
determine your needs when configuring the datacomm link. Configuration parameters include
such items as half/full duplex, handshake, and timeout reqUirements. If you have any questions
concerning equipment installation or interconnection, consult the appropriate interface or
adapter installation manuals.

The datacomm interface supports several cable and adapter options. They include:

• RS-232C Interface cable and connector wired for operation with data communication
equipment (male cable connector) or with data terminal equipment (female cable con­
nector).

• HP 13264A Data Link Adapter for use in HP 1000- or HP 3000-based Data Link network
applications

• HP 13265A Modem for asynchronous connections up to 300 baud, including built-in
autodial capability!.

• HP 13266A Current Loop Adapter for use with current loop links or devices.

Some of the information contained in this chapter pertains directly to certain of these devices in
specific applications.

1 The HP 13265A modem is compatible with Bell 103 and Bell 113 Modems, and is approved for use in the USA and Canada. Most other
countries do not allow use of user-owned modems. Contact your local HP Sales and Service office for information about local regulations.

11-1

11-2 Datacomm Interface

Before you begin datacomm operation, be sure all· interfaces, cables, connectors, and equip­
ment have been properly plugged in; Power must be on for all devices that are to be used.
Consult applicable installation manuals if necessary.

Protocol
Two protocols are switch selectable on the datacomm interface. They are also software select­
able during normal program operation. The switch setting on the interface determines the
default protocol when the computer is first powered up. Protocol is changed between Async
and Data Link during program operation by selecting the new protocol, waiting for the message
to reach the card, then resetting the card. The exact procedure is explained in the IOCONTROL
register operations section of this chapter.

Asynchronous Communication Protocol
Asynchronous data communication is the most widely used protocol, especially in applications
where high data integrity is not mandatory. Data is transmitted, one character at a time, with
each character being treated as an individual message. Start and stop bits are used to maintain
timing coordination between the receiver and transmitter. A parHy bit is sometimes included to
detect character transmission errors.Asynchronous character format is as follows: Each charac­
ter consists of a start bit, 5 to 8 data bits, an optional parity bit, and 1, 1.5, or 2 stop bits, with an
optional time gap before the beginning of the next character. The total time from the beginning
of one start bit to the beginning of the next is called a character frame.

Parity options include:

• NONE No parity bit is included.

• ODD Parity set if EVEN number of "1"s in character bits.

• EVEN Parity set if ODD number of "1"s in character bits.

• ONE Parity bJt is set for all characters.

• ZERO Parity bit is zero for all characters.

Here is a simple diagram showing the structure of an asynchronous character and its rela­
tionship to previous and succeeding characters:

~ '"r------'-.-

Preceding
Character

Line in Start
Idle State Bit

o o o o Parity
Bit

Stop
Bit

(Mark) ~------- Single Character Frame -------~

Beginning of
Character

End of
Character

Start Bit
for Next
Character

Datacomm Interface 11-3

Data Link Communication Protocol
Data Link protocol overcomes the data integrity limitations of Async by handling data in blocks.
Each block is transmitted as a stream of individual asynchronous characters, but protocol
control characters and block check characters are also transmitted with the data. The receiver
uses the protocol control characters to determine block boundaries and data format. Block
check characters are used to detect transmission errors. If an error occurs, the block is retrans­
mitted until it is successfully received. Block protocol and format is similar to Binary Synchro­
nous Communication (BSC or Bisync, for short).

Data Link protocol provides for two transmission modes: Transparent, and Normal. In transpa­
rent mode, any data format can be transferred because datacomm control characters are
preceded by a DLE character. If a control character is sent without an accompanying DLE, it is
treated as data. When normal mode is used, only ASCII data can be sent, and datacomm
control characters are not allowed in the data stream. The HP 1000 and HP 3000 computers
usually transmit in transparent mode. All transmissions from your desktop computer are sent as
transparent data. If your application involves non-ASCII data transfers (discussed later in this
chapter), ,be sure the HP 1000 or HP 3000 network host is using transparent mode for all
transmissioT)s to your computer.

Each data block sent to the network host by the datacomm interface is structured as follows:

~start of Block

"-..-'
2

text (data) :

3

End of BIOCk~

... ~
4 5

1. The "start transmission" control characters identify the beginning of valid data. If a OLE is
present, the data is transparent; If absent, data is normal. All data from your desktop compu­
ter is transparent.

2. The terminal identification characters are included in blocks sent to the network host. Blocks
received from the network host do not contain these two characters.

3. Data characters aretransmited in succession with no time lapse between characters.
4. The "end transmission" control characters identify the end of data. OLE ETX or OLE ETB

indicate transparent data. ETX or ETB indicates normal data.
5. Block check characters (usually two characters) are used to verify data integrity. If the value

received does not match the value calculated by the receiver, the entire block is rejected by
the receiver. Block check includes GID and DID characters in transmissions to the network
host.

Protocol control characters are stripped from the data transfer, and are not passed from the
interface to the computer. For information about network polling, terminal selection and other
Data Link operations, consult the Data Link network manuals supplied with the HP 1000 or HP
3000 network host computer.

11-4 Datacomm Interface

Data Transfers Between Computer and Interface
Data transfers between your desktop computer and its datacomm interface involve two mes­
sage types: control blocks, and data. Both types are encountered in both output and input
operations as follows:

• Outbound control blocks are created by IOCONTROL procedures.

• Outbound data messages are created by the output procedures.

• Inbound control blocks are created by certain protocol operations such as Data Link block
boundaries, or Async prompt, end-of-line, parity/framing error, or break detection.

• Inbound data messages are created by the interface as messages are received from the
remote. They are transferred to the Pascal programs via the input procedures.

Outbound Control Blocks
Outbound control blocks are messages from your computer to the datacomm interface that
contain interface control information. They are usually generated by IOCONTROL procedures,

, although TRANSFER_END creates a control block that terminates a given Async transmission
or forces a block to be sent on the Data Link. Outbound cpntrol blocks are serially queued with
data. An exception to the queued control block rule is output to Control Register 0 (qud reset)
which is executed immediately.

Note
When an interface card reset is executed ,by use of a IOCONTROL
procedure, the control block that results is transmitted directly to the
interface. It is not queued up, so any previously queued data and
control blocks are destroyed. To prevent loss of data, be sure that all
queued messages have been sent before resetting the datacomm
interface. IOStatus Register 38 returns a value of 1 when the out­
bound queue is empty. Otherwise, its value is O. To prevent loss of
inbound data, IOStatus Register 5 must return a value of zero prior
to reset.

Inbound Control Blocks
Inbound control blocks are messages from the interface to the computer that identify protocol
control information. Which item(s) are allowed to create a control block is determined by the
contents of IOControl Register 14. IOStatus Registers 9 and 10 identify the' contents of the
block, and IOControl Register 24 defines what protocol characters are also included with
inbound Async data messages. Refer to the IOControl and IOStatus Register section at the' end
of this chapter for details about register contents for various control block types.

Datacomm Interface 11-5

Two types of information are contained in each control block: Type and Mode. The TYPE is
contained in IOSTATUS register 9; the MODE in IOSTATUS register 10. Type and Mode
values can be used to interpret datacomm operation as follows:

Type

254
254
2532

Type

250
251
251
251
252
253

Mode

1
2

Async Protocol Control Blocks

Mode Interpretation

1
II
21
31
1
1

Break received (channel A).
Framing error in the following character.
Parity error in the following character.
Both Framing and Parity error in the following character.
End-of-line terminator detected.
Prompt received from remote.

Data Link Protocol Control Blocks

Interpretation .

Preceding block terminated by ETB character.
Preceding block terminated by ETX character.
(See following table for Mode interpretation.)

Mode Bit(s) Interpretation

a

2,1

3

1 = Transparent data in following block.
a = Normal data in following block.

00 = Device Select (most common).
01 = Group Select
10= Line Select

1 = Command Channel
a = Data Channel

For Data Link applications, control blocks are normally set up for end-of-block (ETB or ETX).
Control blocks are then used to terminate TRANSFER_END operation, or are trapped via an
110 escape. Control block contents are not important for most applications unless you are doing
sophisticated protocol-control programming.

For Async applications, terminal emulator programs usually use prompt and end-of-line control
blocks. Use of other functions such as break or error detection depend on the requirements of
the individual application.

1 Parity/framing error control blocks are not generated when characters with parity and/or framing errors are replaced by an underscore (_)
character.

2 This type is used mainly in specialized applications. In most cases, you can expect a Mode value of zero or one for Type 253 Data link control
blocks. For most Data link applications, control blocks are not used by programmers.

11-6 Datacomm Interface

Outbound Data Messages
Outbound data messages are created when an output procedure is executed. Here is a short
summary of how output parameters can affect datacomm operation .

• Async protocol: Data is transmitted directly from the outbound queue. When operating in
half-duplex, TRANSFER_END causes the interface to turn the_line around and'allow the
remote device to send information back (line turn-around is initiated when the interface
sets the Request-to-send line low). TRANSFER_END has no effect when operating in full
duplex .

• Data Link protocol: Data messages are concatenated until at least 512 characters are
available,' then a block of 512 characters is sent. Block boundaries mayor may not
coincide with the end of a given output message.
You can force transmission of shorter blocks by using the TRANSFER_END procedure.
The interface then transmits the last pending block regardless of its length. This technique
is useful for ensuring that block boundaries coincide with message boundaries, or for
sending one message string per block when you are transmitting short records.

Inbound Data Messages
Inbound data messages are created by the datacomm interface as information is received from
the remote. Input procedures are terminated when a control block is encountered or the input
variable is filled. Whether control characters are included in the data stream depends on the
configuration of Control Register 24 (Async operation only). Control information is never
included in inbound data messages when using Data Link protocol.

With this brief introduction to the data communications capabilities of the HP 98628 Data­
comm Interface, you are· ready to begin programming your desktop computer for datacomm
operation. The next section of this chapter introduces Pascal datacomm programming techni­
ques.

Datacomm Interface 11-7

Overview of Datacomm Programming
Your desktop computer uses several 110 Library facilities for data communication with various
computers, terminals, and other peripheral devices. Datacomm programs will include part or all
of the following elements:

• Input procedures (including transfers)

• Output procedures (including transfers)

• 10STATUS functions

• 10CONTROL procedures

• High level control procedures.

The input and output procedures are described in the previous chapters. Later sections of this
chapter discuss the 10STATUS and 10CONTROL operations. The 110 Library provides several
high level control procedures to set up the serial interface card and its parameters. These
procedures are in the module SERIAL_3 and consist of the following procedures. Note that
these procedures are for ASYNC operations ONLY.

Set Baud Rate
This procedure will set the interface baud rate. It is of the form:

SET _BAUD_RATE (i sc t rate);

The rate is a real expression with the range of 0 through 19 200.

Set Stop Bits
This procedure will set the number of stop bits on the interface. The procedure is of the form:

The number of bits is a real expression with valid values of 1, 1.5 and 2.

Set Character Length
This procedure will set the number of bits in a character on the specified interface. The proce­
dure is of the form:

The number of bits is an integer expression with valid values of 5,6, 7, and 8 bits per character.

Set Parity
This procedure sets the parity mode of the specified interface. The procedure is of the form:

SET_PARITY (isc t parity);

11-8 Datacomm Interface

The parity parameter is an enumerated type with the following values:

no_parity
odd_parity
even_parity
zero_parity
one_parity

Example Terminal Emulator
The following program is a very simple terminal emulator. It uses overlap transfers to bring data
into the computer and uses handshake 110 to send data from the computer. This is not a
supported product - merely an example program.

$SYSPROG ON$
$UCSD ON$
$DEBUG ON$

PROGRAM TERMINAl(INPUT.OUTPUT.KEYBOARD);

IMPORT iodeclarations.
general_O.
general_i.
general_2.
general_3.
general_4.
serial_O.
serial_3;

CONST MYSC
bufsize
kbdunit

VAR i

BEGIN

TRY

Mybuf
bufchar
oldbufchar
kbdchar
half_duplex
auto_If

ioinitialize;

iocontrol
iocontrol
iocontrol
iocontrol

20;
1000;
2 ;
INTEGER;
bl.lf_info_t~'pe ;
CHAR;
CHAR;
CHAR;
BOOLEAN;
BOOLEAN;

(M~'SC .22.0); {no protocol}
(MYSC .23.0); {no handshake}
(Mysc.24d27);{ pass all chars}
(M~'SC .28.0); {card EOl = none}

set_baud_rate (MYSC .24(0);
set_parit~' (M~'SC .odd_parity);
set_char_Iength(IIlYsc .7);
set_stoP_bits (MYSC d);

iocontrol (MYSC .8,63); {set all ModeM lines}

iocontrol (MYSC .12.1); {connect the card}

half_duplex := TRUE
auto_If := TRUE

ioblJffer(rllyblJf ,blJfsize);
t ran s fer (rll)' s c '01.1 e r I a p , t 0 _ rll e III 0 r}' ,Ill}' b 1.lf ,b 1.1 f s i z e) ;

WRITELN('TERMINAL EMULATOR READY');

REPEAT
IF NOT (UNITBUSY(kbdlJnit)

THEN BEGIN
IF EOLN(keyboard)

THEN BEGIN
READ (key boa r d ,k b d c h a r) ;
kbdchar := io_carria~e_rtn;

END
ELSE BEGIN

READ(keyboard ,kbdchar);
END; { of IF EOLN }

IF half_dlJplex
THEN BEGIN

WRITE(.,bdchar) ;
END;

IF alJto_lf AND (kbdchar = io_carria~e_rtn
THEN BEGIN

I,Hitechar(rll}'SC d,bdchar);
kbdchar := io_line_feed;

END;
l ritechar(rllySC d,bdchar);

END;

IF blJffer_data(lIlyblJf) <> 0
THEN BEGIN

oldblJfchar := blJfchar;
readbllffe r(rll}'bl.lf ,blJfchar);
IF blJfchar = io_line_feed

THEN BEGIN
IF oldblJfchar

THEN BEGIN
{ nothin~ }

END
ELSE BEGIN

WRITE(io_carria~e_rtn) ;
END;

END;

END
ELSE BEGIN

WRITE(blJfchar) ;
END;

IF (NOT isc_blJsY(MYSC)) AND (blJffer_data(lIlybuf) = 0)
THEN BEGIN

transfer(rll}'sc ,ol.lerlap,to_rllelllor}' /lIl}'blJf ,blJfsize);
END;

UNTIL FALSE;

RECOl.IER BEG I N

PAGE (OlJtPlJt) ;
WRITELN;
WRITELN('escape code: ',escapecode);
IF ESCAPECODE=ioescapecode

THEN BEGIN
WRITELN('sorlle liD problefll has occlJrred');
WRITELN(ioerror_lIlessa~e(ioe_reslJlt)) ;
WRITELN('on select code' tioe_isc:lI);

END
ELSE BEGIN

IF ESCAPECODE<>-20
THEN BEGIN

WRITELN('sollle non-li~ problelll has occlJrred');
END
ELSE BEGIN

continued

Datacomm Interface 11-9

11,.10 Datacomm Interface

END;

WRITELN('stop key pressed');
END;

ESCAPE(ESCAPECDDE);

END;

END.

Establishing the Connection
Determining Protocol and Link Operating Parameters
Before information can be successfully transferred between two devices, a communication link
must be established. You must include the necessary protocol parameters to ensure compatibil­
ity between the communicating machines. To determine the proper parameters for your ap­
plication, select Async or Data Link protocol, then answer the following questions:

For BOTH Async and Data Link Operation:
• Is a modem connection being used? What handshake provisions are required? (Data Link

does not use modems, but multi-point Async modem connections use a protocol compati­
ble with Data Link.)

• Is half-duplex or full-duplex line protocol being used?

For Async Operation ONLY:
• What line speed (baud rate) is being used for transmitting?

• What line speed is being used for receiving?

• How many bits (excluding start, stop, and parity bits) are included in each character?

• What parity is being used: none, odd, even, always zero, or always one?

• How many stop bits are required on each character you transmit?

• What line terminator should you use on each outgoing line?

• How much time gap is required between characters (usually a)?

• What prompt, if any, is received from the remote device when it is ready for more data?

• What line terminator, if any, is sent at the end of each incoming line?

For Data Link Operation ONLY:
• What line speed (baud rate) is being used? (Data Link uses the same speed in both

directions.)

• What parity is being used: none (HP 1000 network host), or odd (HP 3000 network
host)?

• What is the device Group IDentifier (GID) and Device IDentifier (DID) for your terminal?

• What is the maximum block length (in bytes) the ,network host can accept from your
terminal?

All these parameters are configured under program control by use of IOCONTROL procedures.
Alternately, default values for line speed, modem handshake, parity, and Async or Data Link
protocol selection can be set using the datacomm interface configuration switches. Other de­
fault parameters are preset by the datacomm interface to accommodate common configura­
tions. You can use the defaults, or you can override them with IOCONTROL procedures for
program clarity and immunity to card settings. Default IOControl Register values are shown in

Datacomm Interface 11-11

the IOCONTROL and lOST A TUS register tables in the back of this chapter. The HP 98628
Datacomm Interface Installation manual explains how to set the default switches on the interface.

The next section of this chapter shows a summary of the available default options and switch
settings for both Async and Data Link.

Using Defaults to Simplify Programming
The datacomm interface includes two switch clusters. One cluster is used to program the select
code and interrupt level. The other cluster sets defaults for protocol, line speed (baud rate),
modem handshake, and parity. Setting the defaults on the card eliminates the need to program
the corresponding interface IOCONTROL registers. These defaults are useful in applications
where the configuration of the link is rarely altered, and the program is not used on other
machines with dissimilar configurations. They also enable a beginning programmer to use
output and input procedures to perform simple datacomm operations without using IOCON­
TROL or IOSTATUS statements. On the other hand, where link configuratiion may vary, or
where programs are used on several different machines with dissimilar configurations, it is
usually worthwhile to override the defaults with IOCONTROL procedures. This assures known
datacomm behavior, independent of interface defaults.

Here, for your convenience is a brief summary of the default switch options:

Parity
00 = None
01 = None
10 = Odd
11 = Even

Bits/Char
8
7
7
7

Hardware Handshake
00 = Handshake OFF,

non-modem connection1

01 = FULL Duplex modem
connection2

10 = HALF Duplex .modem
connection 2 ..

11 = Handshake ON,
non-modem connection1

Async Default Configuration Switches

1 Default No Activity timeout: Disabled
2 Default No Activity timeout: 10 minutes

Baud Rate
000= 110
001 = 150
010=300
011 =600
100= 1200
10i =2400
110=4800
111 =9600

Stop Bits
2
2
1
1
1
1

. 1
1-

11·12 Datacomm Interface

DID: ("@" ... "G")

OOO=@
001=A
010=8
011=C

100=0
101=E
110=F
111=G

Default GID="A"

Baud Rate Hardware Handshake

00 = 300 00 = Handshake OFF, non-modem connection
01 = 1200 01 = FULL Duplex modem connection
10 = 9600 10= HALF Duplex modem connection
11 = 19200 11 = Handshake ON, non-modem connection

Default No Activity timeout: 10 minutes

Data Link Default Configuration Switches

Resetting the Datacomm Interface
Before you establish a connection, the datacomm interface must be in a known state. The
datacomm interface does not automatically disconnect from the datacomm link when the
computer reaches the end of a program. To prevent potential problems caused by unknown
link-conditions left over from a previous session, it is a good practice to reset the interface card
at the beginning of your program before you start configuring the datacomm connection.
Resetting the card causes it to disconnect from the line and return to a known set of initial
conditions.

Example

IORESET (20) ;

Protocol Selection
During power-up and reset, the card uses the default switches to preset the card to a known
state. The protocol selectswitch defines which protocol the card uses at power-up only: If the
default protocol is the same' as you are using, you can skip the protocol selection statements.
However, if the switch might be set to the wrong protocol, or if you want to change protocol in
the middle of a program, you can use a IOCONTROL procedure to select the protocol. After
the protocol is selected, reset the card again to make the change. Here is how to do it:

Datacomm Interface 11-13

Select the protocol to be used:

IOCONTROL (SC,3t1); {Select Async Protocol}

or

IOCONTROL (Sc ,3,2); {Select Data Lird, Protocol}

Wait until the protocol select message has been sent to the card, then reset the card. The Reset
command restarts the interface microcomputer using the selected protocol.

REPEAT
UNTIL IOSTATUS(Sc,38) =1
IORESET (Sc) ;

Note
Be careful when resetting the interface card during normal program
operation. Data and Control information are sent to the card in the
same sequence as the statements originating the information are
executed. When a card reset is initiated by a
IOCONTROL procedure, the reset is not placed in the queue with
outbound data, but is executed immediately. Therefore, if there is
other information in the output queue waiting to be sent, a reset can
cause the data to be lost. To prevent loss of data, use IOSTATUS
function (register 38) to verify that all data transfers have run to
completion before you reset the interface.

You are now ready to program datacomm options that are related to the selected protocol. In
applications where defaults are used, the options are very simple. The following pair of exam­
ples shows how to set up datacomm options for each protocol.

Datacomm Options for Async Communication
This section explains how to configure the datacomm interface for asynchronous data com­
munication. The example used shows how to set up all configurable options without consider­
ing default values. Some statements in the example are redundant because they override
interface defaults having the same value. Others mayor may not be redundant because they
override configuration switch options. The remaining statements are necessary because they
override the default values, replacing them with non-default values required for proper opera­
tion of the example program. If you are not familiar with Asynchronous protocol, consult the
section on protocol for the needed background information.

Control Block Contents
Configuration of the link begins with register 14 which determines what information is placed in
the control blocks that appear in the input (receive) queue. In this example, only theend-of-line
position and prompts are identified. Parity or framing errors in received data, and received
breaks are not identified in the queue. This register interacts with Control registers 28 thru 33.

11-14 Datacomm Interface

Datacomm Line Timeouts
Registers 16-19 set timeout values to force an automatic disconnect from the datacomm link
when certain time limits are exceeded. For most applications, the default values are adequate.
A value of zero disables the timeout for any register where it is used. Each register accepts
values of 0 thru 255; units vary with the register function.

• Register 16 (Connection timeout) sets the time limit (in seconds) allowed for connecting to
the remote device. It is useful for aborting unsuccessful attempts to dial up a remote
computer using public telephone networks.

• Register 17 (No Activity timeout) sets an automatic disconnect caused by no datacomm
activity for the specified number of minutes. Default value is determined by default hand­
shake switch setting. Default is not affected by IOCONTROL procedures to IOControl
Register 23 (hardware handshake).

• Register 18 (Lost Carrier timeout) disconnects when:

Full Duplex: Data Set Ready (Data Mode) or Data Carrier Detect go false, or
Half Duplex: Data Set Ready goes false,

indicating that the carrier from the remote modem has disappeared from the line.
Value is in multiples of 10 milliseconds.

• Register 19 (Transmit timeout) disconnects when a loss-of-clock occurs or a clear-to-send
(CTS) is not returned by the modem within the specified number of seconds.

Line Speed (Baud Rate)
The transmit and receive line speed(s) are set by IOControl Registers 20 and 21, respectively.
Each is ind~pendent of the other, and they are not required to have identical values. The
following baud rates are available for Async communication:

Register Baud Register Baud Register Baud Re~ister Baud
Value Rate Value Rate Value Rate Value Rate

0 01 4 134.5 8 6002 12 3600
1 50,::, 5 1502 9 12002 13 48002

2 75 6 200 10 1800 14 96002

3' 1102 7 3002 11 24002 15 19200

All configurable line speeds are available to IOCONTROL Registers 20 and 21. Only the eight
speeds indicated can be selected using the default switches (see the switch configuration dia­
gram earlier in this chapter). When the configuration switch defaults are used, transmit and
receive speeds are identical. The selected line speed must not exceed the capabilities of the
modem or link.

1 An external clock must be proVided for this option.

2 These speeds can be programmed using the default switches on the interface card. Other speeds are accessed by CONTROL statements. (The
HP 13265A Modem can be operated up to 300 baud.)

Datacomm Interface 11-15

Handshake
Registers 22 and 23 configure handshake parameters. There are two types of handshake:

• Software or protocol handshake specifies which of the participants is allowed to transmit
while the other agrees to receive until the exchange is reversed. Options include:

1. No handshake, commonly used with connections to non-interactive devices
such as printers.

2. Enq/Ack (EQ/AK) or DClIDC3 handshake, with the desktop computer confi­
gured either as a host or a terminal. Handshake characters are defined by regis­
ters 26 and 27.

3. DCI/DC3 handshake with the desktop computer as both a host AND a terminal.
Handshake characters are defined by registers 26 and 27. This option simplifies
communication between two desktop computers .

• Hardware or modem handshake that establishes the communicating relationship between
the interface and the associated datacomm hardware such as a modem or other link
device. The four available options are:

1. Handshake Off, non-modem connection - most commonly used for 3-wire
direct connections to a remote device.

2. Full Duplex modem connection - used with full-duplex modems or equivalent
connections.

3. Half Duplex modem connection -' used with half-duplex modems or equivalent
connections.

4. Handshake On, non-modem connection - used with printers and other similar
devices that use the Data Carrier Detect (DCD) and Clear-to-send (CTS) lines to
signal the interface card. When DCD is held down by the peripheral, the inter­
face ignores incoming data. When CTS is held down, the interface does not
transmit data to the device until CTS is raised.

Options 2 and 3 are usually associated with modems or similar devices, but may be used
occasionally with direct connections when the remote device provides the proper signals. Refer
to the table at the end of this chapter for.a list of handshake signals and how they are handled
for each cable or adapter option.

11-16 Datacomm Interface

Handling of Non-data Characters
Register 24 specifies what non-data characters are to be included in the input queue. For each
bit that is set, the corresponding information is passed along with the incoming data. If the bit is
not set, the information is discarded, and is not included in the inbound data stream that is
passed to the desktop computer by the interface.

Bit 0: Include handshake characters in data stream. They are defined by Control Registers
26 and 27.

Bit 1: Include incoming end-of-line character(s). EOL characters are defined by Control
Registers 28-30.

Bit 2: Include incoming prompt character(s). Prompt is defined by Control Registers 31-
33.

Bit 3: Include any null characters encountered.

Bit 4: Include any DEL (rubout) characters in data.

Bit 5: Include any CHR$(255) encountered. This character is encountered ONLY when
8-bit characters are received.

Bit 6: Change any characters received with parity or framing errors to an underscore. If
this bit is not set, all inbound characters are transferred exactly as received, with or
without errors.

Register 25 is not used.

Protocol Handshake Character Assignment
Registers 26 and 27 establish what characters are to be used for handshaking between com­
municating machines. You can select the values of 6 (AK) or 17 (DC 1) for register 26, and 5
(EQ) or 19 (DC3) for register 27. Any ASCII value from 0 thru 255 can be used, but non­
standard values should be reserved for exceptional situations.

End-of-Iine Recognition
Registers 28, 29, and 30 operate in conjunction with registers 14 (control block mask) and 24
(non-data character stripping) and defines the end-of-line sequence used to identify boundaries
between incoming records. Register 28 (value of 0, 1 or 2) defines the number of characters in
the sequence, while registers 29 and 30 contain the decimal equivalent of the ASCII characters.
If register 28 is set for one character, register 30 is not used. Register 29 contains the first EOL
character, and register 30, if used, contains the second. If register 28 is zero, registers 29 and 30
are ignored and the interface cannot recognize line separators.

Prompt Recognition
Registers 31, 32, and 33 operate in conjunction with registers 14 and 24 and define the prompt
sequence that identifies a request for data by the remote device. As with end-of-line recogni­
tion, the first register defines the number of characters (0, 1, or 2), while the second and third
registers contain the decimal equivalents of the prompt character(s). Register 33 is not used
with Single-character prompts. If register 31 is zero, registers 32 and 33 are ignored and the
interface is unable to recognize any incoming prompts.

Oatacomm Interface 11-17

Character Format Definition
Registers 34 through 37 are used to define the character format for transmitted and incoming
data.

• Register 34 sets the character length to 5, 6, 7, or 8 bits. The value used is the number of
bits per character minus five (0 = 5 bits, 3 = 8 bits). When 8-bit format is specified, parity
must be Odd, Even, or None (parity "I" or "0" cannot be used).

• Register 35 specifies the number of stop bits sent with each character. Values of 0, 1, or 2
are used to select 1, 1.5, or 2 stop bits, respectively.

• Register 36 specifies the parity to be used. Options include:

Register
Value

0

1

2

3

4

Parity

None

Odd1

Even 1

0

1

Result

Characters are sent with no parity bit. No parity checks are made on
incoming data.

Parity bit is set if there is an EVEN number of ones in the character
code. Incoming characters are also checked for odd parity.

Parity bit is set if there is an ODD number of ones in the character
code.

Parity bit is present, but always zero. No parity checks are made on
incoming data.

Parity bit is present, but always one. No parity checks are made on
incoming data.

Parity must be odd, even, or none when 8-bit characters are being transferred.

• Register 37 sets the time gap (in character times, including start, stop, and parity bits)
between one character and the next in a transmission. It is usually included to allow a
peripheral, such as a teleprinter, to recover at the end of each character and get ready for
the next one. A value of zero causes the start bit of a new character to immediately follow
the last stop bit of the preceding character.

Control Register 38 is not used.

Break Timing
Register 39 sets the break time (2-255 character times). A Break is a time gap sent to the remote
device to signify a change in operating conditions. It is commonly used for various interrupt
functions. The interface does not accept values less than 2. Register 6 is used to transmit a
break to the remote computer or device.

Datacomm Options for Data Link Communication
This section explains how to configure the datacomm interface for Data Link operation. If you
are not familiar with Data Link protocol and terminology, consult the section on protocol for the
needed background information.

1 Parity sense is based on the number of ones in the character including the parity bit. An EVEN number of ones in the character, plus the parity
bit set produces an ODD parity. An ODD number of ones in the character plus the parity bit set produces an EVEN parity.

11-18 Da tacomm Interface

Control Block Contents
Data Link configuration begins with IOControl Register 14. This register determines what
information is to be placed in control blocks and included with inbound data transferred from
the interface to the desktop computer.

• ETX (Bit 1) identifies the end of a transmission block that contains one or more complete
records.

• ETB (Bit 2) identifies the end of a transmission block where the last record is continued in
the next block of data.

• Bit 0 causes a control block to be inserted that identifies the beginning of a new block of
data.

Datacomm Line Timeouts, and Line Speed
Registers 15 through 19 are functionally identical for both Async and Data Link. Refer to the
preceding Async section for more information. Register 20 sets the line speed for both transmit­
ting and receiving (Data Link does not accommodate split-speed operation). The following line
speed options are available:

Register Baud Register Baud Register Baud Register Baud
Value Rate Value Rate Value Rate Value Rate

0 01 9 12002 12 3600 15 192002

7 3002 10 1800 13 4800
8 600 11 2400 14 96002

Terminal Identification
Registers 21 and 22 specify the terminal identifier characters for the datacomm interface.
Register 21 contains the GID (Group IDentifier), and register 22 contains the DID (Device
IDentifier. Values of 0-26 correspond to the characters@, A, B, ... , Z. These registers must be
configured to match the terminal identification pair assigned to your device by the Data Link
Network Manager. In the example, Line 1320 is redundant because it duplicates the default
GID value. Line 1330 overrides the DID default switch on the interface card, and mayor may
not be necessary. Alternate methods for assigning different GID/DIDs are shown following the
group of configuration IOCONTROL procedures.

Handshake
Register 23 establishes the hardware handshake type. There is no formal software handshake
with Data Link because the network host controls all data transfers. Hardware or modem
handshake options are identical to Asynchronous operation. Handshake should be OFF (regis­
ter set to 0) when using the HP 13264A Data Link Adapter. When you are using non-standard
interconnections such as direct or modem links to the netw·o"rk host, select the handshake
option that fits your application. Refer to the table at the end of this chapter for a list of
handshake signals and how they are handled for each cable or adapter option.

1 An external clock must be provided for this option.

2 These sp~eds can ~e programmed using tDe default switches on the interface card. Other speeds are· acce~sed by CON1ROL statements.

Datacomm Interface 11-19

Transmitted Block Size
Register 24 defines the maximum transmitted block length. When transmitting blocks of data to
the network host, the block length must not exceed the available buffer space on the receiving
device. Block size can be specified for increments of two from 2 to 512 characters per block. A
value of zero forces the block length to a maximum of 512 bytes. For other values, the block
length limit is twice the value sent to the register. For example, a register value of 130 produces
a transmitted block length not exceeding 260 characters (bytes).

Parity
Register 36 defines the parity to be used. Unlike Async, Data Link has only two parity options:
None, or Odd. Odd parity is:

Register
Value

a
1

Parity

NONE
ODD

Application

Required for operation with HP 1000 network host
Required for operation with HP 3000 network host

Registers 25 through 35, and 37 and above are not used.

Connecting to the Line
Interface configuration is now complete. You are ready to begin connecting to the datacomm
line. The exact procedure used to connect to the line varies slightly, depending on the type of
link being used. Before you connect, you must know what the link requirements are, including
dialing procedures, if any.

Switched (Public) Telephone Links
When you are using a public or switched telecommunications link, the modem connection
between computers must be established. The HP 13265A Modem can be used in any Async
application that requires a Bell 103- or Bell 113-compatible modem operating at up to 300
baud line speed. However, the HP 13265A Modem is not suitable for data rates exceeding 300
baud. For higher baud rates, use a modem that is compatible with the one at the remote
computer site. Modems cannot be used for remote connections from a terminal to the data link.

Private Telecommunications Links
Private (leased) links require modems unless the link is short enough for direct connection (up
to 50 feet, depending on line speed). The HP 13265A Modem can be used at data rates up to
300 baud. For higher speeds, a different modem must be used.

Direct Connection Links
For short distances, a direct connection may be used without modems or adapters, provided
both machines use compatible interfaces. Async connections normally use RS-232C interfaces.
You can also operate as a Data Link terminal directly connected to an HP 1000 or HP 3000
host computer through a dedicated Multipoint Async interface on the network host, although
such connections are unusual.

11-20 Datacomm Interface

Data Link Connections
Most Data Link connections use an HP 13264A Data Link Adapter to connect directly to the
Data Link. In special situations, a modem may be used to communicate with a Multipoint Async
interface on the HP 1000 or HP 3000 network host. When the Data Link Adapter is used, no
special procedures are required. If you are using a leased or switched telecommunications link,
the procedures are the same as when using point-to-point Async with modems.

Connection Procedure
This section describes procedures for modem connections using telephone telecommunications
circuits. If you are NOT using a switched, modem link, skip to the next section: Initiating the
Connection.

Dialing Procedure for Switched (Public) Modem Links
Except for dialing, connection procedures do not usually vary between switched and dedicated
links. Dialing procedures depend on whether the modem is designed for manual or automatic
dialing. Automatic dialing can be used with the HP 13265A Modem, but other modems must be
operated with manual dialing unless you design your own interface to an Automatic Calling
Unit. For manual dialing procedures, consult the operating manual for the modem you are
using.

Automatic Dialing with the HP 13265A Modem:
The automatic dialer in the HP 13265A Modem is accessed by "Control Register 12. The
IOCONTROL procedure is followed by an output procedure that contains the telephone num­
ber string, including dial rate and timing characters. The two statements set up the automatic
dialer, but dialing is not started until a "start connection" command is sent to IOControl
Register 12. Here is an example sequence:

IOCONTROL (SCt12t2) ;
WRITESTRING (SCt') 8 @@@ (303)-555-123a');

1 t tt t Unrecognized characters are ignored. L 3-second wait for secondary dial tone.

Select FAST dial rate.

The output procedure contains several essential elements.

• The first character (" >"), if included, specifies a fast dialing rate. If it is omitted, the default
slow dialing rate is used.

• A time delay character "@" may be inserted anywhere in the string. A one-second time
delay is executed in the dialing sequence each time a delay character is encountered.

• Numeric character sequences define the telephone number. Multiple dial-tone sequences,
such as when calling out from a PBX (Private Branch Exchange), can be used by inserting
a suitable delay to wait for the next dial tone.

• Unrecognized characters such as parentheses, hyphens, and spaces can be included for
clarity. They are ignored by the automatic dialer.

• Up to 500 characters can be included in the telephone number string.

Datacomm Interface 11-21

Here is how an autodial connection is executed:

• The IDe 0 N T R 0 L (S C t 1 2 t 2) places a "start dialing" control block in the outbound
queue to the interface. The OUTPUT statement places the telephone number string (in­
cluding spaces and other characters) in the queue after the control block. When the
interface encounters the control block, it transfers the string to the HP 13265A Modem's
autodial circuit. No other action is taken at this time.

• When IDe 0 N T R 0 L (S C t 1 2 t 1) is executed, another control block is queued up.
When the interface encounters the block, it sends a "start connection" command to the
modem. The modem then disconnects from the line, waits two seconds, then reconnects.
The autodialer waits 500 milliseconds, then starts executing the telephone number string.
The string is executed character-by-character in the same sequence as sent by the output
procedure.

• If your application requires more than 500 milliseconds to guarantee a dial tone is present,
you can increase the delay by adding delay characters ("@") where needed, one second
per character. Be sure to provide adequate delays in multiple dial tone sequences, such as
when calling through a private branch exchange (PBX) to a public telephone network.

• When dialing is complete, the modem is connected to the line, and you are ready to start
communication. The next section explains how to determine when connection is com­
plete.

Two dialing rates are available: slow (default) and fast. To select the fast rate, you must include
the fast rate character (">") as the FIRST character in the telephone number string. Here is a
summary of differences between the two options:

Parameter

Click Length
Click Gap
Number Gap

Slow Dialing

60 milliseconds
40 milliseconds

700 milliseconds

Fast Dialing

32.5 milliseconds
17.5 milliseconds
300 milliseconds

One to ten dial pulses (clicks) are sent for each digit 1 through 0, respectively. The number gap
is the time lag between the end of the last click of one number and the beginning of the first click
of the next number.

Most Bell System facilities can handle both fast and slow dialing rates, but private or independ­
ent telephone systems or companies may require slow dialing.

Initiating the Connection
After you have executed the necessary dialing procedures, if any, you are ready to initiate the
connection. The following statement is used to start the connection:

IOCONTROL (Sc,12,1) HStart Connection.}

This statement sends a control block to the interface telling it to connect to the datacomm line. If
the HP 13265A Modem is being used, and the autodialer is enabled, it starts dialing the
number. Otherwise, the interface executes a direct connection to the line, or tells the modem or
data link adapter to connect.

11-22 Datacomm Interface

The status of the connection process can be monitored by using the IOSTATUS function. The
following lines hold the computer in a continuous loop until the connection is complete:

REPEAT
State: = IOSTATUS(Sc 112);
IF State=2 THEN WRITELN ('Dialing');
IF State=l THEN WRITELN ('Trying to Connect');

UNTIL State=3;
WRITELN ('Connected') ;

Refer to the IOStatus and IOControl Register section for interpretation of the values in IOStatus
Register 12. Only values of 1, 2, or 3 are usually encountered at this stage of the program.

As soon as IOStatus Register 12 indicates that connection is complete, you are ready to
continue into the main body of the terminal emulator or other program you are writing. This
completes the datacomm initialization and connection phase of the program.

Datacomm Errors and Recovery Procedures
Several errors can be encountered during datacomm operation.- They are listed here with
probable causes and suggested corrective action.

Error

306

313

314

315

Description and Probable Cause

Interface card failure. This error occurs during interface self-test, and indicates an interface card
hardware malfunction. You can repeat the power-up self-test by pressing the Reset key. If the
error persists, replace the defective card. Using a defective card may result in improper data­
comm operation, and should be considered only· as a last resort.

USART receive buffer overflow. The SIO buffer is not being cleared fast enough to keep up
with incoming data. This error is uncommon, and is usually caused by excessive processing
demands on the interface microprocessor. To correct the problem, examine Pascal prog­
ram flow to reduce interference with normal interface operation. This\error causes the
interface to disconnect from the datacomm line and go into a SUSPENDED state. Clear or
reset the interface card to recover.

Receive Buffer overflow. Data is not being consumed fast enough by the desktop compu­
ter. Consequently, the buffer has filled up causing data loss. This is usually caused by
excessive program demands on the desktop computer CPU, or by poor program structure
that does not allow the desktop computer to properly service incoming data when it
arrives. Modify the Pascal program(s) to allow more frequent interrupt processing by the
desktop computer, or change to a lower baud rate and/or use protocol handshaking to
hold off incoming data until you are ready to receive it. This error causes the interface to
disconnect from the datacomm line and go into a SUSPENDED state. Clear or reset the
interface to recover.

Missing Clock. A transmit timeout has occurred because the transmit clock has not allowed
the card to transmit for a specified time limit (Control Register 19). This error can occur
when the transmit speed is a (external clock), and no external clock is provided, or be
caused by a malfunction. The interface is disconnected from the datacomm line and is
SUSPENDED. To recover, correct the cause, then reset the card.

Error

316

317

Datacomm Interface 11-23

Description and Probable Cause

CTS false too long. Due to clear-to-send being false on a half-duplex line, the interface
card was unable to transmit for a specified time limit (Control Register 19). The card has
disconnected from the datacomm line. and is in a SUSPENDED state. To recover, deter­
mine what has caused the problem, correct it. then reset or clear the interface card.

Lost Carrier disconnect. Data Set Ready (DSR) (and/or Data Carrier Detect. if full-duplex)
went inactive for the specified time limit (Control Register 18). This condition is usually
caused by the telecommunications link or associated equipment. The card has discon­
nected from the datacomm line and is in a SUSPENDED state. To recover. clear or reset
the interface card.

318 No Activity Disconnect. The interface card disconnected from the datacomm line automati­
cally because no information was transmitted or received within the time limit specified by
Control Register 17. The card is in a SUSPENDED state. Clear or reset the interface to
recover.

319 Connection not established. The card attempted to establish connection. but Data Set
Ready (DSR) (and Data Carrier Detect, if full duplex) was not active within the time limit
specified by Control Register 16.. The card has disconnected from the datacomm line and is
in a SUSPENDED state. Clear or reset the interface to recover.

325 Illegal DATABITS/PARITY combination. IOCONTROL procedures have attempted to
program 8 bits per character and parity "1" or "0". The IOCONTROL procedure causing
the error is ignored. and the previous setting remains unchanged. To correct the problem,
change the IOCONTROL procedure(s) and/or interface default switch settings.

326 Register address out of range. An IOCONTROL or STATUS function has attempted to
address a non-existing register. The command is ignored. and the interface card state
remains unchanged.

327 Register value out of range. An IOCONTROL procedure attempted to place an illegal
value in a defined register. The command is ignored. and the interface card state remains
unchanged.

Error Recovery
When any error from Error 313 through Error 319 occurs, it forces the interface card to
disconnect from the datacomm line. When a forced disconnect terminates the connection, the
interface is placed in a SUSPENDED state, indicated by Status Register 12 returning a value of
4. The interface cannot be reconnected to the datacomm line when it is SUSPENDED.
ABORT_SERIAL and IORESET are used to recover from the suspended state and resume
normal card operation.

To recover from a SUSPENDED interface, two programmable options are available, all of
which destroy any existing data in the transmit and receive queues. They are:

• The ABORT_SERIAL procedure clears the receive and transmit queues .

• RESET interface (lOControl Register 0 or IORESET) clears all buffers and queues, and
resets all IOCONTROL options to their power-up state EXCEPT the protocol which is
determined by the most recent IOCONTROL statement (if any) addressed to register 3
since power-up.

Another option is available. Pressing ~ ((CLR 1/0)) causes a hardware reset to be sent to all
interfaces. This completely resets the datacomm interface to its power-up state with protocol
and other options determined by the default switch settings.

11-24 Datacomm Interface

Datacomm Programming Helps
This section is designed to assist you in writing datacomm programs for special applications by
discussing selected techniques and characteristics that can present obstacles to the beginning
programmer.

Terminal Prompt Messages
Care must be exercised to ensure that messages are never transmitted to the network host if the
host is not prepared to properly handle the message. Receipt of a poll from the host does not
necessarily mean that the host can handle the message properly when it is received. Therefore,
prompts or interpretation of messages from the host are used to determine the status of the host
operating system.

Prompts are message strings sent to the terminal by a cooperating program. They are well­
defined and predictable, and are usually tailored to specific applications. When the terminal
interacts directly with RTE or one or more subsystems, the process becomes less straightfor­
ward. Each subsystem usually has its own prompt which is not identical to other subsystem
prompts. To maintain orderly communication with subsystems, you must interpret each mes­
sage string from the host to determine whether it is to be treated as a prompt.

Prevention of Data Loss on the HP 1000
On the HP 1000, the RTE Operating System manages information transfer between programs
or subsystems and system 110 devices, including DSN/DL. Terminals are continually polled by
the host's data link interface (unless auto-poll has been disabled by use of an HP 1000 File
Manager CN command). Since there is no relationship between automatic polling and HP 1000
program and subsystems execution, it is possible to poll a terminal when there is no need for
information from that terminal. If the terminal sends a message in response to a poll when no
data is being requested, the HP 1000 discards the message, causing the data to be lost, and
treats it as an asynchronous interrupt. A break-mode prompt is then sent to the terminal by the
host.

The terminal must determine that the host is ready to receive a message in order to ensure that
messages are properly handled by the host. This is done by checking all messages from the host
(CREAD until queue is empty) and not transmitting (CWRITE) until a prompt message or its
equivalent has been received (unless you want to enter break-mode operation). Since the HP
1000 does not generate a consistent prompt message for all programs and subsystems, it is
easiest to use cooperating programs to generate a predictable prompt. If your application
requires interaction with other subsystems, prompts can usually be most easily identified by the
ABSENCE of the sequence: CRLFEC_ at the end of a message. When a proper sequence has
been identified, you are reasonably certain that the host is ready for your next message block.

Datacomm Interface 11-25

Here is an example of host messages where a prompt is sent by the File Manager (FMGR) and
answered by a RUN,EDITR command. Note that the prompt from the interactive editor fits the
description of a prompt because a line-feed is not included after the carriage-return in the
sequence.

RUtEDITR
SOURCE FILE NAME?CRLFE c _

CR/BLEC_

Prompt is sent by FMGR to terminal.
EDITR Run command is sent to host.
File name message is sent by the host, followed by a
prompt sequence which has no line-feed. Sequence is
different from FMGR prompt.

Whenever an unexpected message from a terminal is received by RTE, it is treated as an
asynchronous interrupt which terminates normal communication with that terminal. A break­
mode prompt is sent to the terminal by RTE, and the next message is expected to be a valid
break-mode command. If the the message is not a valid command (such as data in a file being
transferred), the data is discarded, and an error message is sent to the terminal. If, in the
meantime, the cooperating program or subsystem generates an input request, the next data
block is sent to the proper destination, but is out of sequence because at least one block has
been lost. You can prevent such data losses and the mass confusion that usually ensues
(especially during high-speed file transfers to the host), by disabling auto-poll on the HP 1000
data link interface. With auto-poll OFF, no polls are sent to your terminal unless the host is
prepared to receive data.

Disabling Auto-poll on the HP 1000
To operate with auto-poll OFF, log on to the network host, disable auto-poll, perform all
datacomm activities and file transfers, enable auto-poll, then log off. If you don't enable
auto-poll at the end of a session, polling is suspended to your terminal after log-off, and
you cannot reestablish communication with the host unless polling is restored from
another terminal or the network host System Console.

The auto-poll ON/OFF commands are:

CN tLU# t 236 t 1014016 Auto-poll OFFI
CN tLU# t 236 tOOl 40 1 6 Auto-poll ONI

where LU# us the logical unit number assigned to your terminal.

When auto-poll is disabled, no polls are sent to your terminal unless an input request is initiated
by the cooperating program or subsystem on the network host. When the request is made, a
poll is scheduled, and polling continues until a reply is received from the terminal. When the
reply is received, and acknowledged, polling is suspended until the next input is scheduled.
Operating with auto-poll OFF is especially useful when transferring files TO the HP 1000.
Otherwise, in most applications, it is practical to leave auto-poll ON.

1 The File Manager CN (Control) command parameters for the multipoint interface are described in more detail in the 91730A Multipoint
Terminal Interface Subsystem User's Guide (91730-90002).

11-26 Datacomm Interface

Prevention of Data Loss on the HP 3000
Neither the HP 1000 nor the HP 3000 provide a DC1 poll character when they are ready for
data inputs from DSN/DL. The HP 3000, like the HP 1000, also discards data if it has not
requested the transfer. Since the HP 3000 does not provide an auto-poll disable command,
you must interpret messages from the HP 3000 to determine that it is ready for the next data
block before you transmit the block.

Secondary Channel, Half-duplex Communication
Half-duplex telecommunications links frequently use secondary channel communication to
control data transmission and provide for proper line turn-around. This is done by using
Secondary Request-to-send (SRTS) and Secondary Data Carrier Detect (SDCD) modem sig­
nals.

Consider two devices communicating with each other: Each connects to the datacomm link,
then waits for SDCD to become active (true). As each device connects to the line, Secondary
Request-to-send is enabled, causing each modem to activate its secondary carrier output. The
Secondary Data Carrier Detect is, in turn, activated by each modem as it receives the secondary
data carrier from the other end.

When communication begins, the first device to transmit (assumed to be your computer, in this
case) clears its Secondary Request-to-send modem line. This removes the secondary data
carrier from the line, causing the other modem to clear SDCD to its terminal or computer,
telling it that you have the line. (The modems also maintain proper line switching and prevent
timing conflicts so both ends don't try to get the line simultaneously.) The other device receives
data, and must not attempt to transmit until you relinquish control of the line as indicated by
SDCD true. After you finish transmitting, you must again activate SRTS so that SDCD can be
activated to the other device, alloWing it to use the line if it has a message.

Communication Between Desktop Computers
Two desktop computers can be connected, directly, or by use of modems. DC1/DC3 hand­
shake protocol can be used conveniently to enable each computer to .transmit at will without
risk of buffer or queue overruns. To ensure proper operation, the following gUidelines apply:

• Set up IOControl Register 22 with a value of 5. This allows both computers to act either as
host or terminal in any given situation, depending on which one initiates the action.

• Set up IOControl Registers 26 and 27 for DC1 and DC3 respectively, or use two other
characters if necessary.

• Data to be transmitted must NOT contain any characters matching the contents of IOCon­
trol Register 26 or 27. This prevents the receiving interface from confusing data with
control characters.

• If both computers attempt to transmit large amounts of data at the same time, a lock:.up
condition may result where each side is waiting for the other to empty its buffers.

Datacomm Interface 11-27

Cable and Adapter Options and Functions
The HP 98628A Datacomm Interface is available with RS-232C DTE and DCE cable configura­
tions, or it can be connected to various modems or adapters for other applications.

DIE and DCE Cable Options
DTE and DCE cable options are designed to simplify connecting two desktop computers
without the use of modems. The DTE cable (male RS-232 connector) is configured to make the
datacomm interface look like standard data terminal equipment when it is connected to an
RS-232C modem. The DCE cable (female RS-232 conn~ctor) is configured so that it eliminates
the need for modems in a direct connection. When you connect two computers to each other in
a direct non-modem connection, both datacomm interfaces are functionally identical. The DCE
cable acts as an adapter so that both interfaces behave exactly as they would if they were
connected to a pair of modems by means of DTE cables.

Several signal lines are rerouted in the DCE cable so that, in direct connections, outputs from
one interface are connected to the corresponding inputs on the other interface. Certain outputs
on each interface are also connected to inputs on the same card by "loop-back" connections in
the DCE cable.

The schematic diagram in this section shows two datacomm interfaces directly connected
through a DTE-DCE cable pair. Note that the DCE cable wiring complements the DTE cable so
that output signals are properly routed to their respective destinations. Signal names at the
RS-232C connector interface are the same as the signal names for the DTE interface. However,
because the DCE cable adapts signal paths, the signal name at the RS-232C connector does
not necessarily match the signal name at the DCE interface. Connector pin numbers are
included in the diagram for your convenience.

RS-232C DTE (male) Cable Signal Identification Tables

Signal Interface RS-232C
RS-232C V.24 Pin # Pin # Mnemonic 110 Function

AA 101 24 1 - - Safety Ground
BA 103 12 2 Out Transmitted Data
BB 104 42 3 In Received Data
CA 105 13 4 RTS Out Request to Send

CB 108 44 5 CTS In Clear to Send
CC 107 45 6 DSR In Data Set Ready
AB 102 48 7 - - Signal Ground
CF 109 46 8 DCD In Data Carrier Detect

SCF (OCR2) 122 47 12 SDCD In Secondary DCD
DB 114 41 15 In DCE Transmit Timing
DD 115 43 17 In DCE Receive Timing

SCA (OCD2) 120 15 19 SRTS Out Secondary RTS

CD 108.1 14 20 DTR Out Data Terminal Ready
CE (OCR1) 125 9 22 RI In Ring Indicator
CH (OCD1) 111 40 23 DRS Out Data Rate Select

DA 113 7 24 Out Terminal Transmit Timi ng

11-28 Datacomm Interface

Optional Circuit Driver/Receiver Functions
Two optional drivers and receivers are used with the RS-232C cable options. Their functions
are as follows:

Name

OCDI
OCD2
OCD3
OCD4

Drivers

Function

Receivers

Name Function

Data Rate Select
Secondary Request-to-send
Not used

OCRI
OCR2

Ring Indicator
Secondary Data Carrier Detect

Not used

OCD2 is used for autodial pulsing in the HP 13265A Modem. None of the optional
drivers and receivers are used for Data Link and Current Loop Adapters.

RS-232C DCE 98628
SIGNALS CABLE INTERFACE -2

) BA (PIN 2)) 42)~
IN

) BB (PIN 3)) 12)~
OUT

) CA (PIN 4) : r»-~t>-
) CB (PIN 5)

) CF (PIN 8)) r 13:~ 44~

) SCA(PIN 19)) 47)~
DCD

) SCF(PIN 12)) 15)~
RTS

) CD(PIN 20»

r
9~

45:~
) CE (PIN 22) : j'4» __ 2!~
) CC(PIN 6)

~~-------~
~f-(4..;...;5,---______ -+

~41 () 43~
~f-(4";"'3---------7) DB (PIN 15)) I 7:~---

RCV. TIMING () DO PIN 17 >~------4~~
SIGNAL r--< f-(4.:.,:8:.--______ -+) AB (P I N 7) >~----..;..:48~»----, SIGNAL
GROUND~ VGROUND

SAFETY r---< f-(2::...;4:.--______ -+) AA (P I N I) >>-____ --:;,..24'-+»)------, SAFE TV
GROUNO. . ~ *GROUND
~7 ~f-(~------~) DA (PIN 24))---NOT USED

~f-(4.:....:0:.--______ ~) CH (PIN 23))---NOT USED

r r t
INTERFACE MALE FEMALE

REAR PANEL RS-232C RS-232C

CONNECTOR CONNECTOR CONNECTOR

INTERFACE
REAR PANEL
CONNECTOR

DTE/DCE Interface Cable Wiring

Datacomm Interface 11-29

HP 98628 Datacomm Interface
IOSTATUS and IOCONTROL Register Summary

Pascal Register Map - Control Registers

Register =

000 .. 127

257 .. 383

512

513

Use
Buffered Control - Queued up with data
Direct Control - Occurs immediately (meaning is the same as buffered ctl register +
256)

Immediate transfer in Abort

Immediate transfer out Abort

Unless indicated otherwise, the Status Register returns the current value for a given parameter;
the Control Register sets a new value.

Register

o
1 (Status only)'

2 (Status only)

3
4 (Status only)

5

6
7 (Status only)

8

9 (Status only)

10 (Status only)

11 (Status only)

12
13
14

15

16
17

18
19

20

21

22

23

Function

Control: Interface Reset; Status: Interface Card ID
Hardware Interrupt Status: 1 = Enabled, 0 = Disabled
Datacomm activity: 0 = inactive, 1 = ENTER in process, 2 = OUTPUT in process

Select Protocol: 1 = Async, 2 = Data Link
Interrupt Status. Interrupt operations are not currently supported at a user level in Pascal.
Control: Terminate transmission; Status: Inbound queue status

Control: Send BREAK to remote; Status: 1 = BREAK pending
Current modem receiver line states
Modem driver line states

Control block TYPE
Control block MODE
Available outbound queue space

Control: Connect/Disconnect line; Status: Line connection status
Interrupt mask. Interrupt operations are not currently supported at a user level in Pascal.
Control Block mask

Modem line interrupt mask. Interrupt operations are not currently supported at a user
level in Pascal.
Connection timeout limit
No Activity timeout limit

Lost Carrier timeout limit
Transmit timeout limit

Async: Transmit baud rate (line speed)
Data Link: Set Transmit/Receive baud rate (line speed)

Async: Incoming (receiver) baud rate (line speed)
Data Link: GID address (0 thru 26 corresponds to "@" thru "2")

Async: Protocol handshake type
Data Link: DID address (0 thru 26 corresponds to "@" thru "2")

Hardware handshake type: ON/OFF, HALF/FULL duplex, Modem/Non-modem

11-30 Datacomm Interface

Register

24

25 (Status only)

26

Function

Async: Control Character mask
Data Link: Block Size lirriit

Number of received errors since last interface reset

Async: First protocol character (ACK/DC 1)
Data Link: NAKs received since last interface reset

Registers 27-35, 37, and 39 are used with Async protocol only. They are not accessible
during Data Link operation.

27 Second protocol handshake character (ENQ/DC3)
28 Number of characters in End-of-line sequence
29 First character in EOL sequence

30 Second character in EOL sequence
31 Number of characters in PROMPT sequence
32 First character in PROMPT sequence

33 Second character in PROMPT sequence
34 Data bits per character excluding start, stop and parity
35 Stop bits per character (0 = 1, 1 = 1.5, and 2 = 2 stop bits)

36 Parity sense: O=NONE, 1 =000,2= EVEN, 3=ZERO, 4=ONE
Data Link: 0 = NONE (HP 1000 host), 1 = ODD (HP 3000 host)

37 Inter-character time gap in character times (Async only)

38 (Status only) Transmit queue status (1 = empty)

39 BREAK time in character times (Async only)

125 (Control only) Abort both input and output transfers.

512 (Control only) Immediate transfer in Abort.

513 (Control only) Immediate transfer out Abort.

Datacomm Interface 11-31

HP 98628 Datacomm Interface
IOSTATUS and IOCONTROL Registers

General Notes: Control registers accept values in the range of zero through 255. Some regis­
ters require specified values, as indicated. Illegal values or values less than zero
or greater than 255, cause ERROR 327. Accessing a non-existent register
generates ERROR 326.

Reset value, shown for various Control Registers, is the default value used by
the interface after a reset or power-up until the value is overridden by an
IOCONTROL procedure.

Status 0 Card Identification
Value returned: 52 (if 180 is returned, check select code switch cluster and make sure
switch R is ON).

Control 0 Card Reset

Status 1

Status 2

Status 3

Any value, 1 thru 255, resets the card. Immediate execution. Data in queues is destroyed.

Hardware Interrupt Status (not used in most applications)
1 = Enabled 0 = Disabled

Datacomm Activity
o = No activity pending on this select code.
Bit 0 set: input in process.
Bit 1 set: output in process.
(Non-zero ONLY during multi-line function calls.)

Current Protocol Identification:
1 = Async, 2 = Data Link Protocol

Control3 Protocol to be used after next card reset (CONTROL Se ,0 j 1)

1 = Async Protocol 2 = Data Link Protocol
This register overrides default switch configuration.

Status 4 Interrupt status. Interrupt operations are not currently supported at a user level in
Pascal.

Status 5 Inbound queue status

Value Interpretation

o Queue is empty
1 Queue contains data but no control blocks
2 Queue contains one or more control blocks but no data
3 Queue contains both data and one or more control blocks

Control5 Terminate Transmission

Data Link: Sends previous data as a single block with an ETX terminator, then idles the
line with an EOT.

Async: Tells card to turn half-duplex line around. Does nothing when line is full­
duplex. The next data output automatically regains control of the line by raising
the RTS (request-to-send) modem line.

11-32 Datacomm Interface

Status 6 Break status: 1 = BREAK transmission pending, 0 = no BREAK pending.

Control 6 Send Break; causes a Break to be sent as follows:

Data Link Protocol: Send Reverse Interrupt (RVI) reply to inbound block, or CN character
instead of data in next outbound block.

Async Protocol: Transmit Break. Length is defined by Control Register 39.

Note that the value sent to the register is arbitrary.

Status 7 Modem receiver line states (values shown are for male cable connector option for
connection to modems).

Bit 0: Data Mode (Data Set Ready) line
Bit 1: Receive ready (Data Carrier Detect line)
Bit 2: Clear-to-send (CTS) line
Bit 3: Incoming call (Ring Indicator line)
Bit 4: Depends on cable option or adapter used

Status 8 Returns modem driver line states.

Control 8 Sets modem driver line states (values shown are for male cable connector option
for connection to modems).

Bit 0: Request-to-send (RS or RTS) line 1 = line set (active)
Bit 1: Data Terminal Ready (DTR) line 0 = line clear (inactive)
Bit 2: Driver 1: Data Rate Select
Bit 3: Driver 2: Depends on cable option or adapter used
Bit 4: Driver 3: Depends on cable option or adapter used
Bit 5: Driver 4: Depends on cable option or adapter used
Bits 6,7: Not used

Reset value = 0 prior to connect. Post-connect value is handshake dependent.

Note that RTS line cannot be altered (except by OUTPUT or OUTPUT. .. END) for half­
duplex modem connections.

Status 9 Returns control block TYPE if last input terminated on a control block. See Status
Register 10 for values.

Status 10 Returns control block MODE if last input terminated on a control block.

~sync Protocol Control Blocks

Type Mode Interpretation

250 1 Break received (Channel A)
251 11 Framing error in the following character
251 21 Parity error in the following character
251 31 Parity and framing errors in the following character
252 1 End-of-line terminator detected
253 1 Prompt received from remote
o 0 No Control Block encountered

1 Parity/framing error control blocks are not generated when characters with parity and/or framing errors are replaced by an underscore (_)
character.

Data Link Protocol Control Blocks

Type Mode Interpretation

254 1 Preceding block terminated by ETB character
254 2 Preceding block terminated by ETX character
2531 (see following table for Mode interpretation)
a a No Control Block encountered.

Mode Bit(s)

a

2,1

3

Interpretation

1 = Transparent data in following block
a = Normal data in following block

00 = Device select
01 = Group select
10 = Line select

1 = Command channel
a = Data channel

Datacomm Interface 11-33

Status 11 Returns available outbound queue space (in bytes), provided there is sufficient
space for at least three control blocks. If not, value is zero.

Status 12 Datacomm Line connection status

Control 12

Status 13

Control 13

Value Interpretation

a Disconnected
1 Attempting Connection
2 Dialing
3 Connected 2

4 Suspended
5 Currently receiving data (Data Link only)
6 Currently transmitting data (Data Link only)

Note
When the datacomm line is suspended, ABORT_SERIAL, or
IORESET must be executed before the line can be reconnected.

Reset value = 0 if R on interface select code switch cluster is ON (1).

Connects, disconnects, initiates auto-dialing as follows:

Value Interpretation

a Disconnects
1 Connects
2 Initiates

Interrupt mask. Interrupt operations are not currently supported at a user level in
Pascal.
Interrupt mask. Interrupt operations are not currently supported at a user level in
Pascal.

1 This tYI><' is used l>rimarily in spedali;wd applications.

2 When using Data Link: Connected - datacomm idle

11-34 Datacomm Interface

Status 14

Control 14

Status 15

Control 15

Status 16
Control 16

Status 17
Control 17

Status 18
Control 18

Status 19
Control 19

Returns current Control Block mask.

Sets Control Block mask. Control block information is queued sequentially with
incoming data as follows:

Bit

o
1
2
3

Value

1
2
4
8

Async Control Block Passed

Prompt position
End-of-line position
Framing and/or Parity error3

Break received

Reset Value: 0 (Control Blocks disabled)

Bits 4, 5, 6, and 7 are not used.

Data Link Control Block Passed

Transparent/Normal Model
ETX Block T erminator2
ETB Block T erminator2

6 (ETX/ETB Enabled)

Modem line interrupt mask. Interrupt operations are not currently supported at a
user level in Pascal.
Modem line interrupt mask. Interrupt operations are not currently supported at a
user level in Pascal.

Returns current connection timeout limit.
Sets Attempted Connection timeout limit.
Acceptable values: 1 thru 255 seconds. 0 = timeout disabled.
Reset Value = 25 seconds

Returns current No Activity timeout limit.
Sets No Activity timeout limit.
Acceptable values: 1 thru 255 minutes. 0 = timeout disabled.
Reset Value = 10 minutes (disabled if Async, non-modem handshake).

Returns current Lost Carrier timeout limit.
Sets Lost Carrier timeout limit in units of 10 ms.
Acceptable values: 1 thru 255. 0 = timeout disabled.
Reset Value = 40 (400 milliseconds)

Returns current Transmit timeout limit.
Sets Transmit timeout limit (loss of clock or CTS not returned by modem when
transmission is attempted).
Acceptable values: 1 thru 255.0 = timeout disabled.
Reset Value = 10 seconds

1 Transparent/Normal ,format identification control block occurs at the BEGINNING of a given block of data in the receive queue.

2 ETX and ETB Block Termination identification control blocks occur at the END of a given block of data in the receive queue.

3 This control block precedes each character containing a parity or framing error.

Status 20
Control 20

Status 21

Control 21

Status 22

Control 22

Status 23
Control 23

Datacomm Interface 11-35

Returns current transmission speed (baud rate). See table for values.
Sets transmission speed (baud rate) as follows:

Register Register
Value Baud Rate Value Baud Rate

0 External Clock 8 600
*1 50 9 1200
*2 75 10 1800
*3 110 11 2400
*4 134.5 12 3600
*5 150 13 4800
*6 200 14 9600

7 300 15 19200

* Async only. These values cannot be used with Data Link. These values set transmit
speed ONLY for Async; transmit AND receive speed for Data Link. Default value is
defined by the interface card configuration switches.

Protocol dependent. Returns receive speed (Async) or GID address (Data Link)
as specified by Control Register 21.
Protocol dependent. Functions are as follows:

Data Link: Sets Group IDentifier (GID) for terminal. Values 0 thru 26 correspond to

Async:

identifiers @, A, B, ... Y, Z, respectively. Other values cause an error. Default
value is 1 ("A").
Sets datacomm receiver speed (baud rate). Values and defaults are the
same as for Control Register 20.

Protocol dependent. Returns DID (Data Link) or protocol handshake type
(Async) as speCified by Control Register 22.
Protocol dependent. Functions are as follows:

Data Link: Sets Device IDentifier (DID) for terminal. Values are the same as for Con­
trol Register 21. Default is determined by interface card configuration
switches.

Async: Defines protocol handshake type that is to be used.

Value Handshake type

o Protocol handshake disabled
1 ENQ/ACK with desktop computer as the host
2 ENQ/ACK, desktop computer as a terminal
3 DC lIDC3, desktop computer as host
4 DClIDC3, desktop computer as a terminal
5 DC lIDC3, desktop computer as both host and terminal

Returns current hardware handshake type.
Sets hardware handshake type as follows:

0= Handshake OFF, non-modem connection.
1 = FULL-DUPLEX modem connection.
2 = HALF-DUPLEX modem connection.
3 = Handshake ON, non-modem connection.
Reset Value is determined by interface configuration switches.

11-36 Datacomm Interface

Status 24 Protocol dependent. Returns value set by preceding IOCONTROL procedure to
Control Register 24.

Control 24 Protocol dependent. Functions as follows:

Status 25

Status 26

Control 26
(Async only)

Status 27
(Async only)
Control 27
(Async only)

Data Link protocol: Set outbound block size limit.

Value Block size Value Block size

0 512 bytes 4 8 bytes
1 2 bytes
2 4 bytes
3 6 bytes 255 510 bytes

Reset outbound block size limit = 512 bytes

Async Protocol: Set mask for control characters included in receive data message
queue.
Bit set: transfer character(s).
Bit cleared: delete character(s).

Bit set Value Character(s) passed to receive queue

o 1 Handshake characters (ENQ, ACK, DC1, DC3)
1 2 Inbound End-of-line character(s)
2 4 Inbound Prompt character(s)
3 8 NUL (CHR(O))
4 16 DEL (CHR(127))
5 32 CHR(255)
6 64 Change paritylframing errors to underscores (_) if bit is set.
7 128 Not used

Reset value = 127 (bits 0 thru 6 set)

Returns number of received errors since power up or reset.

Note
Control Registers 26 through 35, Status Registers 27 through 35,
and Control and Status Registers 37 and 39 are used for ASYNC
protocol ONLY. They are not available during Data Link operation.

Protocol dependent
Data Link protocol: Returns number of transmit errors (NAKs received) since last inter-

face reset.
Async protocol: Returns first protocol handshake character (ACK or DC1).
Sets first protocol handshake character as follows:
6 = ACK, 17 = DCI. Other values used for special applications only. Reset value = 17
(DC1). Use ACK when Control Register 22 is set to 1 or 2. Use DC1 when Control
Register 22 is set to 3, 4, or 5.

Returns second protocol handshake character.

Sets second protocol handshake character as follows:
5 = ENQ, 19 = DC3. Other val~es used for special applications only. Reset value = 19
(DC3). Use ENQ when Control Register 22 is set to 1 or 2. Use DC3 when Control
Register 22 is set to 3, 4, or 5.

Status 28
(Async only)
Control 28
(Async only)

Status 29
(Async only)

Returns number of characters in inbound
End-of-line delimiter sequence.

Datacomm Interface 11-37

Sets number of characters in End-of-line delimiter sequence
Acceptable values are a (no EOL delimiter), 1, or 2. Reset Value = 2

Returns first End-of-line character.

Control 29 Sets first End-of-line character.
(Async only)

Reset Value = 13 (carriage return)

Status 30
(Async only)
Control 30
(Async only)

Status 31
(Async only)
Control 31
(Async only)

Status 32
(Async only)
Control 32
(Async only)

Status 33
(Async only)
Control 33
(Async only)

Status 34
(Async only)
Control 34
(Async only)

Status 35
(Async only)
Control 35
(Async only)

Return.s second End-of-line character.

Sets second End-of-line character. Reset Value = 10 (line feed)

Returns number of characters in Prompt sequence.

Sets number of characters in Prompt sequence.
Acceptable values are a (Prompt disabled), 1 or 2.
Reset Value = 1

Returns first character in Prompt sequence.

Sets first character in Prompt sequence.
Reset Value = 17 (DCl)

Returns second character in Prompt sequence.

Sets second character in Prompt sequence.
Reset Value = 0 (null)

Returns the number of bits per character.

Sets the number of bits per character as follows:
0=5 bits/character 2 = 7 bits/character
1 = 6 bits/character 3 = 8 bits/character)
When 8 bits/char, parity must be NONE, ODD, or EVEN.
Reset Value is determined by interface card default switches.

Returns the number of stop bits per character.

Sets the number of stop bits per character as follows:
0=1 stop bit 1 = 1.5 stop bits 2 = 2 stop bits
Reset Value: 2 stop bits if 150 baud or less, otherwise 1 stop bit.
Reset Value is determined by interface configuration switch settings.

11-38 Datacomm Interface

Status 36
Control 36

Status 37
(Async only)
Control 37
(Async only)

Status 38

Status 39
(Async only)
Control 39

Returns current Parity setting.
Sets Parity for transmitting and receiving as follows:
Data Link Protocol: 0 = NO Parity; Network host is HP 1000 Computer.

Async Protocol

1 = ODD Parity; Network host is HP 3000 Computer.
Reset Value = 0
0= NONE; no parity bit is included with any characters.
1 = ODD; Parity bit SET if there is an EVEN number of­

"1"s in the character body.
2 = EVEN; Parity bit OFF if there is an ODD number of

"1" s in the character body.
3 = "0"; Parity bit is always ZERO, but parity is not checked.
4= "I"; Parity bit is,always SET, but parity is not checked.

Default is determined by interface configuration switches. If 8 bits per character,
parity must be NONE, ODD, or EVEN.

Returns inter-character time gap in character times.

Sets inter-character time gap in character times.
Acceptable values: 1 thru 255 character times.
0= No gap between characters. Reset Value = 0

Returns Transmit queue status.
If returned value = 1, queue is empty, and there are no pending transmissions.

Returns current Break time (in character times).

Sets Break time in character times.
(Async only) Acceptable values are: 2 thru 255. Reset Value = 4.

Control 125 Abort both input and output transfers.

Control512 Immediate transfer in Abort.

Control 513 Immediate transfer out Abort.

RS-232 Serial Interface
Chapter

12

Introduction
The HP 986261 Serial Interface is an RS-232C2 compatible interface used for simple asynchronous
("async" for short) 110 applications such as driving line printers, terminals, or other peripherals. If
your applications require more advanced capabilities, use the HP 98628 Datacomm Interface
instead.

The Serial Interface uses a UART (Universal Asynchronous Receiver and Transmitter) integrated
circuit to generate the required signals. Because the Serial Interface does not have a processor
onboard, the computer must provide most control functions. Consequently, there is more interac­
tion between the card and computer than when you use a more intelligent interface.

The RS-232C interface standard establishes electrical and mechanical interface requirements, but
does not define the exact function of all the signals that are used by various manufacturers of data
communications equipment and serial 110 devices. Consequently, when you plug your Serial
Interface into an RS-232 connector, there is no guarantee the devices can communicate unless you
have configured optional parameters to match the reqUirements of the other device.

The terms "asynchronous data communication" and "serial 110" refer to a technique for transfer­
ring data between two devices one bit at a time where characters are not synchronized with
preceding or subsequent characters. Each character is sent as a complete entity without relationship
to other events. Characters may be sent in close succession, or they may be sent sporadically as
data becomes available. Start and stop bits are used to identify the beginning and end of each
character, with the character data placed between them.

1 The HP 98644 interface and the built-in serial interface of Series 200 Models 216 and 217 and all Series 300 computers are similar to the
98626 interface. Differences are described at the end of this chapter.

2 RS-232C is a data communication standard established and published by the Electronic Industries Association (EIA). Copies of the standard
are available from the association at 2001 Eye Street N. W., Washington D. c. 20006. Its equivalent for European applications is CCITT
V.24.

12-1

12-2 RS-232 Serial Interface

Details of Serial 1/0
The transfer of data over a serial line is a trivial operation when the host and terminal devices are
designed to work together. However, some applications require some configuration before the
communication can be performed smoothly. You must determine the operating parameters of the
terminal device and then set up the host device for compatible operation.

The Serial Interface l includes three default configuration switch clusters in addition to the select
code and interrupt level switches. These three switch clusters include Modem Line, Baud Rate, and
Line Control switches. The operating parameters can be set using these switches or by program
control which overrides most switches.

To determine operating parameters, you need to know the answer for each of the following
questions about the peripheral device.

• What baud rate (line speed) is expected by the peripheral?

• Which of the following signal and control lines are actively used during communication with
the peripheral?

-Data Set Ready (DSR) -Data Carrier Detect (DCD)
-Clear to Send (CTS) -Ring Indicator (RI)

In addition, you must know the expected format for an individual frame of character data. Each
character frame consists of the following elements:

• Start Bit-The start bit signals the receiver that a new character is being sent. All other bits in a
given frame are synchronized to the start bit.

• Character Data Bits-The next bits are the binary code of the character being transmitted,
consisting of 5, 6, 7, or 8 bits; depending on the application.

• Parity Bit-The parity bit is optional, included only when parity is enabled.

• Stop Bit(s)-One or more stop bits identify the end of each character. The serial interface has
no provision for inserting time gaps between characters.

Here is a simple diagram showiT19 the structure of an asynchronous character and its relationship to
other characters in the data stream:

Preceding
Character

Start
Bit

o o o o Parity
Bit

Stop
Bit

~-------Single Character Frame -------+-1

Beginning of
Character

1 There are no Modem Status Line, Baud Rate, or Line Control switches on the 98644 interface.

End of
Character

Start Bit
for Next
Character

RS-232 Serial Interface 12-3

Baud Rate
The rate at which data bits are transferred between the interface and the peripheral is called the
baud rate. The interface card must be set to transmit and receive at the same rate as the peripheral,
or data cannot be successfully transferred. The Baud Rate Select switches can be set to anyone of
the following values.

Baud Rate Switch Settings

Switch Settings Switch Settings
Baud Rate 3 2 1 0 Baud Rate 3 2 1 0

50 0 0 0 0 1200 1 0 0 0
75 0 0 0 1 1800 1 0 0 1

110 0 0 1 0 2400 * 1 0 1 0
134.5 0 0 1 1 3600 1 0 1 1
150 0 1 0 0 4800 1 1 0 0
200 0 1 0 1 7200 1 1 0 1
300 0 1 1 0 9600 1 1 1 0
600 0 1 1 1 19200 1 1 1 1

* factory switch settings

Modem Status and Control Lines
A modem is used for serial communications between the computer and a remote device. The
interface uses the following lines to indicate its status to the modem.

• Data-Terminal-Ready (DTR}-Indicates that the interface is ready for communications.

• Request -To-Send (RTS }-Indicates that the interface wants to send data.

The modem indicates its status to the interface through the following lines:

• Data-Set-Ready (DSR}-Indicates that the modem (data set) is ready.

• Clear-To-Send (CTS}-Indicates that the interface can transmit data over the communications
link.

• Data-Carrier-Detect (DCD}-Indicates that the remote device has requested data.

• Ring-Indicator (RI}-Indicates that the modem is receiving an incoming call.

The Status Line Disconnect switches are used to connect or disconnect the modem status lines
from the interface cable. When a given switch is in the "CONNECT" posllion, the correspond­
ing status line (from the peripheral) is connected to the interface circuitry. When it is in the
"ALWAYS ON" position, the status line is disconnected (from the peripheral) and the interface
receiver input for that line is held high (logic true). Although these status lines are only moni-
tored by the interface if Control register 13 is set (note that the default for Control register
13 is 0, or clear), any status lines that are not actively used while communicating with the
peripheral should be disconnected to minimize errors due to electrical noise in the cable.

Note that Status Line Disconnect switches cannot be altered under program control. To reconfi­
gure the switches, the interface must be removed from the computer (with power off) and the
settings changed by hand. Note also that these switches are not implemented on the built-in serial
interfaces of the Series 200 Model 216 and 21 7 and all Series 300 computers.

12-4 RS-232 Serial Interface

Software Handshake, Parity and Character Format
The Line Control switches are used to preset the software handshake, character format, and
parity options. Functions are as follows:

Software
Handshake

(Switches 7,6)

00 ENQ/ACK *
01 Xon/Xoff
10 Reserved
11 None

* factory switch settings

Software Handshake

Line Control Switch Settings

Parity

(Switches 5,4,3)

xxO no parity *
001 ODD parity
all EVEN parity
101 always ONE
111 always ZERO

Stop Bits

(Switch 2)

a 1 stop bit *
1 2 stop bits

(1.5 stop bits
if 5 bits/char)

Character
Length

(Switches 1,0)

00 5 bits/char
01 6 bits/char
10 7 bits/char
11 8 bits/char *

Software handshakes are used by two communicating devices in order to prevent overflowing
buffers. Special characters are used to implement the handshake. Two types of software hand­
shakes are implemented .

• Enquire/Acknowledge-the host of this handshake sends an Enquire character after send­
ing a specified number of characters (usually 80 characters), and then waits until it receives
an Acknowledge character from the terminal. The terminal sends the Acknowlege charac­
ter when it is ready to receive the specified number of characters .

• Xon/Xoff-the terminal sends an Xoff character when its receiving buffer is close to over­
flowing and then sends an Xon character when the buffer can again receive characters.

The Enquire/Acknowledge handshake implemented on the Serial Interface is the terminal-only
version. The interface responds with an Acknowledge character (ASCII character 6) after it has
received an Enquire character (ASCII character 5).

The Xon/Xoff handshake is the "host and terminal" version. The interface responds to an Xoff
character by stopping all transmission. It resumes transmission when it receives a Xon charac­
ter. It also sends a Xoff character (ASCII character 19) when it is running out of receiver buffer
space, and sends an Xon character (ASCII character 17) after the buffer data has been pro­
cessed.

Parity
The parity bit is used to detect errors as incoming characters are received. If the parity bit does
not match the expected sense, the character is assumed to be incorrectly received. The action
taken when an error is detected depends upon the interface and/or the application program.

RS-232 Serial Interface 12-5

Parity sense is determined by system requirements. The parity bit may be included or omitted
from each character by enabling or disabling the parity function. When the parity bit is enabled,
four options are available.

• ODD-Parity bit is set if there is an even number of bits set in the data character. The
receiver performs parity checks on incoming characters.

• EVEN-Parity bit is set if there is an odd number of bits set in the data character. The
receiver performs parity checks on incoming characters.

• ONE-Parity bit is set for all characters. Parity is checked by the receiver on all incoming
characters.

• ZERO-Parity bit is cleared, but present for all characters. Parity is checked by the receiver
on all characters.

Programming Techniques
Overview of Serial Interface Programming
Your computer uses several 110 Library facilities for data communication with various compu­
ters, terminals and peripheral devices. Serial Interface programs will include part or all of the
following elements:

• Input procedures (including buffer-transfers)

• Output procedures (including buffer-transfers)

• IOSTATUS functions

• IOCONTROL procedures

• High level control procedures

The following steps represent a normal sequence of operations in a Serial 110 program.

1. Initialize the particular interface with an IORESET or initialize the whole 110 system by
doing an IOINITIALIZE.

2. Set the operating parameters, this includes hardware characteristics, hardware hand­
shake, and software handshake. This step can be skipped if the interface defaults are
adequate.

3. Activate the Serial Interface by an IOCONTROL to Control Register 12. This activates
the receiving buffer.

4. Do input and output using the 110 library procedures and functions. This is where all the
data is transferred between the computer and the peripheral.

5. Deactivate the interface with an IOCONTROL to Control Register 12.
6. Cleanup the card by a IORESET or cleanup the whole 110 system by doing an

IOUNINITIALIZE. This step disables the receiving buffer on the interface.

12-6 RS-232 Serial Interface

Initializing the Connection
Before you can successfully transfer information to a device, you must match the operating
characteristics of the interface to the corresponding characteristics of the peripheral device. This
includes matching signal lines and their functions as well as matching the character format for
both devices. You can override some of the interface configuration switch settings by using the
IOCONTROL procedure. This not only enables you to guarantee certain parameters, but also
provides a means for changing selected parameters in the course of a running program. Control
Register definitions for the Serial Interface are listed at the end of this chapter.

Interface Reset
Whenever an interface is connected to a modem that may still be connected to a telecom­
munications link from a previous session, it is good programming practice to reset the interface
to force the modem to disconnect, unless the status. of the link and remote connection are
known. When the interface is connected to a line printer or similar peripheral, resetting the
interface is usually unnecessary unless an error condition requires it.

The Serial Interface can be reset by an IORESET, IOINITIALIZE, IOUNINITIALIZE or by use of an
IOCONTROL operation to register O. The interface is restored to its power-up condition (98644
interfaces are restored to the conditions set by the current value of registers 20 and 21) by all of
these operations, except that the timeout is not altered with the IOHESET and IOCONTROL
procedures.

Resetting the Serial Interface puts it in a non-active state. To activate the card use:

IOCONTROL(iSCt 12t 1)

But before the interface is activated, the operating parameters should be set.

Selecting the Baud Rate
In order to successfully transfer information between the interface card and a peripheral, the
interface and peripheral must be set to the same baud rate. In addition to the procedure
SET _BAUD_RATE, Control Register 3 will allow the user to change the baud rate. The follow­
ing baud rates are recommended:

50
75

110
134

150
200
300
600

1200
1800
2400
3600

4800
7200
9600

19200

For example, to select a baud rate of 3600, either of these statements can be used:

IOCONTROL (iSCt3t3600)

or

SET _BAUD_RATE (is C t 3600)

Use of values other than those shown may result in incorrect operation.

To verify the current baud rate setting, use the IOSTATUS function addressed to Status Regis­
ter 3. All rates are in baud (bits/second).

RS-232 Serial Interface 12-7

Setting Character Format, Parity and Software Handshake
Control Register 4 overrides the Line Control switches that control software handshake, parity,
and character format. To determine the value sent to the register, add the appropriate values
selected from the following table:

Software
Handshake
(Bits 7,6)

00 ENQ/ACK
01 Xon/Xoff
10 Reserved
11 None

Line Control IOCONTROL Register

Parity

(Bits 5,4,3)

xxO no parity
001 odd parity
all even parity
101 always One
111 always Zero

Stop Bits

(Bit 2)

a 1 stop bit
1 2 stop bits

(1.5 stop bits
if 5 bits/char)

Character
Length
(Bits 1,0)

00 5 bits/char
01 6 bits/char
10 7 bits/char
11 8 bits/char

For example, use IOCONTROL to configure a character format of 8 bits per character, two stop
bits, EVEN parity, and no software handshake:

IOCONTROL(iSCt 4t BINARY('11011111'»

or

I OCONTROL (is C t 4 t 223)

To configure a 5-bit character length with 1 stop bit, no parity bit, and Enquire/Acknowledge
software handshake use:

I OCONTROL (is C t 4 to)

The SeriaL3 procedures SET_PARITY, SET _STOP _BITS, and SET _CHAILLENGTH can be
used to individually set these parameters. But to change the software handshake, you must do an
IOCONTROL to register 4.

Modem Handshake
Two types of connections can be selected for the serial interface: direct connection and modem
connection. The difference between the two types of connection is that with the modem
connection, the modem lines DSR andDCD have to be high when a character is received and
the lines DSR and CTS have to be high when a character is transmitted. To change modem
checking, you must do an IOCONTROL to Control Register 13. For example:

IOCONTROL(iSCt 13t 1 { turns on ModeM handshaKe }

IOCONTROL(isc t 13 t 0 { direct connection}

12-8 RS-232 Serial Interface

Transferring Data
When the interface is properly configured, either by use of default switches or IOCONTROL
statements, you are ready to begin data transfers.

Data Output
When a non-"buffer-transfer" output operation is done (example WRITECHAR), the inter­
face waits until the previous character is sent and then puts the next character in the buffer. If
your application requires that the character is sent before continuing with the program, bits 5
and 6 of Status Register 10 can be checked. The following procedure waits until all characters
are transmitted:

procedure wait_sent(isc : type_isc);
{

}

This procedure waits until the transMit buffer is eMPty.
It worKs for the 88828 and 88828 cards.
The Modules IODECLARATIONS, GENERAL_O, and IOCOMASM needs
to be ilT1Ported.

uar busy: boolean;
be9'in

repeat
if isc_table[isc].card_id = hp88828 then

bus}':= binand(iostatus(iscdO),HEX('80'» <> HE}«'80'»
else {assuMe the card is hp88828 }

bus }' : = i 0 s tat us (i s c ,38') = 0;
until not bus}';

end;

In the program the output sequence should be:

1 •• .Iritechar(isc, 'a');
wait_sent(isc);

RS-232 Serial Interface 12-9

Data Input
When a non-"buffer-transfer" input operation is done (example READSTRING), the interface
waits for each character until the number of characters required is satisfied. For some applica­
tions, knowing if there is a character in the buffer is important. Bit 0 of Status Register 10 gives
this information. The following function returns TRUE if there is at least one character in the
receive buffer:

function have_char(isc : type_isc) : boolean;
{

This function returns true if there is a character in the
receive buffer. If not it returns false.
It worKs for the 98828 and 98828 cards.
The Modules IODECLARATIONSt GENERAL_Ot and IOCOMASM need
to be ilT1Ported.

}

begin
if isc_table[isc].card_id = hp98828 then
have_char := odd(iostatus(isct 10 »

else { aSSUMe it is hp98828 card}
have_char := odd(iostatus(isct 5 »;

end;

The program input sequence would be:

if have_char(isc) then readchar(iSCt character);

Error Detection and Handling
The Serial Interface can detect and report several different classes of errors. The handling of
errors by the interface differs depending on the severity of the error. For an unrecoverable
error, an ESCAPE error is given. In case of an ESCAPE error, you can evaluate the error in the
RECOVER section of your program. An 110 procedure ESCAPE error gives an ESCAPECODE
of -26. To identify the error more closely, you can use the IOERROR_MESSAGE procedure
with the IOE_RESUL T variable as the parameter. For example:

if ESCAPECODE = -28 then
begin
writeln (IOERROR_MESSAGE(IOE_RESULT»;
ESCAPE(ESCAPECODE) ;

end;

12-10 RS-232 Serial Interface

The TRY IRECOVER mechanism, the ESCAPECODE variable and the ESCAPE procedure
are available by using $SYSPROG ON$. The IOERROR_MESSAGE procedure and the
IOE_RESUL T variable are available when you IMPORT the IODECLARATIONS module.

The errors which can happen are listed below.

• Parity Error-The parity bit on an incoming character does not match the parity expected
by the receiver. This condition is most commonly caused by line noise. The interface
handles this error by changing the character into a special character. This special character
is defined by Control Register 19 and the default character is an underscore ("_"). The
interface also sets bit 2 of Status Register 1 O.

• Framing Error-Start and stop bit(s) do not match the timing expectations of the receiver.
This can occur when line noise causes the receiver to miss the start bit or obscures the stop
bits. This error is handled similar to a parity error: the received character is translated into
the special character defined by Register 19. The interface also sets bit 3 of Status Register
10.

• Break received-A BREAK was sent to the interface by the peripheral device. The Serial
Interface does not interpret this condition as an error. The interface sets bit 4 of Status
Register 10. Since BREAK is detected as a special type of framing error, bit 3 of Status
Register 10 is also set. However, no special character is inserted into the receive buffer.

• Overrun error-Incoming data was not consumed fast enough so that one or more data
characters were lost. This error can occur in two different ways: the software receive
buffer overflowed, and the hardware receive buffer overflowed. In the first case, the
program running cannot keep up with the receiver buffer at the current baud rate. Either
reduce the baud rate, use software handshake, or change the program so that characters
are read consistently. In the second case the error implies that interrupts were disabled so
that the characters could not be processed. In both cases, an ESCAPE is generated and an
IOE_RESUL T of314 results. In the second case, bit 1 of Status Register 10 is also set.

• Timeout error-Timeout errors occur when a character is not read or written within the
timeout period specified. An ESCAPE is generated and an IOE_RESUL T of 17 results. A
timeout can occur when writing a character if DSR or CTS is low for the duration of the
timeout. A timeout can occur when reading a character if no valid character was received
during the timeout period.

• CTS False Too Long-This error occurs when a software handshake character cannot be
sent because either DSR or CTS is low. The interface gives an ESCAPE error with an
IOE_RESULT of 316.

• Range Errors-These errors occur when parameters passed to 110 library procedures and
functions are out of range. For example, the Serial Interface does not support DMA; a call
to TRANSFER with the transfer type being OVERLAP _DMA will result in an ESCAPE
error with an IOE_RESULT of 7. These errors do not indicate a communications problem,
rather they indicate a programming problem.

The ESCAPE errors "Overrun" and "CTS False Too Long" can happen even when there is no
direct read or write to the interface. These errors will be saved by the interface and will be given
at the next read or write operation to the interface. To avoid these ESCAPE errors, you can
check Status Register 14. This register will return the IOE_RESULT of any pending errors. It will
also clear the pending error so that the error can be handled without going into a RECOVER
block.

RS-232 Serial Interface 12-11

As mentioned above, Status Register 10 has four bits which indicate if certain error conditions
have occurred on the card. The four bits (1 through 4) are read-destructive bits. That is, if the
register is read, the error bits are reset to zero.

When an ESCAPE error occurs (other than range type errors), it means there is a fairly serious
problem. You should reset the interface if you decide to continue with the program. However
an IORESET is sometimes undesirable since it resets all hardware parameters and modem
connections are broken. To alleviate this problem, a soft reset is provided. A call to IOCON­
TROL with Register 14 and a non-zero value as parameters resets the interface without chang­
ing the hardware parameters or modem connections. It also clears the receive buffer.

Special Applications
This section provides advanced programming information for applications requiring special
techniques.

Sending BREAK Messages
A BREAK is a special character transmission that usually indicates a change in operating
conditions. Interpretation of break messages varies with the application. To send a break
message, send a non-zero value to control Register 1.

IOCONTROL(isc t1 t1) {Send a BREAK to peripheral}

Redefining Handshake and Special characters
Control registers 15 through 18 can be used to redefine the software handshake characters.
The values passed to these registers should be the ordinal value of the character. The following
example changes the Xon handshake character to DC2.

IOCONTROL(isc t 15 t 20)

Status registers 15 through 19 gives the ordinal value of the current handshake character. The
following assigns to a character the current Acknowledge character.

ch := CHR(IOSTATUS(isc t 18»

As mentioned preViously, Control Register 19 redefines the character into which parity error
and framing error are converted. The following example sets this character to be the ASCII
character DEL.

IOCONTROL(isct 19t 127)

Status Register 19 returns the current special character.

12-12 RS-232 Serial Interface

Using the Modem Line Control Registers
Modem line handshaking is performed automatically by the Serial Interface. The lines set by the
interface are DTR and RTS. The lines checked by the interface are DSR, DCD, and CTS. Lines
are set by the Serial Interface regardless of the modem handshake selection. Modem lines are
checked only if the modem handshake is turned on. Your can change the values of the modem
lines by writing to Control Register 5 or 7. The operations which involve modem lines are
described below.

• Reset-both DTR and DSR are set to low.

• Activate-DTR is set to high.

• Deactivate-both DTR and DSR are set to low.

• Output-RTS is set to high. If the modem handshake is on, the interface will wait until
DSR and CTS to become high before putting the characters in the transmit buffer.

• Input-If the modem handshake is on, all characters received when DSR or DCD is low
are discarded (not put into the buffer).

• TRANSFER_END-When this procedure is called with direction "from_memory", at the
end of the transfer RTS will be set low.

The follOWing table summarizes the modem lines affected.

How Operations Affect Modem Lines

DTR RTS DSR CTS DCD

reset
activate
deactivate
input

o 0
1
o 0

output
transfeLend

1
o

x
X X

the modem line was not used.
o the modem line was set to low.
1 the modem line was set to high.
X the modem line was checked.

X

Control Register 5 controls various functions related to modem operation. Bits 0 thru 3 control
modem lines, and bit 4 enables a self-test loopback configuration.

RS-232 Serial Interface 12-13

Modem Handshake Lines (RTS and DTR)
As explained earlier in this chapter, Request-To-Send and Data-Terminal-Ready lines are set
or cleared by certain Serial Interface operations. For example, RTS is set high by the first
write operation. Your application might require RTS to be high before the first write opera­
tion. The following example sets both RTS and DTR high at the same time.

IOCONTROL(isc t 5t 3); { set both RTS and DTR hig"h }

IOCONTROL(isct12t 1); {activate the receit.le buffer}

The above example also clears the loopback bit, and it clears the modem lines DRS and SRTS.
To change only those two bits would require:

IOCONTROL(isc t 5 t BINIOR(IOSTATUS(isc t 5) t BINARY('00000011'»)

{Sets RTS and DTR without disturbing" other bits of reg"ister 5}

Programming the DRS and SRTS Modem Lines
Bits 3 and 2 of Control Register 5 control the present state of the Data Rate Select (DRS) and
Secondary-Request-To-Send (SRTS) lines, respectively. When either bit is set, the corres­
ponding modem line is activated. When the bit is cleared, so is the modem line.

Configuring the Interface for Self-test Operations
Self-test programs can be written for the Serial Interface. Prior to testing the interface, it must
be properly configured. Using bit 4 of Control Register 5, you can rearrange the interconnec­
tions between input and output lines on the interface, enabling the interface to feed outbound
data to the inbound circuitry.

When LOOPBACK is enabled (bit 4 is set), the UART output is set to its MARK state and sent to
the Transmitted Data (TxD) line. The output of the transmitter shift register is then connected to
the input of the receiver shift register, causing outbound data to be looped back to the receiver.
In addition, the following modem control lines are connected to the indicated modem status
lines.

Loopback Connections

Modem Control Line

DTR Data Terminal Ready
RTS Request-to-send
DRS Data Rate Select
SRTS Secondary RTS

to Modem Status Line

CTS
DSR
DCD
RI

Clear -to-send
Data Set Ready
Data Carrier Detect
Ring Indicator

When loopback is active, receiver and transmitter interrupts are fully operational. Modem
control interrupts are then generated by the modem control outputs instead of the modem
status inputs. Refer to Serial Interface hardware documentation for information about card
hardware operation.

12-14 RS-232 Serial Interface

IOREAD_BYTE and IOWRITE_BYTE Register Operations
For those cases where you need to write special interface driver routines, the interface card
hardware registers can be accessed by use of IOREAD_BYTE and IOWRITE_BYTE proce­
dures. These capabilities are intended for use by experienced programmers who understand
the inherent programming complexities that accompany this versatility. Warning: operations
through hardware registers might interfere with the Serial Interface drivers.

Some registers are read/write; that is, both IOREAD_BYTE and IOWRITE_BYTE operations
can be performed on a given register. Writing places a new value in the register; a read
operation returns the current value. All registers have 8 bits available, and accept values from 0
thru 255 unless noted otherwise. When the value of a given bit is 1, the bit is set. Otherwise it is
zero (cleared or inactive).

Some hardware registers are similar in structure and function to Status and Control Registers.
However, their interaction with the Pascal operating system is considerably different. To pre­
vent incorrect program operation, do not intermix the use of Status/Control registers and
hardware registers in a given program.

Status and Control Registers
Most Control Registers accept values in the range from 0 thru 255. Some registers accept only
specified values as indicated, or higher values for baud rate settings. Values less than zero are
not accepted. Higher-order bits not needed by the interface are discarded if the specified value
exceeds the valid range.

Reset value is the default value used by the interface after a reset or power-up until the value is
overridden by a IOCONTROL procedure.

Status O-Card Identification
Value returned: 2 (if 130 is returned, the Remote jumper wire has been removed from the
interface card). The value returned for a 98644 card is 66 (or 194 if the Remote jumper has
been removed).

Control O-Card Reset
Any value, 1 thru 255, resets the card. Immediate execution. Data transfers in process are
aborted and any buffered data is destroyed.

Status I-Interrupt Status
Bit 7 set: Interface hardware interrupt to CPU enabled.
Bit 6 set: Card is requesting interrupt service.
Bits 5&4: 00 Interrupt Level 3

01 Interrupt Level 4
10 Interrupt Level 5
11 Interrupt Level 6

Bits 3 thru 0 not used.

Control I-Transmit BREAK
Any non-zero value sends a 400 millisecond BREAK on the serial line.

RS-232 Serial Interface 12-15

Status 2-Interface Activity Status
Bit 5 set: Software handshake character pending. The peripheral is the host and it

should not be sending more characters since it is waiting for either an
ENQUIRE character (ENQ/ACK handshake) or a Xon character (Xonl
Xoff handshake).

Bit 4 set: Waiting for handshake character. The desktop is acting as a host and it is
not transmitting because it has received an Xoff character and it is wait­
ing for an Xon character.

Bit 1 set: Interrupts are enabled for this interface.
Bit 0 set: Transfer in progress. Either an input or an output transfer is in progress.
Bits 2, 3, 6, and 7 are not used.

Status 3-Current Baud Rate
Returns current baud rate.

Control 3 -- Set New Baud Rate
The recommended baud rates are:

50 150
75 200

110 300
134 600

1200
1800
2400
3600

4800
7200
9600

19200

Status 4-Current Character Format
See Control Register 4 for function of individual bits.

Control4-Set New Character Format

Software Parity Stop Bits
Handshake
(Bits 7,6) (Bits 5,4,3) (Bit 2)

00 ENQ/ACK xxO no parity 0 1 stop bit
01 Xon/Xoff 001 odd parity 1 2 stop bits
10 Reserved 011 even parity 1 1.5 if
11 None 101 always One 5 bits/char

111 always Zero

Status 5-Current Status of Modem Control Lines

Character
Length

(Bits 1,0)

00 5 bits/char
01 6 bits/char
10 7 bits/char
11 8 bits/char

Returns CURRENT line state values. See Control Register 5 for function of each bit.

Control 5-Set Modem Control Line States
Bit 4 set: Enables loopback mode for diagnostic tests.
Bit·3 set: Set Secondary Request-to-Send line to active state.
Bit 2 set: Set Data Rate Select line to active state.
Bit 1 set: Set Request-To-Send line to active state.
Bit 0 set: Set Data-Terminal-Ready line to active state.

Status 6-Data In
Reads character from receive buffer. Results are undefined if no character is present in the
receive buffer.

12-16 RS-232 Serial Interface

Control 6-Data Out
Sends character to the transmitter holding register. This transmits a character without affecting
modem lines. (Be sure that the transmitter holding register is empty before this operation.)

Status 71-0ptional Receiver/Driver Status
Returns current value of optional circuit drivers or receivers as follows:

Bit 3: Optional Circuit Driver 3 (OCD3).
Bit 2: Optional Circuit Driver 4 (OCD4).
Bit 1: Optional Circuit Receiver 2 (OCR2).
Bit 0: Optional Circuit Receiver 3 (OCR3).
Other bits are not used (always 0).

Control 71-Set New Optional Driver Status
Sets (bit = 1) or clears (bit = 0) optional circuit drivers as follows:

Bit 3: Optional Circuit Driver 3 (OCD3),
Bit 2: Optional Circuit Driver 4 (OCD4).
Other bits are not used.

Status IO-UART Status
Bit set indicates UART status or detected error as follows:

Bit 7: Not used.
Bit 6: Transmit Shift Register empty.
Bit 5: Transmit Holding Register empty.
Bit 4: Break received.
Bit 3: Framing error detected.
Bit 2: Parity error detected.
Bit 1: Receive Buffer Overrun error.
Bit 0: Receiver Buffer full.

Note: bits 1 through 4 are read destructive, they will be cleared each time this register is read
with an IOSTATUS.

Status II-Modem Status
Bit set indicates that the specified modem line or condition is active.

Bit 7: Data Carrier Detect (DCD) modem line active.
Bit 6: Ring Indicator (RI) modem line active.
Bit 5: Data Set Ready (DSR) modem line active.
Bit 4: Clear-to-Send (CTS) modem line active.
Bit 3: Change in OeD line state detected.
Bit 2: RI modem line changed from true to false.
Bit 1: Change in OSR line state detected.
Bit 0: Change in CTS line state detected.

Note: Bits 0 through 3 are read destructive; they will be cleared each time this register is
read with an IOSTATUS.

1 With the 98644 interface, this register always contains O.

Status l2-Interface activity
Returned value:

0-The interface is deactivated.
I-The interface is active.

Control12-Set interface active
Value:

O-Deactivate the interface.
I-Activate the interface, sets DTR and does a soft reset.

Status l3-Modem handshake status
Returned value:

O-modem line handshaking is disabled.
I-modem line handshaking is enabled.

Status l4-Error pending

RS-232 Serial Interface 12-17

Returns the IOE_RESUL T of any escape errors pending on the interface. A value of 0 is
returned if no errors are pending.

Control14-Soft reset
Any value, 1 through 255 resets the interface without affecting the modem lines or the
hardware parameters. Receive buffer is reset with this command.

Status l5-Current Xon handshake character
Returns the ordinal value of the current Xon handshake character.

Control15-Redefine Xon handshake character
Sets the Xon handshake character to have ordinal value equal to the input value. Default is
DC 1 (ASCII charader 1 7).

Status l6-Current Xoff handshake character
Returns the ordinal value of the current Xoff handshake character.

Control l6-Redefine Xoff handshake character
Sets the Xoff handshake character to have ordinal value equal to the input value. Default is
DC3 (ASCII character 19).

Status 17 -Current Enquire handshake character
Returns the ordinal value of the current Enquire handshake character.

Control l7-Redefine Enquire handshake character
Sets the ENQUIRE handshake character to have ordinal value equal to the input value.
Default is ENQ (ASCII character 5).

Status IS-Current Acknowledge handshake character
Returns the ordinal value of the current Acknowledge handshake character.

1 With the 98644 interface, writing this register performs no operation.

12-18 RS-232 Serial Interface

Control 18-Redefine Acknowledge handshake character
Sets the Acknowledge handshake character to have ordinal value equal to the input value.
Default is ACK (ASCII character 6).

Status 19-Current framing/parity error character
Returns the ordinal value of the special character into which framing errors and parity errors
would be converted.

Control 19-Redefine framing/parity error handshake character
Sets the special character used to represent framing errors and parity errors to have an
ordinal value equal to the input value. Default is an underscore ("_") (ASCII character 95).

Status 20 - Current parity/framing error reporting
Returns a if these errors are being reported (default), or 1 if not.

Control 20 - Disable parity/framing error reporting
Writing a 1 into this register disables the reporting of framing and parity errors; a enables
reporting.

Status 21 - Current 98626/98644 "reset default" baud rate
Returns the baud rate that will be restored whenever the 98626/98644 interface is reset (same
bit-definitions as register 3). Power-up default for the 98626 is taken from the card switches.
The power-up default baud rate for the 98644 is 2400.

Control 21 - Set 98626/98644 "reset default" baud rate
Sets the baud rate that will be restored whenever the 98626/98644 interface is reset (same
bit-definitions as register 3).

Status 22 - Current 98626/98644 "reset default" character format
Returns the character format parameters that will be restored whenever the 98626/98644
interface is reset (same bit-definitions as register 4). Power-up default for the 98626 is taken
from the card switches. The bit settings 00000111 (8-bits/2-stop/noparity/ENQ-ACK) are used
for the 98644's power-up defaults.

Control 22 - Set 98626/98644 "reset default" character format
Sets the character format parameters that will be restored whenever the 98626/98644 interface
is reset (same bit-definitions as register 4).

RS-232 Serial Interface 12-19

Serial Interface Hardware Registers
Interface Card Registers
IOREAD_BYTE and IOWRITE_BYTE registers 1, 3, 5, and 7 access interface registers. Their
functions are as follows:

Register I-Interface Reset and ID
IOREAD_BYTE to Register 1 returns the interface ID value-2 for the HP 98626 Serial Inter­
face (or 66 for the 98644 interface) IOWRITE--BYTE to Register 1 with any value resets the
interface as when using an IOCONTROL statement to Control Register O.

Register 3-Interrupt Control
Only the upper four bits of Register 3 are used. Bits 5 and 4 return the setting of the
Interrupt Level switches on the interface. Their values are as follows:

00 Interrupt Level 3
01 Interrupt Level 4

10 Interrupt Level 5
11 Interrupt Level 6

Bit 6 is set when an interrupt request is originated by the UART. No machine interrupt can
occur unless bit 7, Interrupt Enable is set by an IOWRITE_BYTE statement. Only bit 7 is
affected by IOWRITE_BYTE statements. During IOREAD_BYTE, bit 7 returns the current
enable value; bits 6 thru 4 return interrupt request and level information.

Register 51-Optional Circuit and Baud Rate Control

IOWRITE_BYTE to bits 7 and 6 control the state of optional circuit drivers 3 and 4, respec­
tively. IOREAD_BYTE returns current values of the respective drivers, plus the follOWing:

Bit 5-0ptional Circuit Receiver 2 state.
Bit 4-0ptional Circuit Receiver 3 state.
Bits 3-0-Current Baud Rate switch setting (not necessarily the current UART baud rate).

These switches can be interpreted in any way you choose. The current interpretation
given to them by the serial interface drivers are as follows:

Setting Baud Rate Setting Baud Rate

0000 50 1000 1200
0001 75 1001 1800
0010 110 1010 2400
0011 134.5 1011 3600
0100 150 1100 4800
0101 200 1101 7200
0110 300 1110 9600
0111 600 1111 19200

Note that IOWRITE_BYTE to this register can NOT be used to set the baud rate.
Use Register 23, bit 7 and Registers 1 7 and 19 instead.

Register 71-Line Control Switch Monitor
IOREAD_BYTE of this register returns the current settings of the Line Control switches that set
the default character format and parity. Bits 7 thru 0 correspond to switches 7 thru 0, respec­
tively. IOWRITE--BYTE operations to this register are meaningless.

1 Registers 5 and 7 are not defined with the 98644 interface.

12-20 RS-232 Serial Interface

UART Registers
Addresses 1 7 through 29 access UART registers. They are used to directly control certain UART
functions. The function of Registers 1 7 and 19 are determined by the state of bit 7 of Register
23.

Register 17-Receive Buffer/Transmitter Holding Register
When bit 7 of Register 23 is clear (0), this register accesses the single-character receiver
buffer by use of IOREAD_BYTE. The IOWRITE_BYTE procedure places a character in the
transmitter holding register.

The receiver and transmitter are doubly buffered. When the transmitter shift register becom­
es empty, a character is transferred from the holding register to the shift register. You can
then place a new character in the holding register while the preceding character is being
transmitted. Incoming characters are transferred to the receiver buffer when the receiver
shift register becomes full. You can then input the character (lOREAD_BYTE) while the
next character is being constructed in the shift register.

Registers 17 and 19-Baud Rate Divisor Latch
When bit 7 of Register 23 is set, Registers 1 7 and 19 access the 16-bit divisor latch used by
the UART to set the baud rate. Register 1 7 forms the lower byte; Register 19 the upper. The
baud rate is determined by the following relationship:

Baud Rate = 153 600/Baud Rate Divisor

To access the Baud Rate Divisor latch, set bit 7 of Register 23. This disables access to the
normal functions of Registers 1 7 and 19, but preserves access to the other registers. When
the proper value has been placed in the latch, be sure to clear bit 7 of Register 23 to return
to normal operation.

Register 19-Interrupt Enable Register
When bit 7 of Register 23 is clear (0), this register enables the UART to interrupt when
specified conditions occur. Only bits 0 thru 3 are used. IOWRITE_BYTE establishes a new
value for each bit; IOREAD_BYTE returns the current register value. Interrupt enable condi­
tions are as follows:

Bit 3-Enable Modem Status Change Interrupts. When set, enables an interrupt whenever
a modem status line changes state as indicated by Register 29, bits 0 thru 3.

Bit 2-Enable Receiver Line Status Interrupts. When set, enables interrupts by errors, or
received BREAKs as indicated by Register 27, bits 1 thru 4.

Bit I-Enable Transmitter Holding Register Empty Interrupt. When set, allows interrupts
when bit 5 of Register 27 is also set.

Bit O-Enable Receiver Buffer Full Interrupts. When set, enables interrupts when bit 0 of
Register 27 is also set.

RS-232 Serial Interface 12-21

Register 21-Interrupt Identification Register
This register identifies the cause of the highest-priority, currently-pending interrupt. Only
bits 2, 1, and 0 are used. Bit 0, if set, indicates no interrupt pending. Otherwise an interrupt
is pending as defined by bits 2 and 1. Causes of pending interrupts in order of priority are as
follows:

II-Receiver Line Status interrupt (highest priority) is caused when bit 2 of Register 19 is
set and a framing, parity, or overrun error, or a BREAK is detected by the receiver
(indicated by bits 1 thru 4 of Register 27). The interrupt is cleared by reading Register
27.

10-Receive Buffer Register Full interrupt is generated when bit 0 of Register 19 is set and
the Data Ready bit (bit 0) of Register 27 is active. To clear the interrupt, read the
receiver buffer, or write a zero to bit 0 of Register 27.

01-Transmitter Holding Register Empty interrupt occurs when bit 1 of Register 19 is set
and bit 5 of Register 27 is set. The interrupt is cleared by writing data into the
transmitter holding register (Register 17 with bit 7 of Register 23 clear) with a IOW­
RITE_BYTE statement, or by reading this register (Interrupt Identification).

OO-Modem Line Status Change interrupt occurs when bit 3 of Register 19 is set and a
modem line change is indicated by one or more of bits 0 thru 3 of Register 29. To
clear the interrupt, read Register 29 which clears the status change bits.

Register 23-Character Format Control Register
This register is functionally equivalent to Control and Status Register 4 except for bits 6 and
7. IOWRITE_BYTE sets a new character format; IOREAD_BYTE returns the current char­
acter format setting.

Bit 7 -Divisor Latch Access Bit. When set, enables you to access the divisor latches of the
Baud Rate generator during read/write operations to registers 1 7 and 19.

Bit 6-Set BREAK. When set, holds the serial line in a BREAK state (always zero),
independent of other transmitter activity. This bit must be cleared to disable the
break and resume normal activity.

Bits 5,4-Parity Sense. Determined by both bits 5 and 4. When bit 5 is set, parity is always
ONE or ZERO. If bit 5 is not set, parity is ODD or EVEN as defined by bit 4. The
combinations of bits 5 and 4 are as follows:

00 ODD parity
01 EVEN parity

10 Always ONE
11 Always ZERO

Bit 3-Parity Enable. When set, sends a parity bit with each outbound character, and
checks all incoming characters for parity errors. Parity is defined by bits 4 and 5.

Bit 2-Stop Bit(s). Defined by a combination of bit 2 and bits 1 & O.

Bit 2

o
1
1

Character Length

5,6,7,or8
5

6,7, or8

Stop Bits

1
1.5
2

12-22 RS-232 Serial Interface

Bits 1,0-Character Length. Defined as follows:

Bits 1&0

00
01
10
11

Register 25-Modem Control Register

Character Length

5 bits
6 bits
7 bits
8 bits

This is a READ/WRITE register. IOREAD_BYTE returns current control register value. IOW­
RITE_BYTE sets a new value in the register. This register is equivalent to interface Control
Register 5.

Bit 4-Loopback. When set, enables a loopback feature for diagnostic testing. Serial line is
set to MARK state, UART receiver is disconnected, and transmitter output shift
register is connected to receiver input shift register. Modem line outputs and inputs
are connected as follows: DTR to CTS, RTS to DSR, DRS to DCD, and SRTS to RI.
Interrupts are enabled, with interrupts caused by modem control outputs instead of
inputs from modem.

Bit 3-Secondary Request-to-Send. Controls the OCD2 driver output. 1 = Active,
0= Disabled.

Bit 2-Data Rate Select. Controls the OCDI driver output. 1 = Active, 0 = Disabled.
Bit l-Request-to-Send. Controls the RTS modem control line state. When bit 1 = 1, RTS is

always active. When bit 1 = 0, RTS is toggled by the output operations, as described
earlier in this chapter.

Bit O-Data Terminal Ready. Holds the DTR modem control line active when the hit is set. If
not set, DTR is controlled by output or input operations, as described earlier.

Bits 7, 6, and 5 are not used.

Register 27-Line Status Register

Bit 7-Not used.
Bit 6-Transmitter Shift Register Empty. Indicates no data present in transmitter shift

register.
Bit 5-Transmitter Holding Register Empty. Indicates no data present in transmitter hold­

ing register. The bit is cleared whenever a new character is placed in the register.
Bit 4-Break Indicator. Indicates that the received data input remained in the spacing (line

idle) state for longer than the transmission time of a full character frame. This bit is
cleared when the line Status register is read.

Bit 3-Framing Error. Indicates that a character was received with improper framing; that
is, the start and stop bits did not conform with expected timing boundaries.

Bit 2-Parity Error. Indicates that the received character did not have the expected parity
sense. This bit is cleared when the register is read.

Bit I-Overrun Error. Indicates that a character was destroyed because it was not read
from the receiver buffer before the next character arrived. This bit is cleared by
reading the line Status register.

Bit O-Data Ready. Indicates that a character has been placed in the receiver buffer
register. This bit is cleared by reading the receiver buffer register, or by writing a
zero to this bit of the line Status register.

RS-232 Serial Interface 12-23

Register 29-Modem Status Register
Bit 7 -Data Carrier Detect. When set, indicates DCD modem line is active.
Bit 6-Ring Indicator. If set, indicates that the RI modem line is active.
Bit 5-Data Set Ready. If set, indicates that the DSR modem line is active.
Bit 4--Clear-to-send. If set, indicates that CTS is active.
Bit 3-Change in Carrier Detect. When set, indicates that the DCD modem line has

changed state since the last time the modem status register was read.
Bit 2-Trailing Edge of Ring Indicator. Set when the RI modem line changes from active to

inactive state.
Bit I-Delayed Data Set Ready. Set when the DSR line has changed state since the last

time the modem status register was read.
Bit O-Change in Clear-to-send. If set, indicates that the CTS modem line has changed

state since the last time the register was read.

HP 98626 Cable Options and Signal Functions
The HP 98626A Serial Interface is available with RS-232C DTE and DCE cable configurations.
The DTE cable option consists of a male RS-232C connector and cable designed to function as
Data Terminal EqUipment (DTE) when used with the serial interface. The cable and connector
are wired so that signal paths are correctly routed when the cable is connected to a peripheral
device wired as Data Communication EqUipment (DCE), such as a modem. The cables are
designed so that you can write programs that work for both DCE and DTE connections without
requiring modifications to accommodate equipment changes.

The DCE cable option includes a female connector and cable wired so that the interface and
cable behave like normal DCE. This means that signals are routed correctly when the female
cable connector is connected to a male DTE connector.

Line printers and other peripheral devices that use RS-232C interfacing are frequently wired as
DTE with a female RS-232C chassis connector. This means that if you use a male (DTE) cable
option to connect to the female DTE device connector, no communication can take place
because the signal paths are incompatible. To eliminate the problem, use an adapter cable to
convert the female RS-232C chassis connector to a cable connector that is compatible with the
male or female interface cable connector. The HP 13242 adapter cable is available in various
configurations to fit most common applications. Consult cable documentation to determine
which adapter cable to use.

The DTE Cable
The signals and functions supported by the DTE cable are shown in the signal identification
table which follows. The table includes RS-232C signal identification codes, CCITT V.24
eqUivalents, the pin number on the interface card rear panel connector, the RS-232C connec­
tor pin number, the signal mnemonic used in this manual, whether the signal is an input or
output signal, and its function.

12-24 RS-232 Serial Interface

RS-232C DTE (male) Cable Signal Identification Tables

Signal Interface RS-232C
RS-232C V.24 Pin # Pin # Mnemonic 110 Function

AA 101 24 1 - - Safety Ground
BA 103 12 2 Out Transmitted Data
BB 104 42 3 In Received Data
CA 105 13 4 RTS Out Request to Send

CB 108 44 5 CTS In Clear to Send
CC 107 45 6 DSR In Data Set Ready
AB 102 48 7 - - Signal Ground
CF 109 46 8 DCD In Data Carrier Detect

SCF (OCR2) 122 47 12 SDCD In Secondary DCD
DB 114 41 15 In DCE Transmit Timing
DD 115 43 17 In DCE Receive Timing

SCA (OCD2) 120 15 19 SRTS Out Secondary RTS

CD 108.1 14 20 DTR Out Data Terminal Ready
CE (OCR1) 125 9 22 RI In Ring Indicator
CH (OCD1) 111 40 23 DRS Out Data Rate Select

DA 113 7 24 Out Terminal Transmit Timi ng

Optional Circuit Driver/Receiver Functions
Not all signals from the interface card are included in the cable wiring. RS-232C provides for
four optional circuit drivers and two receivers. Only two drivers and two receivers are supported
by the DCE and DTE cable options. They are as follows:

Drivers Receivers
Name Function Name Function

OCD1
OCD2
OCD3
OCD4

Data Rate Select
Secondary Request-to-send
Not used
Not used

OCR1 Ring Indicator
OCR2 Secondary Data Carrier Detect

If your application requires use of OCD3 or OCD4, you must provide your own interface cable
to fit the situation.

The DCE Cable
The DCE cable option is designed to adapt a DTE cable and serial or data communications
interface to an identical interface on another desktop computer. It is also used with the serial
interface to simulate DCE operation when driving a peripheral wired for DTE operation. The
DCE cable is equipped with a female connector. Since most DTE peripherals are also equipped
with female connectors (pin numbering is the same as the standard male DTE connector), an
adapter (such as the HP 13242M) is used to connect the two female connectors as explained
earlier.

Note
Not all RS-232C devices are wired the same. To ensure proper
operation, you must know whether the peripheral device is wired as
DTE or DCE. The interface cable option and associated adapter
cable, if needed, must be configured to properly mate with the
female DTE chassis connector.

RS-232 Serial Interface 12-25

The following schematic diagram shows the input and output signals for the Serial Interface and
how they are connected to a DeE peripheral.

98626 OTE RS-232C
INTERFACE CABLE SIGNALS

~ f-:EI=2 ___ ~) BA (PIN 2) >--DATA
~ IN

~(42) BS(PIN3) >--DATA
~ OUT

~ ll3 REQUEST
~'")CA(PIN4) >--TOSEND(lN)

~(44 CLEAR
~~"'....;....;...---~) CB(PIN5) >-TOSEND(OUT)

~ (46) CF (PIN 8) >-DATA CARRIER
~ DETECT (OUT)

~f-E.;..;15 ___ ~) SCA(PlN 19) >-SECONDARY REQUEST
~ TO SEND (IN)

~~ 47 SECONDARY DATA
~E) SCF(PIN 12) >-- CARRIER DETECT (OUT)

~ E 14) CO (PIN 20) >-- DATA TERMINAL
~ READY (IN)

~~9~ ___ -+ RING
~) CE(PIN22)r--INDICATOR(OUT)

__ ~./'LD_S_R _______ j (45' DATA SET
~~;......-.--~) CC(PIN 6) >-READY (ouT)

SIGNAL r-< (48) AS (PIN 7) ~ SIGNAL
GROUNDQ ~ GROUND

SAF ETY r---< E 24) A A (PIN I) '>----. SAFETY
GROUND ... • -4- GROUND

~~4~O~ __ --+ DATA
~t t CH(PIN 23) t RATE SELECTON)

INTERFACE MALE FEMALE
REAR PANEL RS-232C DCEPERIPHERAL
CONNECTOR INTERFACE CHASSIS CONNECTOR

CABLE CONNECTOR

DTE Cable Diagram

DCE Interface
Signals to and
from Peripheral

NOTE: Some DCE
peripherals may not

provide for all the

signal lines shown.

12-26 RS-232 Serial Interface

This diagram shows an HP 13242M adapter cable connected to a DCE interface cable and a
DTE peripheral. Note that RTS is connected to CTS in the DCE cable. If your peripheral uses
RTS/CTS handshaking, a different adapter cable must be used with the appropriate OTE or
DCE interface cable option.

98626 DCE RS-232 C
INTERFACE CABLE SIGNALS

13242M
ADAPTER

CABLE

~ f-!(�=2 ___ -« BB(PIN3) ~(____ ~))LDATAIN
~

~+-(42-'=-----«BA(PIN2) +-(___ --+) ~DATAOUT
~

- -~T$ -.J::J1:.:3------«CF(PIN8) +-(-----+) ~DATA CARRIER
--v----' DETECT (IN)

----<}ill---< 44

~(46 CCA(PIN4) ()~REQUESTTO
~ SEND (OUT)

CB (PIN 5) +-(____ -+) .;.-. CLEAR TO
SEND (IN)

~ 15 12 SECONDARY DATA
~+-(:.:.-----«SCF (PIN 12) ~(-----+) r CARRIER DETECT (IN)

~t-(4.;.;.7----«SCA (PI N 19) +-(___ --+) >'!- SECONDARY REQUEST
~ TO SEND (OUT)

~(14 CCE(PIN22) () ~RINGINDICATOR (IN)

CC (PIN 6) t-(___ --+) ~ DATA SET READY (IN)

~~;:r9~-----« CO (PIN 20)t-(-----+) -}Q DATA TERMINAL
~ READY (OUT)

~45

SIGNAL r-< t-(4..;..;8~ __ -« AB (PIN 7) +-(-----+) ~ SIGNAL
GROUND~ I V GROUND

SAFETY r--<t-(2-4----«AA (PIN I) t-(---~) h SAFETY
GROUND,,:, -= GROUND

~~NOTUSED
t t

INTERFACE FEMALE
REAR PANEL RS-232 C
CONNECTOR INTERFACE

CABLE CONN ECTOR

FEMALE
RS-232C

DTE PERIPHERAL
CHASSIS CONNECTOR

DCE Cable Diagram

DeE Interface
Signals to and
from Peripheral

NOTE: Some DTE
peripherals may not
provide for all the

signal lines shown.

RS-232 Serial Interface 12-27

HP 98644 Interface Differences
The HP 98644 RS-232 Serial Interface is nearly identical to the HP 98626 RS-232 Serial Interface.
This section describes the few differences between them.

Hardware Differences
The differences in the hardware of the two cards occur in the following areas:

• Card ID register contains 66 (rather than 2).

• There are no optional driver and receiver lines.

• There are fewer configuration switches (there are no Baud Rate or Line Control switches).

• There is a 25-pin coverplate connector (instead of 50).

• There are different cables available.

Card ID Register
The default card ID for the HP 98644 interface is 66. (The card ID of the 98626 is 2.)

Note
HP 98644 cards are logged as HP 98626 interfaces while booting
machines with Boot ROM 3.0 (and earlier versions). This is not a prob­
lem, because Pascal 3.0 and later liD systems recognize the 98644 card
properly.

You can also change the card ID to 2 (to make it look like a 98626) by
cutting a jumper on the card. See the 98644' s installmation manual for
details.

See the following Pascal Differences section for details of how to read this register with software.

Optional Driver Receiver Circuits
On the 98626 interface, there are two optional driver lines (OCD3 and OCD4) and two optional
receiver lines (OCR2 and OCR3). These lines are not implemented on the 98644 interface.

Configuration Switches
The 98644 card does not implement the following configuration switches on the card:

• Baud Rate

• Line Control (character length, parity, etc.)

These operating parameters are set to defaults that match the 98626 card by the Pascal system. See
the subsequent Pascal differences section for default values.

12-28 RS-232 Serial Interface

Coverplate Connector
The connector on the 98644 interface's coverplate is set up for DTE (Data Terminal Equipment)
applications; it has a 25-pin, female, D-series connector (the connector on the 98626 is a 50-pin
connector). Here are the pin designators for the connector.

Pin Signal Description

1 Safety Ground

2 Transmitted Data

3 Received Data

4 Request to Send

5 Clear to Send

6 Data Set Ready

7 Signal Ground

8 Carrier Detect

9 not used

10 not used

11 not used

12 not used

13 not used

14 not used

15 not used

16 not used

17 not used

18 not used

19 not used

20 Data Terminal Ready

21 not used

22 Ring Indicator

23 Data Rate Select

24 not used

25 not used

Cables
You can use standard RS-232C compatible cables, as long as the signal lines are connected
properly. Here are cables Qvailable from HP Computer Supplies Operation.

HP Product Number

13242N

13242G

13242H

Description

Modem cable (male to male)

DTE cable (male to male, with pins 2 and 3
reversed)

DCE cable (male to female, with pins 2 and 3
reversed)

RS-232 Serial Interface 12-29

Pascal Differences
The only differences between programming these two interfaces with the Workstation Pascal
System are in the register definitions given in this section. See the Status and Control Registers
section and the Serial Interface Hardware Registers section for further details.

Card 10 Register
The card ID register is lOST A TUS register O. It will contain a value of 66 if the interface is a 98644.
(It will contain 2 if the card ID jumper has been cut.) If the REMOTE jumper has been removed;
then the value returned will be 194 (= 128 + 66) or 130 (= 128 + 2).

The card ID can also be determined by reading IOREAD_BYTE register 1.

Optional Driver/Receiver Registers
Since there are no optional driver or receiver lines on the 98644 interface, lOST ATUS and
IOCONTROL register 7 are not implemented for this card. (lOSTATUS register 7 always contains
O,and IOCONTROL register 7 is a no-op.)

The hardware register bits that are not defined because of this difference are as follows: bits 7 and 6
of IOWRITE_BYTE and register 5 (for writing OCD3 and OCD4, respectively); bits 7 and 6 of
IOREAD_BYTE and register 5 (for reading OCD3 and OCD4, respectively); bits 5 and 4 of
IOREAD_BYTE register 5 (for reading OCR2 and OCR3, respectively).

Baud Rate and Line Control Registers
Since there are no switches. to set the default baud rate and line control parameters, the Pascal
system sets them to its own default values, which are as follows:

Parameter

Baud rate
Character length
Stop bits
Parity
Parity type

Default value

2400 baud
8 bits/character
1 stop bit
Parity disabled
Odd parity

IOSTATUS registers 3 (baud rate) and 4 (line control) are still implemented for the 98644 interface
and retain their original definitions. However, the hardware registers no longer contain any baud
rate and line control information (since there are no switches to read). The hardware registers
affected are IOREAD_BYTE register 5 (bits 3 thru 0) and register 7 (bits 7 thru 0), respectively.

Vou can still program the baud rate and line control parameters by writing to IOCONTROL register
3 (baud rate) and IOCONTROL register 4 (character format). These registers correspond to
IOWRITE_BYTE register 5 (bits 3 thru 0) and register 23 (bits 5 thru 0), respectively.

Registers 21 and 22 allow you to specify a "reset default" value for baud rate and character format,
respectively. In other words, the values in registers 21 and 22 will be put into registers 3 ("current"
baud rate) and 4 ("current" character format) whenever the 98644 interface is reset (by IOINI­
TIALIZE, IOUNINITIALIZE, IORESET, IOCONTROL of registers 1 and 14, or with the (Reset)
key).

12-30 RS-232 Serial Interface

Model 216 and 217
Built-In 98626 Interface Differences

This section describes the differences between the HP 98626 Serial interface and the built-in Serial
interface in the Model 216 (HP 9816) and 217 (HP 9817) Computers.

Hardware Differences
The hardware differences between the built-in serial interfaces and the 98626 interface occur in the
following areas:

• There are no Select Code switches (the Select Code is hard-wired to 9).

• There are no Interrupt Level switches (the Interrupt Level is hard-wired to 3).

• There are no Status Line Disconnect switches (the modem status lines are always monitored;
you cannot throw switches to make them ' 'ALWAYS ON" like you can with with the 98626
interface) .

Pascal Differences
There are no differences between programming these two interfaces with the Workstation Pascal
System.

Series 300
Built-In 98644 Interface Differences

The differences between the separate HP 98644 RS-232C serial interface and the built -in 98644-
like interface of Series 300 computers are as follows:

• The built-in 98644 interface is hard-wired to select code 9 .

• The built-in 98644 interface is hard-wired to interrupt level 5.

In addition, the 98562-66530 System Interface Board (for the computer Models 330 and 350)
has a switch to allow disabling the interface completely.

The GPIO Interface
Chapter

13

Introduction
This chapter should be used in conjunction with the HP 98622A GPIO Interface Installation
manual. The best way to use these two documents is to read this chapter before attempting
to configure and connect the interface according to the directions given in the installation
manual. The reason for this order of use is that knowing how the interface works and how it is
driven by Pascal programs will help you to decide how to connect it to your peripheral device.

The HP 98622 Interface is a very flexible parallel interface that allows you to communicate with
a variety of devices. The interface sends and receives up to 16 bits of data with a choice of
several handshake methods. The interface is known as the General-Purpose Input/Output
(GPIO) Interface. This chapter describes the use of the interface's features from Pascal pro­
grams.

13-1

13-2 GPIO Interface

Interface Description
The main function of any interface is to transfer data between the computer and a peripheral
device. This section briefly describes the interface lines and how they function. Using the lines
from Pascal programs is more fully described in subsequent sections.

The GPIO Interface provides 32 lines for data input and output: 16 for input (010 - 0115),
and 16 for output (000 - 0015).

Backplane
Connector

Parallel Data Out
16

Parallel Data In
16

Handshake
GPIO

4
Interface
Hardware Special Purpose

6

Grounds

7

Block Diagram of the GPIO Interface

0 Shielded Cable t5
Q) to a Device c
c
0
0
c
a::
6
It)

Three lines are dedicated to handshaking the data from source to destination device. The
Peripheral Control line (PCTL) is controlled by the interface and is used to initiate data trans­
fers. The Peripheral Flag line (PFLG) is controlled by the peripheral device and is used to signal
the peripheral's readiness to continue the transfer process.

Four general-purpose lines are available for any purpose that you may desire; two are
controlled by the computer and sensed by the peripheral (CTLO and CTLl), and two are
controlled by the peripheral device and sensed by the computer (STIO and STIl).

Both Logic Ground and Safety Ground are provided by the interface. Logic Ground provides
the reference point for signals, and Safety Ground provides earth ground for cable shields.

GPIO Interface 13-3

Interface Configuration
This section presents a brief summary of selecting the interface's configuration-switch settings.
It is intended to be used as a checklist and to begin to acquaint you with programming the
interface. Refer to the installation manual for the exact location and setting of each switch.

Interface Select Code
In Pascal, allowable interface select codes range from 8 through 31; codes 1 through 7 are
already used for built-in interfaces. The GPIO interface has a factory default setting of 12, which
can be changed by re-configuring the "SEL CODE" switches on the interface.

Hardware Interrupt Priority
Two switches are provided on the interface to allow selection of hardware interrupt priority. The
switches allow hardware priority levels 3 through 6 to be selected. Hardware priority deter­
mines the order in which Simultaneously occurring interrupt events are processed.

Data Logic Sense
The data lines of the interface are normally low-true; in other words, when the voltage of a
data line is low, the corresponding data bit is interpreted to be a 1. This logic sense may be
changed to high-true with the Option Select Switch. Setting the switch labeled "DIN" to the
"0" position selects high-true logic sense of Data In lines. Conversely, setting the switch labeled
"DOUT" to the" 1" position inverts the logic sense of the Data Out lines. The default setting is
"1" for both.

Data Handshake Methods
This section describes the data handshake methods available with the GPIO Interface. A gener­
al description of the handshake modes and clock sources is given first. A more detailed discus­
sion of each handshake is then given to allow you to choose the handshake mode, clock source,
and handshake-line logic sense that is compatible with your peripheral device.

As a brief review, a data handshake is a method of synchronizing the transfer of data from the
sending to the receiving device. In order to use any handshake method, the computer and
peripheral device must be in agreement as to how and when several events will occur. With
the GPIO Interface, the following events must take place to synchronize data transfers; the first
two are optional.

• The computer may optionally be directed to perform a one-time "OK check" of the
peripheral before beginning to transfer any data.

• The computer may also optionally check the peripheral to determine whether or not the
peripheral is "ready" to transfer data.

• The computer must indicate the direction of transfer and then initiate the transfer.

• During output operations, the peripheral must read the data sent from the computer while
valid; Similarly, the computer must clock the peripheral's data into the interface's Data In
registers while valid during input operations.

• The peripheral must acknowledge that it has received the data.

13-4 GPIO Interface

Handshake Lines
The GPIO handshakes data with three signal lines. The Input/Output line, I/O, is driven by
the computer and is used to signal the direction of data transfer. The Peripheral Control line,
peTl, is also driven by the computer and is used to initiate all data transfers. The Peripheral
Flag line, PFlG, is driven by the peripheral and is used to acknowledge the computer's requests
to transfer data.

Handshake logic Sense
logic senses of the PCTl and PFlG lines are selected with switches of the same name. The
logic sense of the 110 line is High for input operations and low for output operations; this logic
sense cannot be changed. The available choices of handshake logic sense and handshake
modes allow nearly all types of peripheral handshakes to be accommodated by the GPIO
Interface.

Handshake Modes
There are two general handshake modes in which the PCTl and PFlG lines may be used to
synchronize data transfers: Full-Mode and Pulse-Mode Handshakes. If the peripheral uses
pulses to handshake data transfers and meets certain hardware timing requirements, the Pulse­
Mode Handshake may be used. The Full-Mode Handshake should be used if the peripheral
does not meet the Pulse-Mode timing reqUirements.

The handshake mode is selected by the position of the "HSHK" switch on the interface, as
described in the installation manual. Both modes are more fully described in subsequent
sections.

Data-In Clock Source
Ensuring that the data are valid when read by the receiving device is slightly different for output
and input operations. During outputs, the interface generally holds data valid while PCTljs in
the Set state, so the peripheral must read the data during this period. During inputs, the data
must be held valid by the peripheral until the peripheral signals that the data are valid (which
clocks the data into interface Qata In registers) or until the data is read by the computer. The
point at which the data are valid. is Signalled by a transition of PFlG. The PFlG transition that is
used to signal valid data is selected by the "ClK" switches on the interface. Subsequent
diagrams and text further explain the choices.

Peripheral Status Check
Many peripheral devices are equipped with a line which is used to indicate the device's current
"OK-or-Not-OK" status. If this line is connected to the Peripheral Status line (PSTS) of the
GPIO Interface, and the computer determines the status of the peripheral device by checking
the state of PSTS. The logic sense of this line may be selected by setting the "PSTS" switch.

The computer performs a check of the Peripheral Status line (PSTS) before initiating any
transfers as part of the data-transfer handshake. If PSTS indicates "Not OK," an error is
reported with ioe_result set to 21; otherWise, the transfer proceeds normally. This feature is
available with· both Full-Mode and Pulse-Mode Handshakes. See "Interrogating the Status Input
lines" in this chapter for further details.

GPIO Interface 13-5

Full-Mode Handshakes
The Full-Mode Handshake mode is described first for two reasons. The first reason is that the
PCTL and PFLG transitions must always occur in the order shown, so only one sequence of
peripheral handshake responses needs to be shown. Secondly, this mode will generally work
when the Pulse-Mode Handshake may not be compatible with the peripheral's handshake
signals. The Pulse-Mode Handshake is described in the next section.

The following diagrams show the order of events of the Full-Mode output and input Hand­
shakes. These drawings are not drawn to any time scale; only the order of events is important.
The I/O line has been omitted to simplify the diagrams; in all cases, it is driven Low before any
output is initiated by the computer and High before any input is initiated.

0

: : X First Data Second Data
Data Out Is Valid Is Valid

•

I~PCTl-l
Delay

I~PCTl-l Delay

Clear 0 0' I
I

PCTl I

Set
I
I

, , , ,
I
I
I

Busy I
: I

.J i

I PFlG
I I
I I I

Ready
I I I I
9 I I • I I
I I I I I I
I I I I I I
I I I I I I

to t1 t2 t3 t4 t5

Diagram of Full-Mode OUTPUT Handshakes

With Full-Mode Handshakes, the computer first checks to see that the peripheral device is
Ready before initiating the transfer of each byte/word (to); with this handshake mode, the
peripheral indicates Ready when both PCTL is Clear and PFLG is Ready. If the peripheral
does not indicate Ready, the computer waits until a Ready is indicated.

When a Ready is sensed, the computer places data on the Data Out lines (tl) and drives the I/O
line Low (not shown). The interface then waits the PCTL Delay time before initiating the
transfer by placing PCTL in the Set state (t2).

The peripheral acknowledges the computer's request by placing the PFLG line Busy (t3); this
PFLG transition automatically Clears the PCTL line (t4). However, the computer cannot inti­
tate further transfers until the peripheral is Ready with Full-Mode Handshake; the peripheral is
not Ready until both PCTL is Clear and PFLG is Ready (t5).

The data on the Data Out lines is held valid from the time PCTL is Set until after the peripheral
indicates Ready. The peripheral may read the data any time within this time period.

13-6 GPIO Interface

The PCTL and PFLG lines are used in the same manner in Full-Mode input Handshakes as in
Full-Mode output Handshakes. However, there are three options available as to when the
peripheral's data may be valid: at the Ready-to-Busy transition of PFLG (BSY clock source), at
the Busy-to-Ready transition of PFLG (RDY clock source), and when the Data In lines are read
with an IOSTATUS function (READ clock source). The first two of these options are shown in
the following two diagrams.

clearn r'
PCTL I

I
Set I I-J -----~

I I
I I
I I
I I Data Must Be

BUsy : I Valid Here -.....

PFLG I I
I I

Ready 0 I
I I

o
Data In

I I
I I
I I

I
to

I
I

t2

I
I
t4

Full-Mode Input Handshake with BSY Clock Source

As with Full-Mode output Handshakes, the computer first checks to see if the peripheral is
Ready (to); since PCTL is Clear and PFLG is Ready, the handshake may proceed. The compu­
ter places the 110 line in the High state (not shown) and then initiates the handshake by placing
PCTL in the Set state (tl).

With the "BSY" clock source, the PFLG transition to the Busy state clocks the peripheral's data
into the interface's Data-In registers; consequently, the peripheral must place data on the
Data-In lines (t2), allowing enough time for the data to settle before placing PFLG in the Busy
state (t3). This PFLG transition to the Busy state automatically Clears PCTL (t4). The next
handshake may be initiated when PFLG is placed in the Ready state by the peripheral (t5).

Clear TL ------r:
PCTl I

I
Set I

I
I
I

Busy $1
PFlG :

R d --el--T-~' I ea y r I
I I I

Data In

I I
I I

I
to

I I
t2 t3

Data Must Be
Valid Here

I
I

t5

Full-Mode Input Handshake with RDY Clock Source

GPIO Interface 13-7

As with other Full-Mode Handshakes, the computer first checks to see if the peripheral is ready
(to). Since PCTl is Clear and PFlG is Ready, the computer may drive the 110 line High (not
shown) and initiate the handshake by placing PCTl in the Set state (tl).

The peripheral may acknowledge by placing PFlG Busy (t2), which automatically Clears PCTl
(t3). Unlike the previous example, this transition does not clock data into the interface Data-In
registers. With the "ROY" clock source, the peripheral must place the data on the Data-In lines
(t4), allowing enough time for the data to settle before placing PFlG in the Ready state (t5).
The computer may then initiate a subsequent transfer.

Pulse-Mode Handshakes
The following drawings show the order of handshake-line events during Pulse-Mode Hand­
shakes. Notice that the main difference between Full-Mode and Pulse-Mode Handshakes is
that the PFLG is not checked for Ready before the computer initiates Pulse-Mode Hand­
shakes; the computer may initiate a subsequent data transfer as soon as the PCTl line is
Cleared by the Ready-to-Busy transition of PFlG.

Two cycles of data transfers are shown in these diagrams to illustrate that the computer need
not wait for the PFlG = Ready indication with the Pulse-Mode Handshake. The first cycle
shown in each diagram is a typical example of the first transfer of an 110 statement. The dashed
PFlG line at the beginning of the second cycle shows that computer disregards whether or not
PFlG is in the Ready state before the next transfer is initiated.

This absense of the PFlG check allows a potentially higher data-transfer rate than possible
with the Full-Mode Handshake; however, in some cases, it also places additional timing restric­
tions on the peripheral's response time, as described in the text.

13-8 GPIO Interface

o
Data Out First Data

Is Valid

PCTL __ J
-DelaYI

Second Data
Is Valid

L PCTL~I
,Delay I

Clear -f------'LJ"
PCTL

Set LS-
I
I
I

PFLG

BUSY JTi ,-------i
Ready ---.....,-----+-----4/ I I. I J

I I
I I

t1 t2 t3 t4 t5

Busy Pulses With Pulse-Mode Output Handshake

The PFlG line is not checked for Ready before the computer drives the 1/0 line low (not
shown) and places data on the Data-Out lines (tl). A PCTl Delay time later, the interface
initiates the transfer by placing PCTl in the Set state (t2).

The peripheral acknowledges by placing PFlG Busy (t3); this transition automatically Clears
PCTl (t4). The dashed PFlG line shows that the computer may initiate another transfer any
time after PCTl is Clear, possibly before the peripheral places PFlG in the Ready state (t5).

The Busy Pulse shown in the diagram is identical to the PFLG's response during the previous
Full-Mode handshake; however, the Pulse-Mode Handshake works properly with this type of
pulse only if the peripheral reads the data by the time PCTl is Clear (data should be read
between t2 and t3). If the peripheral has not read the data by the time that PCTl is Clear, it
might erroneously read the data for the second transfer, since the computer might have already
changed the data and initiated the second transfer.

GPIO Interface 13-9

c,earL rl

PCTl

Set I 1-1 --------1
I

'--__ ---I: ,1-' --------

I
I

r Settling --I
TIme

Busy I
I Data Must

PFlG I Be Valid

Ready
I Here

I I
I I

t1 t2 t3

luui I
I
I
I
I
I

t4 t5

Data
valid

I_S~ttling _I
TIme I

Data Must
Be Valid
Here

Busy Pulses With Pulse-Mode Input Handshakes (BSY Clock Source)

The computer does not have to check for PFLG to be Ready before placing 110 in the High state
(not shown) and initiating the transfer by placing PCTL in the Set state (tl).

The peripheral must place data on the Data In lines (t2), allowing enough time for the data
to settle before placing PFLG in the Busy state (t3). This Ready-to-Busy transition of PFLG
automatically clears PCTL. The dashed PFLG signal shows that the next transfer may be
initiated before PFLG indicates Ready.

13-10 GPIO Interface

ClearL rL r
PCTL

Set I 1-) -----4/,1-' -------' JI-----fJ }I--------­

I
I

Data In

0._ ~ ;;;.;;;;.;;;;;;;;;;;;.;;;f

~ ____ e_::_i~----o;o;_;,;,;,;.
: 1_ S~ttling _I
I Time I

PFLG I I Be Valid
Busy ---;.-: --I: L : Data Must

I I Here
I Be Valid
I : l Data Must

Ready: I ~---L...I -------!
I Here
'- - - -oj foe 1--------

I I I
I I I I

t1 t2 t3 t4

Busy Pulses With Pulse-Mode Input Handshakes (RDY Clock Source)

The computer does not have to check for PFlG to be Ready before placing 110 in the High state
(not shown) and initiating the transfer by placing PCTl in the Set state (tl).

The peripheral must place data on the Data In lines (t2), allowing enough time for the data to
settle before placing PFLG Busy (t3). This requirement may seem contradictory, since the
clock source is the Busy-to-Ready transition of PFlG. However, with Pulse-Mode handshakes,
the peripheral is assumed to be Ready whenever PCTl is Clear; consequently, the computer
may read the data any time after PCTl is cleared by the Ready-to-Busy transition of PFLG. The
PFlG transition to Busy Clears PCTl (t4), after which the peripheral may place PFLG Ready
(t5).

Note
In order to use this type of pulse with the Pulse-Mode Handshake
and RDY clock source, the peripheral must adhere to the stated
timing restrictions.

o
Data Out

_-----(1-----/ ,~' ------f
First Data
Is Valid

l-PCTL ---.J
I~ DelaY~1

PCTL clear----'------,L I"
Set J~~

I
I
I

GPIO Interface 13-11

__ --...., 1-/ --.....,,1-1 ---
Second Data
Is Valid
"'----~ ~--fll-I ---

LpCTL-.J
1--DelaYI

PFLG BUSY~-+----III r-:-r I tl I
Ready ~.~ i L _____________ -- ~

I I I
I I I

t1 t2 t3 t4 t5

Ready Pulses With Pulse-Mode Output Handshakes

The PFLG line is not checked for Ready before the computer drives the 110 line Low (not
shown) and places data on the Data Out lines (tl). A PCTL Delay time later the interface
initiates the transfer by placing PCTL in the Set state (t2).

The peripheral later acknowledges by placing PFLG in the Ready state (t3). The handshake is
completed by the peripheral placing PFLG in the Busy state (t4), which automatically Clears
PCTL (t5).

If the peripheral uses the type of Ready pulses shown, either the Pulse-Mode handshake with
default PFLG logic sense or Full-Mode handshake with inverted PFLG logic sense may be used.
With this type of pulse, the data being output may be read by the peripheral as long as PCTL is
Set.

13-12 GPIO Interface

Clear

L PCTl
Set J

1
1

Computer May
Read Data Here]

Computer May

I L I Read Data Here-"

I
o

Data In ~_e_:_:i~_~""""=-;;;;;;;;";';;;····"""4F: ~~~
LS~ttling~
,Time I
1

Busy 1

PFlG :
Ready ---+-1 --II , ---+-: ----+

1 1
1 I

t1 t2

1

1
t3 14 t5

LS~ttling-1
1- Time I

,J ----~

Ready Pulses With Pulse-Mode Input Handshakes (BSY Clock Source)

The computer does not have to check for PFlG to be Ready before placing 110 in the High state
(not shown) and initiating the transfer by placing PCTl in the Set state (tl).

The peripheral acknowledges by placing PFlG in the Ready state (t2). The peripheral must
place data on the Data In lines (t3), allowing enough time for the data to settle before placing
PFlG in the Busy state (t4). With this type of pulse, events t2 and t3 may also occur in the
reverse order.

The Ready-to-Busy transition of PFlG automatically Clears PCTl (t4). The dashed PFlG
signal shows that the state of PFlG is not checked before the computer initiates a subsequent
transfer.

GPIO Interface 13-13

PCTl
Clear~

Set 1-1 --------fJ I -~

Data In

o

1

1

1

I

1
1
1
1

Busy --+-1 --of I----i----~

PFlG :
1

Ready 1

1

1

t1

1
1
1
1 1

__ S~ttling~1
Time I

~
r--+: -~--fl f------{ #--Da-ta-M-u-s-t ~

1 I Be Valid Here
I: L -u----u-------
1 1
I 1

t4 tS

Ready Pulses With Pulse-Mode Input Handshakes (ROY Clock Source)

The computer does not have to check for PFlG to be Ready before placing 110 in the High state
(not shown) and initiating the transfer by placing PCTl in the Set state (tl).

The peripheral must place data on the Data In lines (t2), allowing enough time for the data to
settle before placing PFlG Ready (t3). The peripheral places PFlG in the Busy state (t4), which
automatically Clears PCTl (t5).

13-14 GPIO Interface

Interface Reset
The interface should always be reset before use to ensure that it is in a known state. All
interfaces are automatically reset by the computer at certain times: when the computer is
powered on, when the (RESET) key is pressed, and at other times including when the (STOP) or
(CLR 1/0) keys are pressed and when IOINITIALIZE and IOUNINITIALIZE are executed. The
interface may be optionally reset at other times under control of Pascal programs. Two exam­
ples are as follows:

I ORE SET (12) ;

SC:=12;
IoCoNTRoL(Sc tl);

The following action is invoked whenever the GPIO Interface is reset:

• The Peripheral Reset line (PRESET) is pulsed Low for at least 15 microseconds.

• The PCTL line is placed in the Clear state.

• If the DOUT CLEAR jumper is installed, the Data Out lines are all cleared (set to logic 0).

The following lines are unchanged by a reset of the GPIO Interface:

• The CTLO and CTLI output lines.

• The 110 line.
• The Data Out lines, if the DOUT CLEAR jumper is not installed.

GPIO Interface 13-15

Outputs and Inputs through the GPIO
This section describes techniques for outputting and inputting data through the GPIO Interface.
The mechanism by which data are communicated are the electrical signals on the data lines.
The actual signals that appear on the data lines depend on three things: the data currently being
transferred, how this data is being represented, and the logic sense of the data lines.

Brief explanations of ASCII and internal data representation are given in Chapter 4. This
section gives simple examples of how several representations are implemented during outputs
and inputs through the GPIO Interface.

ASCII and Internal Representations
When data are moved through the GPIO Interface, the data are generally sent one byte at a
time, with the most significant byte first. However, there are three exceptions; data are
represented by words when READWORD and WRITEWORD are used, and when TRANSFER­
WORD is used and when numeric data are moved with reads of IOSTATUS register 3 and
writes to IOCONTROL register 3. The following diagrams illustrate which data lines are used
during byte and word transfers.

GPIO
Interface

0015- 008
or

0115- 018

007- 000
or

017- DID

Peripheral
Device

Upper 8 bits are not used
(all D's during byte transfers).

Only lower 8 bits are used.

Diagram of Byte Transfers

GPIO
Interface

0015 - 008
or

0115- 018

007-000
or

017- 010

Peripheral
Device

Upper 8 bits are used only when:

1. Writing to 10CONTROL register 3
(reading from 10STATUS register 3).

2. When REAOWORO,
WRITEWORO, and TRANSFER_
WORD are used.

Diagram of Word Transfers

13-16 GPIO Interface

Example - Output Data Bytes
The following diagram shows the actual logic signals that appear on the least significant data
byte (007 thru 000) as the result of the corresponding output procedure; the most significant
byte is always zeros with byte transfers. The actual logic levels depend on how the data lines are
configured (Le., as Low-true or High-true).

Signal Line ASCII
007 000 Char.

WR I TESTR I NGLN (12 t I ASC I I I) ; o 1 0 0 000 1 A
o 1 0 1 001 1 S
o 1 0 0 001 1 C
o 1 0 0 100 1 I
o 1 0 0 100 1 I
o 0 0 0 1 1 0 1 cR

o 0 0 0 1 0 1 0 LF

Signal Line ASCII
007 000 Char.

WR I TECHAR (12 t \ 5 ') ; o 1 0 0 001 0 5

Example - Input Data Bytes
The following diagrams show the variable values that result from the logic signals being present
during the corresponding input procedures on the least significant data byte (017 thru 010); the
most significant byte is always ignored with byte transfers. The actual logic levels required
depend on how the data lines are configured (Le., as Low-true or High-true).

Signal Line ASCII
017 010 Char.

READCHAR (12 t C) t o 1 0 0 000 1 A
WRITELN(\Value entered=' tORD(c»;

Value entered= 85

Signal Line ASCII
017 010 Char.

READSTRING(12tStr) ; o 1 1 1 o 0 1 0 r
WRITELN (\Strin~ entered='tStr); o 1 1 1 o 1 0 1 u

o 1 1 0 1 111 0

Strin~ entered= ruoK? o 1 1 0 101 1 .,
001 1 1 111 ?
o 0 0 0 1 010 LF

GPID Interface 13-17

Example - Output Data Words
The following diagrams show the actual signals that appear on the Data Out lines as a result of
the corresponding Pascal procedures and numeric values. All numeric values are first rounded
to an INTEGER value before being placed on the Data Out lines. The actual logic level that
appears on each line depends on how the lines have been configured (Le., as High-true or
Low-true).

Word:=3*25G+3;
WRITEWORD(12, ord) ;

Output_1G_bits:=-1;
IOCONTROL(12,3,Output_1B_bits) ;

Signal Lines
0015 008 007 000

o 0 0 0 001 1 0 0 0 0 001 1

Signal Lines
0015 008 007 000

1 1 1 1 1 1 1 1 1 1 1 1 111 1

It is important to note that no output handshake is executed when the IOCONTROL procedure
is executed; only the states of the Data Out lines and the lIO line are affected. Handshake
sequence, if desired, must be performed by Pascal procedures in the program.

Example - Input Data Words
The following diagrams show the variable values that result from entering the logic signals on
the Data In lines. Note that all sixteen-bit values entered are interpreted as INTEGER values.

Signal Lines
OIlS 018 017 010

o 000 000 1 1 1 1 1 1 1 1 1

READWORD(12,Input_1G_bits) ;
WRITELN (\ INTEGER ente red= I,; Input_1G_Bi ts) ;

INTEGER entered= 511

Signal Lines
OIlS 018 017.. 010

1 1 1 1 1 1 1 0 0 0 0 0 000 0

X:=IOSTATUS(12t3);
WRITELN(\ INTEGER ente red= I tX);

INTEGER entered= -512

It is important to note that no enter handshake is performed when the lOST ATUS function is
executed. The only actions taken are the I/O line being placed in the High state and the Data In
registers being read. If an input handshake is required, it must be performed by the Pascal
program.

13-18 GPIO Interface

Using the Special-Purpose Lines
Four special-purpose signal lines are available for a variety of uses. Two of these lines are
available for output (CTLO and CTLl), and the other two are used as inputs (STIO and STIl).

Driving the Control Output Lines
Setting bits 0 and 1 of GPIO IOCONTROL register 2 places a logic low on CTLO and CTLl,
respectively. The definition of this IOCONTROL register is shown in the following diagram.

Control Register 2
Most Significant Bit

Bit 7
1

Bit 6
1

Bit 5
1

Bit 4
1

Bit 3
1

Bit 2

Not Used

Value ~ 1281 Value = 641 Value = 321 Value = 161 Value = 8 1 Value = 4

CHO:=O;
CH1:=1;
IOCONTROL(12t2tCH1*2+CHO) ;

Peripheral Control
Least Significant Bit

Bit 1 Bit 0

Set CTL 1 Set CTL0
(1 = Low; (1 = Low;
o = High) o = High)

Value = 2 Value = 1

As indicated in the diagram, setting a bit in the register places the corresponding line Low, while
clearing the bit places a logic High on the line. The logic polarity of these signals cannot be
changed. The signal remains on these lines until another value is written into the IOCONTROL
register, and Reset has no effect on the state of either line.

Interrogating the Status Input Lines
The state of both status input lines STIO and STIl are determined by reading bits 0 and 1 of
IOSTATUS register 5, respectively. A logic "I" in a bit position indicates that the corresponding
line is at logic Low, and a "0" indicates the opposite logic state. This logic polarity cannot be
changed. The definition of GPIO IOSTATUS register 5 is shown below.

Status Register 5
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Bit 5 Bit 4

0 0

Value = 32 Value = 16

Bit 3 Bit 2

PSTS EIR
Ok Line Low

Value = 8 Value = 4

Peripheral Status
Least Significant Bit

Bit 1 Bit 0

STI1 STI0
Line Low Line Low

Value = 2 Value = 1

P_status:=IOSTATUS(12t5) ;
StiO:=BIT_SET(P_statustO) ;
Stil:=BIT_SET(P_status tl);

GPIO Interface 13-19

Reading this register returns a numeric value that reflects the logic states of these lines at the
instant the computer reads the interface lines; the state of these lines are not latched by any
internal or external event.

13-20 GPIO Interface

GPIO Status and Control Registers

Status Register 0

Control Register 0

Status Register 1
Most Significant Bit

Bit 7 Bit 6

Interrupts An Interrupt
Are Is Currently

Enabled Requested

Value = 128 Value = 64

Control Register 1

Status Register2

Control Register 2
Most Significant Bit

Bit 7 I Bit 6
1

Card identification = 3

Writing any numeric value into this register resets the interface.

Bit 5
1

Bit 4 Bit 3

Interrupt Burst-
Level Switches Mode

(Hardware Priority) DMA

Value ~ 321 Value ~ 16 Value = 8

Interrupt and DMA Status
Least Significant Bit

Bit 2 Bit 1 Bit 0

Word- DMA DMA
Mode Channel 1 Channel 0
DMA Enabled

Value = 4 Value = 2 Value = 1

Writing any numeric value into this register sets the PCTL line true.

Not implemented

Bit 5
1

Bit 4 I Bit 3 I Bit 2

Not Used

Peripheral Control
Least Significant Bit

Bit 1 Bit 0

Set CTL 1 Set CTL0
(1 = Low; (1 = Low;
o = High) o = High)

Value ~ 1281 Value ~ 64[Value = 32[Value ~ 16[Value = 8 1 Value ~ 4 Value = 2 Value = 1

Status Register 3

Control Register 3

Status Register 4

Status Register 5
Most Significant Bit

Bit 7 Bit 6

0 0

Value = 128 Value = 64

Data In (16 bits)

Data Out (16 bits)

1 = Ready: 0 = Busy

Bit 5 Bit 4

0 0

Value = 32 Value = 16

Bit 3 Bit 2

PSTS EIR
Ok Line Low

Value = 8 Value = 4

Peripheral Status
Least Significant Bit

Bit 1 Bit 0

STI1 STI0
Line Low Line low

Vallie = 2 Value = 1

GPIO Interface 13-21

Summary of GPIO IOREAD--BYTE
and IOWRITE--BYTE Registers

This section describes the GPIO Interface's IOREAD_BYTE and IOWRITE_BYTE registers.
Keep in mind that these registers should be used only when you know the exact consequences
of their use, as using some of the registers improperly may result in improper interface behavior.
If the desired operation can be performed with IOSTATUS or IOCONTROL, you should not
use IOREAD_BYTE or IOWRITE_BYTE.

GPIO IOREAD_BYTE Registers
Register O-Interface Ready
Register I-Card Identification
Register 2-Undefined
Register 3-Interrupt Status
Register 4-MSB of Data In
Register 5-LSB of Data In
Register 6-Undefined
Register 7-Peripheral Status

IOREAD_Byte Register 0 Interface Ready
A 1 indicates that the interface is Ready for subsequent data transfers, and 0 indicates Not
Ready.

IOREAD_BYTE Register 1
This register always contains 3, the identification for GPIO interfaces.

IOREAD_BYTE Register 3
Most Significant Bit

Bit 7 Bit 6 Bit 5
1

Bit 4 Bit 3 Bit 2

Interrupts An Interrupt Interrupt Burst- Word-
Are Is Currently Level Switches Mode Mode

Enabled Requested (Hardware Priority) OMA OMA

Value = 128 Value = 64 Value ~ 321 Value ~ 16 Value = 8 Value = 4

IOREAD_BYTE Register 4
Most Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

0115 0114 0113 0112 0111 010

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4

Card Identification

Interrupt Status
Least Significant Bit

Bit 1 Bit 0

OMA OMA
Channel 1 Channel 0
Enabled Enabled

Value = 2 Value = 1

MSB of Data In
Least Significant Bit

Bit 1 Bit 0

019 018

Value = 2 Value = 1

13-22 GPIO Interface

IOREAD_BYTE Register 5
Most Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4

017 016 015 014

Value = 128 Value = 64 Value = 32 Value = 16

IOREAD_Byte Register 7
Most Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4

0 0 0 0

Value = 128 Value = 64 Value = 32 Value = 16

Bit 3 Bit 2

013 012

Value = 8 Value = 4

Bit 3 Bit 2

PSTS EIR
Ok Line Low

Value = 8 Value = 4

LSB of Data In
Least Significant Bit

Bit 1 Bit 0

011 010

Value = 2 Value = 1

Peripheral Status
Least Significant Bit

Bit 1 Bit 0

STI1 STI0
Line Low Line Low

Value = 2 Value = 1

GPIO IOWRITE_BYTE Registers
Register 0 - Set PCTL
Register 1 - Reset Interface
Register 2 - Interrupt Mask
Register 3 - Interrupt and DMA Enable
Register 4 - MSB of Data Out
Register 5 - LSB of Data Out
Register 6 - Undefined
Register 7 - Set Control Output Lines

IOWRITE_BYTE Register 0

GPIO Interface 13-23

Set PCTL
Writing any numeric value to this register places PCTL in the Set state.

IOWRITE-BYTE Register 1
Writing any numeric value to this register resets the interface.

IOWRITE_BYTE Register 2
Most Significant Bit

Bit 7
I

Bit 6
I

Bit 5
I

Bit 4
1

Bit 3
1

Not Used

Bit 2

Reset Interface

Interrupt Mask
Least Significant Bit

Bit 1 Bit 0

Enable
Enable

Interface
EIR

Ready
Interrupts

Interrupts

Value ~ 1281 Value ~ 641 Value ~ 321 Value ~ 161 Value ~ 8 1 Value ~ 4 Value = 2 Value = 1

IOWRITE_BYTE Register 3
Most Significant Bit

Bit 7 Bit 6
I

Bit 5
I

Bit 4 Bit 3

Enable
Enable Burst-

Interrupts Not Used
Mode
DMA

Value = 128 Value ~ 641 Value ~ 321 Value ~ 16 Value = 8

Interrupt and DMA Enable
Least Significant Bit

Bit 2 Bit 1 Bit 0

Enable
Enable Enable

Word-
Mode

DMA DMA

DMA
Channel 1 Channel 0

Value = 4 Value = 2 Value = 1

13-24 GPIO Interface

lOW RITE_BYTE Register 4 MSB of Data Out
Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0015 0014 0013 0012 0011 0010 009 008

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

IOWRITE_BYTE Register 5 LSB of Data Out
MO$t Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

007 006 005 004 003 002 001 000

Value = 128 Value = 64 Value = 32 Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

IOWRITE_BYTE Register 7 Set Control Output Lines
Most Significant Bit Least Significant Bit

Bit 7
1

Bit 6
1

Bit 5
1

Bit 4
1

Bit 3
1

Bit 2 Bit 1 Bit 0

Set CTl1 Set CTl0
Not Used (1 = low; (1 = low;

o = High) o = High)

Value ~ 1281 Value ~ 641 Value ~ 321 Value ~ 161 Value ~ 8 1 Value ~ 4 Value = 2 Value = 1

System Devices
Chapter

14

Introduction
This chapter introduces the SYSDEVS module and the special features available inside most Series
200/300 Computers. This information will allow you to access almost every feature available inside
your computer including: the beeper, clock, crt, keyboard, type-ahead buffer, key translator,
timers, and powerfail. Earlier releases of the Workstation Pascal System required importing several
different modules to access these devices. Now you only need SYSDEVS.

A Bit of Advice
The following list explains some of the problems you will encounter if you decide to use the devices
and routines described in this chapter. Be forewarned, these devices were originally intended to be
used only by the operating system and not by application programs. If you write a program which
uses these devices, it may not be transportable to all other Series 200/300 Computers. It will
definitely not be compatible with previous releases of Pascal.

• Correct use of the system devices requires a familiarity with both the Pascal language and the
Workstation Pascal System. If you have not programmed in Pascal, do yourself a favor and
avoid this chapter until you have gained some programming experience. It is very easy to
"crash" or "hang" your system with the information provided in this chapter.

• Programs which access the internal devices must be very carefully written. Most of the system
features use interrupt service routines (ISR) and variables which are procedures. If your prog­
ram doesn't run correctly the first time, the operating system may become so confused that
you won't get a second chance. You will have to re-boot the system and start over.

• In order to use the devices and routines in this chapter successfully, the more complete and
detailed information contained in the four volume set, System Internals Document may be
helpful to you. However, if you customize your system and something goes wrong, do not
expect the standard support services to be able to help you. It is virtually impossible
to support something that is unique to every customer, and the availability of special
system internals consulting is very limited.

• All system devices are not available on all of the Series 200/300 computers. For example, the
powerfail option is not available on most models. Extensive use of every available feature on
your computer almost guarantees non-transportability to other Series 200/300 Computers
(unless your programs are extremely well written).

• The programs presented in this chapter will not work with any other operating system, includ­
ing the HP-UX Operating System. Similar capabilities are prOvided in HP-UX, but they are
accessed differently.

After reading these warnings, you may wonder why these features are presented at all. The answer
is quite simple. If your computer has these features, you should be able to use them without a
tremendous effort. As a side benefit, some of the information presented in this chapter can be used
to determine the hardware configuration of any Series 200/300 Computer.

14-1

14-2 System Devices

Supported Features
The following Series 200/300 Computer features are accessed through the SYSDEVS module.
While SYSDEVS provides access to all of these features, not all of them may be present inside your
computer. Tests for the presence of these features are included when possible.

Tone Generator
• Beep with fixed frequency and duration (bell).

• Beep with specified frequency and duration.

The Keyboard
• Examine keycodes and qualifiers (shift, control, extend) .

• Set keystroke auto-repeat rate.

Clock • Set delay before keystroke auto-repeat.

• Elapsed time in hundredths of a second. • Keystroke interrupt processing.

• Set and read the date. Type-ahead Keybuffer

• Set and read the time of day. • Control the display of the type-ahead buffer.

• TIMEZONE and GMT handling.
• Modify the contents of the keybuffer.

• Control the file system access to the buffer.
• HP-UX time and date conversions.

Key Translation Services
Timers • Translate keycodes to ASCII characters.

• Enquire timer status. • Modify semantic action.
• Set or cancel periodic system interrupt. • Specify lookup table.
• Set or cancel real-time match timer interrupt.

• Set or cancel cyclic timer interrupt.

• Set or cancel delayed timer interrupt.

• Set or cancel non-maskable delayed interrupt (timeout).

Rotary pulse generator (The RPG or "knob")
• Knob interrupt processing.

• Mask knob interrupts.

CRT
• Toggle alpha screen on and off.

• Toggle graphics screen on and off.

Powerfail
• Test for presence of battery.

• Send command to powerfail.

• Interrogate screen parameters. • Interrogate powerfail status.

• Check or set status indicator (run-light)

• Control of the last line of the CRT.

• Control of the debugger window.

• Dump alpha procedure variable.

• Dump graphics procedure variable.

You may have noticed that some of the listed features correspond to actual hardware devices while
others are really pseudo-devices (such as the type-ahead buffer). From SYSDEVS point of view, it
does not matter if a "device" corresponds to an actual hardware device. Real devices and pseudo­
devices are treated similarly.

Note
Programs which access these features must be carefully written and
debugged. Any error may "crash" the operating system.

System Devices 14-3

The SYSDEVS Module
The SYSDEVS module contains the necessary interface text to access most internal devices and
features available on current Series 200/300 Computers. The primary reasons for creating SYS­
DEVS were to unify low-level access to the hardware and to allow the Pascal Workstation System
to operate without one or more of these devices present.

By using SYSDEVS and avoiding other modules for accessing your computer's internal hardware,
your programs will be safer from future changes to the operating system and underlying hardware.
However, no guarantee is made that your program will not require modifications in the future.

SYSDEVS code is a standard part of INITLIB, and its interface (export) text can be found in the
INTERFACE library file.

The SYSGLOBALS Module
Some of the features provided by the SYSDEVS module use constructs exported by the SYSG­
LOBALS module. Like SYSDEVS, the actual SYSGLOBALS "code" always resides in memory (it
is part of INITLIB) while the interface text can be found in the library named INTERFACE. The
examples in this chapter often import SYSGLOBALS to access useful features and constructs. For
example, the clock uses a packed record that is exported by SYSGLOBALS for the time and date.
If you are not familiar with the SYSGLOBALS module, you can use the Librarian to list the
interface text.

Previous Module Names
In general, previous versions of the Pascal Workstation System had individual modules for each
device or feature. Although some of the previous module names still exist in Pascal 3.0 and later
versions, their interface text has probably changed or no longer exists in these later versions.

If you wrote programs in previous versions of Pascal which imported the BAT, CLOCK, CRT, or
KBD modules, you will find similar functionality ,in the SYSDEVS module. Not necessarily identical
functionality, but similar functionality. For example, if you imported KBD for the BEEP procedure,
you can just change KBD to SYSDEVS in your program's import statement. However, if you
imported KBD for manipulating the type-ahead buffer, not only were you very brave, but you will
now have to "re-think" your strategy since there is a new interface to the keybuffer. This particular
operation may not be as difficult as you think, because it is now quite easy to manipulate the
type-ahead buffer.

For the most part, operations that use the file system are not affected by SYSDEVS (i.e. operations
that use the standard input, output, keyboard, and listing files that appear in the program header).

The Example Programs
All of the example programs found in this chapter are included on the DOC: disc supplied with your
system. To save space, the files were stored as type ASCII (". ASC" suffix). Your Editor can read
these files but remember to specify the suffix. It is still recommended that you read through the
listings to better understand how the examples work.

Some examples will interract with each other. Example programs whose name ends with the letter
"P" become a permanent part of the system and can only be removed by re-booting the computer
(or modifying the example).

14-4 System Devices

Not all examples given in this chapter will work on all Series 200/300 Computers. If you find an
example that will not work on your computer, study it to see what it is trying to do. You may have to
make slight modifications for your particular display or keyboard. For example, if your display has
only 50 columns, a long prompt may wrap to the next line. Simply shorten the prompt to fit your
display. Of course, if your computer does not have the necessary hardware, the example progam
will probably fail.

The fact that all examples may not work is not an oversight, it is simply an attempt to keep the
examples as short as possible. Be sure to study all of the examples and text since some examples
use features described in other sections.

As a last resort, if you need assistance contact your Sales and Service office and ask about possible
consulting or training for Pascal "internals".

Note

The example programs in this chapter were compiled using a LIBRARY
that contained the source text from the INTERFACE module. If you
have not added INTERFACE to your standard LIBRARY, you must
include the compiler option, $::;EAF.:CH " COt·iF I G: I t·iTEF.:FACE , " $ ($::;EA~~CH
~ACCESS:INTERFACE,~$ for double-sided discs) at the start of each
e::·::afllp 1 e pt" 09 r ·;m ,

Please do not execute an example program before you read the section where it is listed. Some
examples will change your operating system. If you are having trouble typing the examples into
your computer, you should stop typing and start reading.

System Devices 14-5

Interrupt Processing Overview
Many of the features made accessible by SYSDEVS produce hardware interrupts. When a device
interrupts, the operating system must react to the interrupt in an intelligent manner.

To handle interrupts effectively, the internal architecture of your computer allows seven different
levels (priorities) of interrupts. Most of the devices described in this chapter produce interrupts at the
lowest level (level 1). Other levels are used by other devices and interfaces. For example, if your
system has internal disc drives, they interrupt on level 2. The highest priority (level 7) is usually
reserved for very important purposes (such as the RESET key) since a level 7 interrupt can
"override" all other levels of interrupts.

When the computer is operating, any interrupt will cause it to stop what it is doing and branch to the
appropriate routine to service the interrupt. After the interrupt has been processed, the computer
resumes the task it was performing before it was interrupted.

If a higher priority interrupt should occur during the processing of an interrupt, the computer stops
processing the lower-priority interrupt and starts processing the higher priority interrupt. Only after
handling the higher priority interrupt will the computer resume processing the lower priority inter­
rupt. Thus, a low-priority interrupt may go unnoticed during the processing of a high-priority
interrupt.

Installing an additional service routine for levels 2 through 7 requires procedures exported by the
module named ISR. Adding a service routine for most system devices is easier since the SYSDEVS
module exports procedure variables that let you "hook into" the operating system.

One of the restrictions of interrupt service routines is not being able to detect interrupts at the same
or lower level. For instance, while servicing a timer interrupt, you cannot use are ad 11"1 statement
since the keyboard also interrupts at the same level. The keyboard interrupt will go unnoticed until
you finish processing the timer interrupt (an exception to this is shown in the Keyboard section).

Unlike normal programs which use the "user" stack, interrupt processing uses the "supervisor"
stack. Since only about 5K bytes are reserved for the supervisor stack, avoid recursive procedures,
excessive procedure calls, large local variables, and passing variables by value within your ISR.
Large global variables and passing large obj.ects by reference do not cause problems. If you
"overflow" the supervisor stack, unexpected behavior or errors will result (the system will "crash").

It is highly recommended that any math co-processor NOT BE USED in an ISH (do not use
the compiler directive $FL.CAT _HD~'~ Cri$). The system does not save and restore the math co­
processor's internal or user registers when entering and exiting an ISR. If an application that
uses the math co-processor is interrupted by an ISR that uses the math co-processor, incorrect
results can be generated or the system could hang or crash.

Hooking into Your System
Before trying to access a system feature, it is important to understand the methods used by the
operating system to communicate with these features. Accidentally or intentionally disconnecting a
feature from the operating system may result in unexpected errors or behavior.

14-6 System Devices

There are two major classes of devices accessed by SYSDEVS; those which perform an action
when requested (such as the beeper or the display) and those which actually interrupt the system
(such as the keyboard or a timer). The first class of devices generally has a simple interface and is
invoked by calling the proper procedure. The second class of devices usually has a more complex
interface and is accessed by taking control of the proper "hook".

In general, each device that generates a hardware interrupt has a "hook" (procedure variable1
) that

contains the "name" (actually the address) of the procedure in the operating system which can
process the interrupt. The interrupt processing procedure is also called an interrupt handler or
interrupt service routine (ISR). Typical identifiers for these hooks include: KBD I SRHOOK, T I MER I S­

RHOOK, and RPGISRHOOK (their type is PROCEDURE and they may have parameters).

When an interrupt occurs, the operating system detects it, determines which device produced the
interrupt, and invokes the proper "hook". Normally, this hook points to a procedure inside the
operating system which can handle the interrupt. The computer then continues whatever task it was
performing before the interrupt.

If you have been following closely, you may have noticed the best feature of a procedure variable; it
is a variable. You can write your own procedure and replace the operating system's procedure with
your own. Inside your procedure, you can determine what action to take or you may decide to pass
the interrupt back to the standard operating system procedure.

There are some important things to remember when you are writing interrupt service routines.

• An ISR must be very carefully written (a bad hook can hang your system). Errors occurring
inside an ISR will not get reported by the operating system.

• In general, your routine should only attempt to process the interrupts you are looking for; other
interrupts should be passed on to the operating system. You may think of your ISR as just a
link in a chain.

• If you take control of a system hook and your ISR does not remain in memory, unexpected
behavior or errors will result. You can either make your routine a permanent part of the
operating system or restore the hook to its original value before terminating your program.

• Keep your ISRs as short as possible. A slow ISR will affect the overall performance of the
system. An overly large ISR can crash the operating system. Also, don't forget, your routine
may be interrupted at any time by a higher-priority interrupt. Consequently, the value of a
system global, for example, may suddenly change while you are processing an interrupt.

• When processing an interrupt, no other interrupts at the same (or lower) level will be detected.
(There is a special "hook" that lets you receive keystrokes while inside an ISR.)

• It is highly recommended that any math co-processor NOT BE USED in an ISR (do not
use the compiler directive FLOAT _HD;'~ ot-dl

When writing a hook, you must include the $SYSPROG$ compiler option, however, due to the nature
of most interrupt service routines, they cannot be compiled with the $DEBUG$ compiler option.
These restrictions require careful coding and patience on your part. A good idea is to save your files
before executing any ISR program. That way, if something goes wrong, you only have to reboot
your system to try again.

One last point. Your keyboard generates an interrupt every time you press a key. If you "take over"
the keyboard hook, be very careful. A bad keyboard hook stops you from communicating with the
computer. Your last resort may be the power switch.

1 Procedure variables are described in the "Program Flow" chapter of the Pascal Workstation System manual.

System Devices 14-7

Enabling Interrupts
The Workstation System allows the masking (suppression) of timer, keyboard, and special inter­
rupts. Once a device has been masked, it cannot generate interrupts. Thus, no service routines will
be called (until that interrupt is re-enabled).

The MASKOPSHOOK procedure variable is used to control the enabling and disabling of interrupts. The
procedure has two parameters, the first is the name of a mask for the device to be enabled while the
second is the name of the mask for the device to be disabled.

The five masks are described below.

KBDMASK

RESETMASK

TIMERMASK

PSIMASK

FHIMASK

This mask prevents the operating system from reacting to keystrokes. While dis­
abled, only the RESET key will have any effect. This mask also disables knob (HPG)
interrupts and all HP-HIL devices.

This mask disables the RESET key.

This mask stops interrupts caused by the Cyclic, Delay, and Match timers. To use
these interrupts you must also provide an ISH of your own.

This mask disables the Periodic System Interrupt (PSI). When enabled, the PSI
produces an interrupt every 10 milliseconds. To use these interrupts you must also
provide an ISH of your own.

This mask enables and disables the level 7 "Non-Maskable Interrupt" (NMI) delay
timer interrupts. Using this level of interrupt requires that an ISH to be linked into the
operating system using the procedures exported by the module named ISH.

Since each mask has been assigned a positive numeric constant by SYSDEVS, multiple masks can
be specified by adding the constants (as shown below). A zero (0) is specified when no action is to
be taken. For instance, this call will enable the timer interrupts.

c a 11 (MASKOPSHOOK ,T I MERMASK ,0) ;

To disable the timers, reverse the order of the parameters.

call(MASKOPSHOOK,O,TIMERMASK) ;

The following call will simultaneously enable the keyboard and timers while disabling the reset key.

call(MASKOPSHOOK,KBDMASK+TIMERMASK,RESETMASK) ;

In general, at power-up, the keyboard and reset key are enabled, while the timers, periodic system
interrupt, and "fast-handshake" interrupt are disabled.

The following example program will disable the keyboard momentarily.

14-8 System Devices

$sYspro!1$
pro!1raM MASK1(inputtoutput);

ifT1Port s}'sdel.ls;

l.Iar
: inte!1er;

be!1in
call(MasKopshooKtOtKBDMASK+RESETMASK) ;
I,Hiteln('All Ke}'s i!1nored');
for i := 1 to 500000 do;
call(MasKopshooKtKBDMASK+RESETMASK,O) ;
writeln('All Keys restored');

end.

{disable all Keys}

{wait a few seconds}
{enable all Keys}

Once disabled, the keyboard is "disconnected" from the system. If something goes wrong while the
keyboard is masked or if you forget to re-enable the keyboard, the power-switch may be your only
chance for recovery. Even if you are writing a program that will mask the reset key, you might
consider leaving the reset key active until the development work is done.

A better solution is to use the TRY •• RECOI.IER programming extension! to ensure that any disabled
device is re-enabled before the program terminates. This technique is used by several of the
examples presented in this chapter.

System Features
The rest of this chapter describes the various features which can be accessed by the SYSDEVS
module. Most features can be accessed in more than one way. That is to say, there are many levels
of access for a given device. Not all possible levels of access will be described in this chapter. In
general, only the "higher" levels are described. By using the highest-level methods of accessing a
feature, your programs are less likely to require changes due to new releases of software or
revisions to the hardware.

Here is a list of the features described in this chapter.

• Beeper • Keyboard

• Clock • Type-ahead buffer

• Timers • Key translator

• Display • Powerfail

The supporting interface text for all of these features appears at the end of this chapter.

Note

All example programs in this chapter may not work on all Series 200/300
Computers. Slight modifications may be necessary.

If you have not already done so, please go back and read the section entitled The Example
Programs.

1 The TRY ... RECOVER mechanism is described in the "Error Trapping and Simulation" chapter of the Pascal Workstation System manual.

System Devices 14-9

The Beeper
If your computer has an internal tone generator, it can be accessed by two procedures exported
from the SYSDEVS module. These procedures did not change from earlier releases, except they
are now found in SYSDEVS .

• The BEEP procedure activates the tone generator at a fixed frequency and duration .

• The BEE PER (f r e q 1.1 e n C}', d 1.1 rat ion) procedure allows you to specify the frequency and dura­
tion of the generated tone.

The actual code that causes the hardware to make a noise is not in SYSDEVS, it is located
elsewhere (currently in the A804XDVR module). However, by using SYSDEVS to access the
procedures you are less likely to have to change your program in the future.

There are 63 audible tones that can be produced by the BEEPER procedure. The useful frequency
values are 1 through 63. The actual frequency is 81.38 times the passed value. This gives a range of
frequencies from about 81 Hz. to 5200 Hz. Passing a 0 as the frequency produces silence.

Note that if you have the HP-HIL keyboard, its interface has different sound generator hardware.
The actual frequency may be slightly different.

The value of the duration parameter can range from 0 through 255 and is measured in hundredths
of a second (centiseconds). Passing a value of 0 produces a duration of 256 centiseconds.

Although both parameters to the BEEPER function are declared to be of type b}'te, integer express­
ions may be used.

SYSDEVS exports two constants (BFREQUENCY and BDURAT ION) which can be used with the BEEPER

procedure to produce the same sound as the BEEP procedure.

Beeper Timing
Once started, there is no way to determine if a sound is still being produced. Thus, sending two
commands in a row may only produce one sound. A small wait loop will prevent the commands
from "stepping" on each other. For example,

prOgralTl BEEP1;

ilTlPO rt SYSDEI,IS;

uar i: integer;

beg i n
beep;
for i := 0 to 8888 do;
beep;

end.

{ring the bell}
{delay tactic}
{another bell}

14-10 System Devices

This same method can be used with the BEEPER procedure.

prograM BEEPER1(output);

ifTlPO rt SYSDEl.JS;

var f, z : integer;

begin
fo r f : = 63 dQIAlnto 0 do

end.

begin
beeper(f, 5);
writeln(round(f*81.all;
for z := 1 to 9999 do;

end;

{all frequencies}

{short duration}
{sholAI frequenc}'}
{IAlait a bit}

If you wanted to ensure completion of a previous command, you could use the internal clock or a
timer to count the centiseconds. However, it is probably not a good idea to wait inside an ISH until a
beep is finished; you might miss a keystroke or a timer interrupt.

Intentionally sending commands to the tone generator before it finishes a previous command can
produce interesting sounds as the following program demonstrates.

pro g rafTl BEEPER2;

ifTlPO rt SYSDEI,JS;

j

0 .. 255;
integer;

begin
for i := 128 downto 1 do

begin

end.

beepe r(i fTlod 6a, 10);
for j := 1 to (128-il*10 do;

end;

{all frequencies}
{strange dela}'s}

System Devices 14-11

The Clock
Several procedures and a function are exported by SYSDEVS for accessing the internal clock. The
clock interface has not changed from earlier releases of Pascal.

• The SYSCLOCK function returns an integer representing the number of centiseconds since
midnight.

Of course, if the clock has not been set to the correct time, this function returns the time since
power-up.

The procedures exported for the clock require packed records representing the date and time.
These records are defined in SYSGLOBALS and are also listed later.

• The SYSDATE(thedate) procedure returns the packed month, day, and year.

• The SYST I ME (t h e t i ITle) procedure returns the packed hour, minute, and centisecond.

Similar procedures are exported for setting the time and date.

• The SETSYSDATE (t h e d ate) procedure sets the date.

• The SETSYST I ME (the t i ITI e) procedure sets the time of day.

Some new procedures have been added in the 3.2 revision to facilitate handling of the Hierar­
chical File System (HFS), which is the HP-UX Series 3DO filesystem.

• The procedure s e ~ ~ i me z;) n e (~ z : in t e9 e f"::' allows setting the time differential from Green­
wich Mean Time (GMT) for the built-in clock.

• The function s '::! 59 m t t i il! e : in t e'; e r returns the current built-in clock time in seconds since
midnight of 1 January 1970. This is the base time for HP-UX time calculations.

• The function t i il!eda t e _ ~ o_secs;:: d.:; t e: d.:i t et" ec.: t i il!e: timer ec::' : in t e9 er converts a packed
month, day, year, and packed hour, minute, centisecond to seconds since midnight of 1
January 1970.

• The procedure secs_ to_ t imed.3te(secs: inte';er-.: \,'·3(d.:ite: d.:iter"ec.: \,'·:it" time: t imerec'

converts seconds since midnight 1 January 1970 to a packed month, day, year, and
packed hour, minute, centisecond.

Note that in Pascal version 3.2 the base date for the internal clocks has changed (the "real-time
clock", and any battery-powered back-up clock). In prior versions, it was I-Mar-OO (1 March
1900). In Pascal 3.2, the base time/date is midnight 1 January 1970 for compatibility with
HP-UX, which can execute on the same hardware, and cares very much that its clocks run
correctly. Also, the concept of timezone has been added; Pascal 3.2 runs the battery-backed
clock (if it is present) in GMT, NOT in local time as in previous versions. If you force the
battery-backed clock to run in local time (by setting timezone to 0 and setting local time with
SETSYSTIME, for example), HP-UX may require resetting the time when it is booted on the
computer.

In Pascal versions 3.2 and later, a call to SETS'lSDATE with a date earlier than I-Jan-70 will cause
the clock to be set to 1 January 1970. Version 3.22 can maintain dates up to 31 December
2027. This is achieved by changing the definition of the year field in a DATEREC from 0 .. 100 to
0 .. 127. Values in the range 100 through 127 represent the years 2000 through 2027.

The SYSCLOCK function can be used in timing or "stopwatch" applications. (Another timer is
described in the Timers section.) The following program prints the value of SYSCLOCK for five
seconds and then quits.

14-12 System Devices

pro1raM CLOCK1(output);

ilT1PO rt s}'sdel.ls;

var quittiMe : inte1er;

be1in
quittiMe := sysclock + 500; {quit five seconds frOM now}
while sysclock (quittiMe do
write(#1,'Centiseconds: ',sysclock);

end.

In this program the "quittime" is computed by adding 500 centiseconds to the current S)' S tiM e.
Using this method to set a future time would not work for times greater than 24 hours; nor would it
work at midnight when the clock is reset to zero. (At midnight you would need to use the da!e as
well as the time.) A later example uses such a method.

The SYSDA TE and SYSTIME procedures are used in the following program to read the c·
date and time. The program also demonstrates two methods of displaying the formatted da.,,,
time.

pro1raM CLOCK2(output);

iMPort sys1lobals, sysdevs;

canst century = 1900;

type Monthtype = (nul ,Jan ,Feb ,Mar ,Apr ,May ,Jun tJul ,AU1 ,Sep ,Oct ,Nov ,Dec);

var date
tiMe
Mta~

tiMestr

date rec;
tiMerec;
Man t h t Y p e;
strin~[B];

i, days, Months, Years,
hours, Minutes, seconds inte~er;

b e ~i n
sysdate(date) ;
systiMe(tiMe) ;

{~et the date froM the clock}
{~et the tiMe froM the clock}

{plain} writeln('plain');
writeln(date,day:2, '-',date,month:2,'-',date,year mod 100:2);
writeln(tiMe.hour:2,':' ,tiMe.Minute:2,':',round(tiMe.centisecond/l00):2);

{fancy} writeln('farlcY');
days := date.day;
Months := date.Month;
years := cent~rY + date.year;
Mta~ := nul; for i := 1 to Months do Mta~ := Succ(Mta~);
writeln(days:2,' "Mta~,' ',Years:4H
hours := tiMe.hour;
Minutes := tiMe.Minute;
seconds := round(ti~e.centisecond/l00);

strwrite(tiMestrtl Ii ,hours:2,':' ,Minutes:2,':' ,secor,ds:2);
for i := 1 to strlen(tiMestr) do

if tiMestr[il = ' , then tiMestr[il := '0';
writeln(tiMestr);

end.

The program prints the date and time as follows.

plain
2- 4-84

15:34: 4
fan c}'

2 APR 1984
15:34:04

System Devices 14-13

Setting the time can be accomplished by the SETSYSTIME procedure as demonstrated in the
following program. A similar program with the proper range checking could set the date.

$s}'spros$
progralll CLOCK3(input toutput);

illlPort svsglobalst svsdevs;

var t i ITle
tstr
delilTlit

tilTlerec;
string[255];
char;

it hours t ITlinutes t seconds integer;

beg i n
S}'stiITle(tiITle) ; {get the tillle frolll the clocK}
IAlrite('The current tilTle is: ');
writeln(tillle.hour:2t':' ttillle.lIlinute:2t':' tround(tillle.centisecond/l00):2);
IAlriteln;
write('Enter the new tillle in the forlll: hh:lIllll:ss '); readln(tstr);
if strlen(tstr) } 0 then

end.

begin
tn

strread(tstrt1 ti thours tdelilTlit tlTlinutes tdelilTlit tseconds);
recover

begin
IAlriteln('Unrecognized tilTle forlTlat. Tn again.');
l,.Iriteln('For exalTIPlet tn t}'ping: 12:34:56 ');
escape(O) ;

end;
{bailout}

if (hours)= 0) and (lIlinutes)= 0) and (seconds)= 0) then
if (hours <: 24) and (ITlinutes <: 60) and (seconds <: 60) then

begin
tillle.hour := hours;
tillle.lIlinute := lIlinutes;
tillle.centisecond := seconds * 100;
setsvstillle(tillle) ;

end
else

IAlriteln('Value too large. Tn' again. ')
else

writeln('Value too slllali. Trv again. ');
end;

{set the cloc~\}

14-14 System Devices

The program prints the following prompt.

The current tiMe is: 15:34:48
Enter the new tiMe in the forM: hh:MM:SS

An error message is printed if the time value is too large, too small, or not formatted correctly.

The DATEREC and TIMEREC types used in the previous examples are defined in the SYSGLOBALS
module as follows.

daterec = pacKed reco rd
year O •• 127i
day o •• 31;
Month 0 •• 12;
end;

tiMerec = pacKed record
hour O •• 23;
Minute O •• 59;
centisecond 0 •• 5999;
end;

datetiMerec = pacKed record
date date rec;
tiMe tiMerec;
end;

If you use these types, do not forget to perform the necessary range checking before assigning
values.

Setting TIMEZONE is done by calling SETTIMEZONE, and supplying as its parameter, the value
(in seconds) that will give GMT when ADDED to the local time.

For example: If you are in Colorado during daylight savings time, you would make the following
call:

settimezone(6*3600); (Colorado is 6 hours ~~behind!! GMT
during the daylight savings period)

As an explanatory example, if the time is currently 10:00 AM in Colorado, then GMT is 16:00
(4:00PM). So you would add 6 hours, or 6·3600 = 21 600 seconds to the local time to arrive
at GMT. Hence SETTIMEZONE is called with the value 21 600.

The function SYSGMTTIME returns the number of seconds from 1 January 1970 to current
GMT. Current GMT is the time displayed by the VERSION command plus the number of
seconds represented by the timezone difference (21 600 in our example).

The procedure SECS_ TO_ TIMEDATE takes an arbitrary number of seconds since midnight of
1 January 1970, and converts it to packed time and date. An example of this is:

pr 09 r ·~m CLOCK4 (i np!) t ,J OJ) t P!A t) ,:

import sysglobals, sysdevs;

._1 _, .;. ,_. ;,M ,_. ,_ :

cjone := f.:;lse.:

write('Time in seconds
re.~dln(secs) .:

recover if escapee ode
begin writeln; reset(nputj

else escape(escapecode
until done.:

with date, time do
writeln('Time and date:

_ .. " .j
:::-i::...E

The program prints the following prompt:
Time in seconds Q

System Devices 14-15

',day:1,' IIS',year,.,

Enter an integer such as 529158443. The program repeats the prompt until a valid iT
entered, or the STOP key is pressed.

It prints out the corresponding date and time in the following format:
Time and date: 10/~/1986 12:27:23

The function TIMEDATE_ TO_SEeS takes an arbitrary date and time and converts them to a
number of seconds since midnight of 1 January 1970. An example program is:

pr09rafi! CLOCK5(inp!)t.: outPijt)}

import sysglobals, sysdevs;

time timerec.;
date d.~terec.:

sec sin t e';:I e r .:
done bClo 1 e·~n.:

14-16 System Devices

done := f.~lse.;

i.:J(it~?(···Time: hh
1,=) i t h ~ i m e d 0

r !?~ dIn::: hOI) r" min u. t e.; :: e n tis e C G (1 d ::: ,:

recover if escapecode <> -20 then
be9in !.'.iri~eln.: t"ese~(input).; end

else escape(escapecode);
I)t"'!til done.;

done ; = false,:

!,=.i r i t e (", D ate ~ m m d d l=, !::i ? "') ,:

r-eadln(month" d,~!::!., I::!e.~r).;

recover if escapecode <> -20 then
be:;!in i,IJr"iteln,: reset(inpt4t),: end

else escape(escapecode);
ti n r i 1 don e .:

writeln(~Seconds since midnight

end,

The program prints the following prompt:

Enter a time such as 12 27 2300. The next prompt is printed:

Date: mm dd y~ ?

Enter a legal date such as 10 08 86. The corresponding number of seconds since midnight of
1 January 1970 is now printed:

Seconds since midnight 1 January 1970 529158443

The program repeats each prompt until either a legal set of values is entered, or the STOP key
is pressed.

It is up to the programmer in all cases to make sure that values passed to the CLOCK and
TIMEZONE routines are correct and valid. There is no real checking performed inside the
routines themselves.

Direct Clock Access
In addition to the standard clock procedures, the clock may also be accessed by these procedure
variables .

• CLOCKREQHOOK is the interface to the CLOCK module, and will also set the battery-backup
clock.

• CLOCK IOHOOK is an interface to the routine which actually communicates with the clock hard­
ware.

System Devices 14-17

Both hooks let you read or set the time and date, but each uses its own method. There is nothing to
stop you from using these hooks, instead of the standard procedures for reading the clock, however
your program will probably require more changes in the future.

For the first hook, SYSDEVS exports the following enumerated type.

CLOCKFUr·1C = (CGETDATE., CGETT I t'lE., CSETDATE., C~:;ETT I i'lE., CSETZOt·1E::O.:

An example call to read the date is shown below.

call(clocKre~hooK, CGETDATE, data);

Where data is a variable of type CLOCKDATA viewed as either TIMETYPE or DATETYPE as described by
this record.

CLOCK DATA = RECORD
CASE BOOLEAN OF

TRUE :(TIMETYPE:TIMEREC);
FALSE: (DATETYPE:DATEREC) ;

END;

Of course, if you just read the date, you' would want to access the data as d a t a • d ate t y p e, rather
than try to decode the date as a time of day. The types, TIMEREC and DATEREC were described
earlier.

The second hook uses the following enumerated type to control the clock.

CLOCKOP = (CGET} CSET} CUPDATE} CTZ);

Thus, a call to read the date would appear as follows.

call(clocKiohook, CGET, rtcdata>

Where the r ted a t a is a variable of the following type.

RTCTIME = PACKED RECORD
PACKEDTIME, PACKEDDATE : INTEGER;

END;

When possible, do not use this last hook since it operates directly on the clock hardware and not
through the operating system. (The lower the level of access, the more likely it will have to be
changed in the future.)

Note
Although perfectly suited for most application programs, the example
programs presented here will not work inside an interrupt service
routine because the clock already uses the level 1 ISR.

14-18 System Devices

The Timers
There are three independent hardware timers inside your Series 200/300 computer. Since
these timers are not used by the operating system, they are available for any purpose you
choose.

The three programmable timers are:

• Cyclic - This timer repeatedly interrupts the system at a specified interval.

• Delay - This timer interrupts the system after a specified delay.

• Match - This timer interrupts the system at a specified time of day.

While each timer can be set'or read independently, the timers are enabled and disabled (masked)
collectively. All examples in this section include the necessary statements to enable the timers.

The TIMERISRHOOK is a procedure variable called by the operating system's timer ISR when an
interrupt is generated by the timer hardware. Thus, if you change T I MER I SRHOOK to use your ISR,
you will be able to process the interrupts as you choose.

The timers are programmed by the TIMERIOHOOK. The timer hook is a procedure variable that takes
three parameters. The first parameter is the name of the timer to be used. SYSDEVS exports an
enumerated type that lists the timers.

TIMERTYPES = (CYClICT, PERIODICT, DElAYT, DElAY7T, MATCHT);

The second parameter is the operation code.

TIMEROPTYPE = (SETT, READT, GETTINFO);

The third parameter is the timer data. This is a data variable that can be viewed as a number of
centiseconds (for the cyclic and delay timers), a time of day (for the match timer), and as a return
value for the GETT I NFO request.

TIMERDATA = RECORD
CASE INTEGER OF

0: (COUNT: INTEGER);
1: (MATCH: TIMEREC);
2: (RESOLUTION, RANGE: INTEGER);

END;

Thus a typical call to the TIMERIOHOOK would appear as follows.

call(tiflleriohoof\, CYCLICT, SETT, flll'data);

Where flll'data is a variable of type TIMERDATA and would contain the count to set the cycle timer.
How TIM E R D A T A is interpreted depends on its usage. .

System Devices 14-19

Timer Types
A short explanation of each timer is given below.

CYCLICT

PERIODICT

DELAYT

MATCHT

DELAY7T

This timer interrupts on a specified interval; the interval is given in centiseconds, in
the COUNT field of the T I MER DATA variable.

This timer interrupts every centisecond. See the later section entitled
Us in g the Per i 0 d i c T i III e r for details on using this timer.

Interrupts once after a specified amount of time. The time is given in centiseconds in
the co U N T field of the TIM E R 0 A T A variable and is measured from the time the SET T

operation reaches the hardware.

This timer interrupts whenever a specified time of day is reached. The time is given
in T I MEREC form (hour. minute, and centisecond) in the MATCH field of the T I MERDATA

record.

This "timer" is the same as DELAYT except that the interrupt will occur as a level 7
(non-maskable interrupt). Use of this timer requires you install a level 7 ISR with the
procedures given in module ISR. There is no system default code for a DELAY7T

interrupt.

Timer Operations
Here are the permissible timer operations.

SETT Sets the timer using the data specified by the TIM E R 0 A T A.

READT Returns the current setting of the timer in a variable of TIMERDATA type.

GETTINFO This command returns information in the RESOLUT I ON and RANGE fields of T I MERDATA.

If the RESOLUT I ON is zero then the timer is physically missing, otherwise RESOLUT I ON is
the smallest possible timer interval given in microseconds. For current Series 200
Computers this is 10000 microseconds or 1 centisecond.

The RESOLUT I ON and RANGE values of a timer cannot be changed.

The follOWing program checks the status of each timer to see if it is being used.

$s}'sprog$
prograM TIMER1(output);

iMPort sysglobals, sysdeus;

l,Iar
tdata
t i Ille

tilllerdata;
tilllerec;

begin {TIMER1 prograM}
l,.,Iriteln('*** Cyclic tilTler ***');
call (tillle riohoo~~, CYCLICT, GETTINFO, tdata);

{type frOM SYSGLOBALS}

write('Resolution: ' ,tdata.resolution:O,' usee.');
1"lrite(' Range: ',tdata.range:O,' usec.');
call(tirlleriohoo~t, CYCLICT, READT, tdata);
writeln(' Count: ',tdata.count:O,' centisec.');

14-20 System Devices

I.uiteln('*** Dela}' ti/ller ***');
eall(ti/lleriohooK, DElAYT, GETTINFO, tdata);
I.uite('Resolution: ',tdata. resolution:O,' usee.');
I,Hite(' Range: ',tdata.range:O,' usee.');
eall(tiITleriohooK, DElAYT, READT, tdata);
writeln(' Count: ',tdata.eount:O,' eentisee. ');

I.uiteln('*** Mateh tilTler ***');
eall(ti/lleriohooK, MATCHT, GETTINFO, tdata); {set CYCLIC ti/ller}
IAlrite('Resolution: ',tdata. resolution:O,' usee. ');
IAlrite(' Range: ',tdata.range:O,' usee.');
eall(tifTleriohoof(, MATCHT, READT, tdata); {set CYCLIC ti/ller}
IAlrite(' IIHH:MM:SS II ',tdata.fTlateh.hour:O,': ');
write(tdata./Ilateh./Ilinute:O,':' ,tdata./Ilateh.eentiseeond:O);

end.

A sample output is given below.

*** CYel ie t i ITI e r ***
Resolution: 10000 usee. Range: 18777215 usee. Count: 18777218
*** De 1 a}' t i ITI e r ***
Resolution: 10000 usee. Range: 16777215 usee. Count: 18777218
*** Mateh t i ITI e r ***

eentisee.

eentisee.

Resolution: 10000 usee. Range: 18777215 usee. IIHH:MM:SS II 0:0:0

Note that the count value is greater than the range! This is not an error, it just indicates that the
timers have not been used. If you "clear" the timers after using them, as shown in the following
programs, you will restore the timers to the values printed above. This allows a program to test if a
timer is already in use.

When you check a timer, if the count values are not as above, the timer may be in use.

Using a Timer
The CYCl I CT, DElAYT, and MATCHT timers are set up and used similarly. The choice of timer depends
on the application. A timer's general mode of operation is to provide an interrupt whenever a
specific time condition is met. Timers therefore involve the use of interrupt service routines. As
always, misuse of an ISH can cause the system to "hang".

The typical sequence of using one of these timers is described below. (Using the periodic timer is
described later.)

1. Save the value of TIMERISRHOOK by copying it into a variable of type KBDHOOKTYPE. The copy
will be needed for the last step and may be used to "pass on" interrupts you do not wish to
handle.

2. Set T I MER I SRHOOK to the procedure which will process the interrupt.

3. Set the time condition in a variable of type T I MERDATA.

4. Make a system call to set the timer.

Where t i ITI e r _ t y p e is the name of the timer you wish to use.

System Devices 14-21

5. Now enable the timers and wait for interrupts.

CALL(MasKopshooK,TIMERMASK,O) ;

When an interrupt occurs, your procedure will be executed rather than the standard proces­
sing procedure. (A typical ISH procedure is shown later.) If more than one timer ISH is in use,
be sure to "pass on" any interrupt you do not wish to process. You may leave your ISH
installed as long as you wish (provided the program stays in memory).

6. When you no longer desire to process interrupts, call the MASKOPSHOOK to disable further
interrupts.

CALLlITlasf,opshoof, ,0 ,TIMERMASK);

7. Set the time condition to zero (0) in the T I MERDATA variable.

8. Call the T I MER I OHOOK (with zero as the data) to clear the timer.

CAL L (t i tTl e rio h 0 0 f, ,t i tTl e r _ t y p e ,S E T T , t i ITl e _ con d i t i 01"1- \.I a ria b 1 e) ;

Although the timer does not require this call, it will set the timer's control values to a known
state that can be tested by some other program that may wish to use the timer.

9. Set the value of T I MER I SRHOOK back to the copy made in the first step. You have now
returned the system to its normal state. Your program can now terminate.

If you think the timer may already be in use, you might want to perform the test mentioned
previously before executing these steps.

A Typical Timer ISR
Here is the generic form of a timer interrupt service routine. Your ISH will need to use the same
procedure parameters given below but not necessarily the same procedure name. The boolean
variables shown below are assumed to be defined as globals.

procedure tiMehooK(\.Iar statbyte, databyte: byte; uar doit: boolean);
beg i n

if doit then
begin

periodic
t i ITle r : =
cyclic : =
del a}' : =
ITla t c h : =

end;
end; {proc}

: = odd(statbne d i \) 1 G) ; {statbyte bit LI}
odd(statb}'te d i \) 32) ; {statbyte bit 5}

odd (datab}'te d i \) 32) ; {datab}'te bit 5 C}'cUc}
odd(datab}'te di\.l GLI) ; {datab}'te bit G dela}'}
odd(datab}'te d i \) 128) ; {datab}'te bit 7 ITlatch}

The procedure has three variables, the 5 tat usb}' t e indicates the which "class" of timer interrupt
occurred, the d a tab }' t e indicates which timer interrupted, and do i t indicates whether any action
should be taken. If do i t is false, then no action should be taken (the interrupt was processed
elsewhere) .

A call through T I MER I SRHOOK will only occur if statusbyte bit-4 or bit-5 is true. (See the keyboard
hook for the meaning of the other status bits.) Bit -4 indicates if the interrupt was generated by the
periodic system interrupt (which interrupts every centisecond when enabled). If bit-5 is true, then a
cycle, delay, or match timer interrupt has occurred. To determine which timer has interrupted, the
top three bits of the data byte can be tested. Databyte Bit-7 indicates a match-time, bit-6 indicates a
delay, and bit 5 indicates a cycle interrupt.

14-22 System Devices

Note that both a periodic interrupt and a timer interrupt can occur at the same time (Status byte
bit-4 and bit-5 both true). Also, two or three regular timers can interrupt at the same time (Data byte
bit-5, bit-6, and bit-7 all true). It is possible for a timer or periodic interrupt to be completely missed
if the operating system is processing a higher level interrupt.

A provision has been made for counting missed cyclic interrupts. If bit -5 of the data byte is true
(cyclic interrupt) the lower 5 bits (bit-4 through bit-O) contain the count of missed cyclic interrupts.
Thus, up to 31 missed cycle interrupts can be logged. Actually, the count "saturates" at 31 so there
is no way of knowing if more than 31 missed interrupts have occurred. The count will be reset to
zero when the timer is read.

Multi-Timer Example
The following program sets each timer then waits for 15 interrupts. When an interrupt occurs, the
program prints the name of the timer. This program assumes that the timers are not already in use
and clears the timers when it is finished.

$s}'sprog$
prOgraM TIMERZ(output);

iMPort sysglobals, aB04xdvr, sysdevs;

const

var
readintrMask = a;

intcount
tdata
saveisrhoo~\

salJeoldfTlas~\

integer;
timerdata;
~\bdhoo~\t}'pe ;
byte;

procedure set_tiMers;
1.1 a r

overflow: integer;
begin

tdata.count := 100;
call(timeriohook, CYClICT, SETT, tdata);

tdata.cDunt := 550;
call(timeriohook, DElAYT, SETT, tdata);

{type is from sysglobals}
'{t}'pe is frofTl sndelJs}

{1.00 seconds}
{set CYCLIC timer}

{5.50 seconds}
{set DELAY timer}

{push-ups to set the Match tiMer to a future time}
SystiMe(tdata.Match); {get the current time}
with tdata.Match do

begin
olJerflow := centisecond + 950;
centisecond := overflow Mod 8000;
if overflow> 5999 then

begin
overflow := minute + 1;
Minute := olJerflow mod 80;
if overflow> 59 then

begin
olJerflow := hour + 1;
hour := overflow Mod za;

end;
end;

end; {IAlith}
call(tiMeriohooK, MATCHT, SETT, tdata);

{add 9.50 seconds}
{may carry to minutes}
{too many seconds}

{carry to next minute}
{May carry to hours}
{too Many Minutes}

{carry to next hour}
{May carry to next day}

{set the MATCH tiMer}

System Devices 14-23

{Next procedure is froM ABOaXDVR and will save the interrupt Mask}
c 1lliL rea d _1 (rea din t rIll a s ~\ ,s a 1,J e 0 I d III a s ~\) ;

{ N ext lin e en a b I e s ti ITI e r in t err UP t s if the}' are cur r e n t b dis a b led}
if odd(sal,Jeoldlllas~\ dil,J a) then call(MASKDPSHOOK, TIMERMASK,O);

end; {proc}

procedure clear_tiMers;
begin

{Next line disables tiMer interrupts if thev were originallv disabled}
if odd(saveoldMask diva) then call(MASKOPSHOOK ,O,TIMERMASK);

tdata.count := 0;
call(tillleriohoo~\, CYCLICT, SETT, tdata);
call(tiMeriohook, DELAYT, SETT, tdata);
call(tiMeriohook, MATCHT, SETT, tdata);

end; {proc}

{set data to zero}
{clear CYCLE tiMer}
{clear DELAY tiMer}
{clear MATCH tiMer}

procedure tiMehook(uar statbvte, databvte: bvte; var doit: boolean);
1,J a r

periodic,
t i III e r ,
c}'clic,
del a}' ,
IlIa t c h : boolean;

begin
{Interrupt Service Routine}

periodic := odd(statbvte div lG);
tiMer := odd(statbvte div 32);
if periodic then

call (sal,Jeis rhoo~\ ,statb}'te ,databne ,doi t);
cvclic := odd(databvte div 32);
delav := odd(databvte div Ga);
Match := odd(databvte div 128);
intcount := intcount + 1;
'A'rite(intcount:3,' ':3);
if tiMer and cyclic then write('Cvclic ');
if tiMer and delav then write('Delav ');
if tiMer and Match then write('Match ');
writeln('interrupt. ');

end; {proc}

begin {TIMER2 prOgraM}
tn'

intcount := 0;
saveisrhook := tiMerisrhook;
tiMerisrhook := tiMehook;
set_tilllers;
',Jriteln('Running');
repeat {nothing} until intcount > la;
escape(O) ;

reCOI,Jer
begin

cleaLtilllers;
tiMerisrhook := saveisrhook;
',Jriteln('Stopped');

end;
end.

{statb}'te bit a}

{statb}'te bit 5}

{pass it back to svsteM}
{bit 5 cnlic}
{bit G dela}'}
{bit 7 Illatch}
{count interrupts}
{print the count}

{initialize count}
{save old tiMer hook}
{use new tiMer hook}
{set and enable tiMers}

{wait for 15 interrupts}
{invoke recover-block}

{clear and disable tiMers}
{restore old hook}

14-24 System Devices

Here are the results of running the multi-timer program.

Running
C}'clic interrupt.

2 C}'clic interrupt.
3 C}'clic interrupt.
4 C}'clic interrupt.
5 C}'clic interrupt.
G Dela}' interrupt.
7 C}'clic interrupt.
8 C}'clic interrupt.
9 C}'clic interrupt.

10 C}'clic interrupt.
11 Match i,nterrupt.
12 C}'clic interrupt.
13 C}'clic in t err u pt.
14 C}'clic interrupt.
15 Cyclic internlPt.

Stopped

Note that there is nothing to stop two timers from interrupting at the same time. If this happens, only
one call will be made to the ISR, but both "flag" bits will be set. (You might want to modify the
program to see what happens.)

Also note that the previous program does not pass on timer interrupts. This means that if another
timer ISR is already active, it will not "see" the timer interrupts during the execution of the above
program. If you wanted to give the other program a change to also process the interrupts, you
would need to add the following line at the end of the ISR procedure in the above program.

call(sal)eisrhoof,t statbnet datab}·tet doit);

Of course, since the previous program changes the settings of all of the timers, any prior timer
settings would be lost.

Not Enough Timers
Just as there is an old "law" about software expanding to to fill all available memory, you may soon
find that you need an extra timer. You might consider using the periodic timer (described next) or
the clock; however, both have certain restrictions. Another possibility would be to "multiplex" a
timer. For example, if you wanted a cyclic interrupt at 30 times a second and another at 10 times a
second, it would be easy to count the interrupts in the "slower" ISR and take an action only on
every third interrupt.

Using the Periodic Timer
When enabled, the periodiC timer interrupts the operating system every centisecond (every 10
milliseconds). Beware, misuse of this timer will impact the performance of your system. If your
routine took 1 millisecond to execute, the operating system would spend 10 per cent of its time in
your routine. Use this timer only when absolutely necessary and keep your ISR as short (fast) as
possible.

System Devices 14-25

To set up and use the periodic timer, follow these steps.

1. Save the value of T I MER-I SRHOOK by copying it into a variable of type K BDHOOK TYPE. The copy
will be needed for the last step.

2. Set T I MER I SRHOOK to the procedure which will process the interrupt.

3. Enable timer interrupts and wait for interrupts.

CALUfllasf,opshoof, ,PSIMASK ,0);

When an interrupt occurs, your procedure will be executed rather than the standard interrupt
service routine. You may leave your ISH installed as long as you wish (provided the program
stays in memory).

4. When you are no longer desire to process interrupts, call the MASKOPSHOOK to disable
further interrupts.

CALL (fllasf,opshoof, ,0 ,PSIMASK) ;

5. Set the value of T I MER I SRHOOK back to the copy made in the first step, You have returned the
system to its normal state.

When you use the PER I OD I C timer, remember to keep your service routines as short as possible
since they will be executed every centisecond. A slow ISH for this timer will seriously degrade
overall system performance. Also remember that interrupts run in "supervisor" mode. Heavy use
of the stack may cause the operating system to "crash".

Periodic Timer Example
The following program enables the periodic timer for about a second.

$s}'sprog$
prOgraM TIMER3(output);

iMPort sysglobals, sysdevs;

i : integer;
saveisrhooK : KbdhooKtype; {type is frOM sysdeus}

procedure ptiMehooK(uar statbyte, databyte: byte; var doit: boolean);
be. gin
{Interrupt Service Routine}

if odd(statbyte diu 16) then write('. '); {periodic tifller}
if odd(statbyte diu 32) then

call(sal.JeisrhooK, statb}'te, datab}'te, doit); {soflle other tifller}
end; {proc}

begin {TIMER3 prOgraM}
tn'

saueisrhooK := tiMerisrhooK;
tiMerisrhooK := ptiMehooK;
call (fllasf,opshooK, PSIMASK, 0);
for i := 1 to 100000 do {nothing};
escape(O);

reCOI.Jer

end.

call(MasKopshooK, 0, PSIMASK);
tiMerisrhooK := saveisrhooK;

{save old tiMer hooK}
{use new tiMer hooK}
{enable interrupts}
{wait for a few intr.}
{inuoKe recover~blocK}

{disable interrupts}
{restore old hooK}

14-26 System Devices

The program prints a period (.) for every interrupt.

System Timer Example
The final timer example program sets the cyclic timer to continually display the cursor position on
the screen. Note that this example must become part of the operating system since it does not
release the timer hook.

$s~'sprog$

profraM TIMER4P(output);

ilTIPort s~'sglobals, s~'sdevs, loader, fs;

var fposx ,fpos~'
fconsole
tdata
sal,leisrhooK

integer;
file of char;
tillle rdata;
~\bdhooKt}'pe ;

procedure set_tiMer;
begin

tdata.count := 10;
call(tiMeriohooK, CYClICT, SETT, tdata);
call (MASKOPSHOOK I T I MERMASK ,0)

end; {proc}

procedure clear_tiMer;
begin

tdata.count := 0;
call(tiMeriohooK, CYClICT, SETTI tdata);
call (MASKOPSHOOK,O,TIMERMASK)

end; {proc}

{type is frOM sysglobals}
{type is frOM sysdevs}

{0.10 = 10 per second}
{set CYCLIC tiMer}
{enable tiMer interrupts}

{set data to zero}
{clear CYCLE tiMer}
{disable tiMer interrupts}

procedure cyclehooK(var statbyte, databyte: byte; var doit: boolean);
l,Iar i, rl,lal integer;

teMPstr : string[S];
begin
{Interrupt Service Routine}

if odd(statbyte div 32) {tiMer} and odd(databyte div 32) {cyclic} then
beg i n

if doit then {process interrupt only if doit is true}
begin
doit := false;
fgetxy(OUTPUT, fposxl fposy);
fposx := fposx + 1;
fposy := fposy + 1;
teITIPstr:= 'n',xx';
if fposx < 100 then

{processed here}
{get cursor pos.}
{orgin at 1}

{desired forlTlat}

s triAl r it e (t e III pst r tl , r 1.1 a 1 If PO S}' : 2 , ' , ' If PO S x: 2) {c 0 p~' in t 0 s t r i n g}
else

strlAlrite(telllPstrtl ,rl,lal Ifpos}':2lfposx:3); {COP}' into string'}
for i := 1 to 5 do

setstatus(i-l ,teIIIPstr[i]);
end;

{print it on screen}

end;
{If doit is still true then pass the interrUPt on to the next hooK}

if doit then call(saveisrhoo~\,statb}'te,datab}'te,doit); {pass it on}
end; {proc}

be~in {TIMER4P pro~ram}

trY
saveisrhooK := timerisrhooK;
timerisrhooK := cyclehooK;
set_tirller;
writeln('Cursor-disPlay enabled. ');
MARKUSER;

recol,Jer
be~in

cleaLti(Iler;
timerisrhooK := saveisrhooK;
writeln('Crashed. ');

end;
end.

System Devices 14-27

{save old timer hooK}
{use new timer hooK}
{set and enable timers}

{Keep this around}

{clear and disable timers}
{restore old hooK}

Running this program causes the current cursor position to be displayed in the lower right-hand
corner of the display. The program checks the cursor position and updates the display ten times
every second. Other system information could be displayed in a similar fashion.

The set s tat us statement is used in this program to print the cursor information in the status area of
the display (see the next section for details).

The (11 a r f~ use r statement is imported from the LOADER module and instructs the loader to move
the current "top-of-heap" pointer to the end of the most recently loaded program. This prevents
the program from being unloaded (scratched) when it finishes executing. (Without this statement,
the timer ISR would be removed from memory and the next interrupt would call a non-existant
routine resulting in very unusual behavior.)

14-28 System Devices

The Display
The SYSDEVS module provides access to several features of the display (CRT) including
most of the features previously imported from the modules KBD and CRT. In Pascal 3.0
there are two display modules, a module for alpha-type displays (CRT), and a module for
HP 9837A hit-mapped displays (CRTB). In Pascal 3.1 there are two additional display
modules: CRTC for HP 98542A, HP 98543A, HP 98544A, HP 98545A,and HP 98547A
displays; and CRTD for HP 98700A displays. In Pascal 3.21, CRTE was added for the
HP 98548A, HP 98549A, and HP 98550A displays. In Pascal 3.25, CRFT was added for
the HP9000 model 362/382 internal hit-mapped displays. All six modules are provided in
Version 3.25. None of the modules have any export text. Their features are accessed through
SYSDEVS.

As mentioned previously, there are usually several levels of access to a device. Before introducing
the access to the display provided by SYSDEVS, it is worth mentioning what can be accomplished
by the file system. By using the file system to access the display, you are practically guaranteed that
your program will operate correctly on all Series 200/300 computers that have the necessary
hardware.

The following table lists the effects of control characters written to the display.

Character Effect
chr(1) Homes cursor to upper-left corner.
chr(7) Produces a beep.
chr(8)
chr(9)
chr(lO)
chr(11)
chr(12)
chr(13)
chr(28)
chr(31)

Moves the cursor left one position (if possible).
Clears from the cursor to end of line.
Moves the cursor down one position (if possible).
Clears from the cursor to the end of the screen.
Homes the cursor and clears the screen.
Moves the cursor to the left end of the line.
Moves the cursor right one position (if possible).
Moves the cursor up one position (if possible).

All of these control characters produce an action rather than display a character. A "shorthand"
notation exists in HP Pascal for including these control characters in output statements. For exam­
ple, to clear the display before printing, try the following statement.

writeln(#12t 'HOMe Sweet HOMe');

Many of the examples in this chapter use this notation.

Determining Display Type
Inside most Series 200 Computers there are two independent screens (also called rasters). There is
an "alpha" screen and a "graphics" screen. The alpha screen can display only characters (text)
while the graphics screen is capable of displaying individual dots or lines (of course, a character can
be formed out of dots and lines on a graphics screen). Both screens may be displayed independent­
ly or at the same time.

Your computer may have only one of these screens. The graphics screen is a deletable option on
some computers while the newest computers only have a "bit-mapped" (graphics-type) character
display. On the bit-mapped displays, clearing alpha or graphics clears both alpha and graphics since
they use the same hardware.

System Devices 14-29

SYSDEVS exports an enumerated type and a system variable of that type which let you determine
what kind of display is in use. Currently, only the first three "kinds" of displays are supported by the
operating system.

crU,inds = (NOCRT, ALPHATYPE, 6ITMAPTYPE, SPECIALCRT1, SPECIALCRT2);

The following short program will print the current console display type.

pro~raM CRT1(input, output);

ilTIPO rt s)'sdel,ls;

b e ~ i n
writeln(currentcrt) ;

end.

Unless you have modified the system, either ALPHATYPE or 6ITMAPTYPE will be displayed. NOCRT is
returned if the display hardware is missing or if a remote console is being used.

Display States
This section on display states only applies to non-bit-mapped (non-BITMAPTYPE) displays. The
bit-mapped displays have only one screen for both alpha and graphics and that screen cannot be
turned off.

SYSDEVS exports a boolean for each screen which indicates whether the screen is being displayed.
For the majority of Series 200 Computers, both of these booleans will be true after power-up. The
booleans are:

• ALPHASTATE - This boolean is true when the alpha screen is being displayed.

• GRAPHICSTATE - This boolean is true when the graphics screen is being displayed.

The booleans are for testing only. Changing one to false will not turn off the display. You can toggle
a screen (turn it on or off) from the keyboard by pressing the proper key. To control the screens
from inside a program, SYSDEVS exports the following procedures.

• TOGGLEALPHAHOOK - This procedure toggles the alpha screen on or off.

• TOGGLEGRAPHICSHOOK - This procedure toggles the graphics screen on or off.

By combining the booleans and the procedures, you can control what will be displayed; as the
following program demonstrates.

$SYSPROG$
pro~ralTI CRT2;

ilTIPort s)'sdel,ls;

b e ~ i n
{If ~raphics is on, turn it off}
if ~raphicstate then call(to~~le~raphicshooK);
{If alpha is not on, turn it on}
if not alphastate then call(to~~lealphahooK);

end.

14-30 System Devices

Executing this program will turn off the graphics screen (if it was on), and turn on the alpha screen
(if it was off). When the Pascal System first "wakes-up", both displays are on if the hardware is
present (the graphics screen is also cleared so even though it is on, nothing is shown).

Display Parameters
The safest way to interrogate screen parameters is to use the SYSCOM variable. SYSCOM is of type
ENV I RONPTR (a pointer to an ENV I RONMENT). The ENI,l I RONMENT is a record containing three records:
MISCINFO, CRTCTRL, CRTINFO and an integer CRTTYPE. The records contain information used by the
operating system to determine what actions to take when communicating with the display. If you
decide to change any of the following parameters, you will need to reinitialize the CRT (explained
later in this section).

The M I SC I NFO record contains booleans that can be tested to determine the operating characteristics
of the display. t'1I sc HlFO is a record of type cr Ur ec The second record in SYSCOt'l is the CfHCTF.:L

(type e rte ree) which contains the control characters to which the screen will respond. The last
record in the ENIJIRONMENT is CRTINFO (type erti ree). The CRTINFO record contains a considerable
amount of information concerning the display. The following program prints the values of a
CRT I NFO record.

pro~ram CRT3(input, output);

import sysdevs;

be~in

with syseom~.ertinfo do
be~in

write(' Width Hei~ht Memaddr Control');
writeln(' Buffer Pro~state Buflen');
write(width:l0, hei~ht:l0, ertmemaddr:l0, erteontroladdr:l0);
write(Keybufferaddr:l0, pro~stateinfoaddr:l0, Keybuffersize:l0);
writeln;
write('ri~ht left down UP bade ede! stop');
writeln(' breK fish eof altm Idel bKsp etx');
write(ord(ri~ht):5, ord(left):5, ord(down):5, ord(up):5);
write(ord(badeh):5, ord(ehardel):5, ord(stop):5, ord(breaK):5);
write(ord(flush):5, ord(eof):5, ord(altmode):5, ord(linedel):5);
writeln(ord(baeKspaee):5,ord(etx):5);
writeln;
writeln(' Prefix CursormasK Spare');
write(ord(prefix), elJrsormasK, spare);

end;
end.

Typical values are printed below.

Width Hei~ht Memaddr Control Buffer Pro~state Buflen
80 24 5316608

ri~ht left dOI"ln UP bade cdel
28 8 10 31 63 8

Prefix CursorMasK
o 0

53111185

stop
18

Spare
o

b re K
16

532011118

fIsh eof
6 3

5320582 72

a I tlTl ldel bKsp etx
27 127 8 3

System Devices 14-31

If you write values into the crt ITI e tTl add r space, characters may appear on the display.

Do not write values into the crt con t r 01 add r space since this can damage the display.

While SYSCOM contains all of the information concerning alpha-type displays, if you have a bit­
mapped display (c U R R E N T C RT = BIT MAP P EDT Y P E), there are some other variables of interest.

• B I TMAPADDR - This integer contains the address of the bitmap control space. Do not read from
or write anything in the control space since this can damage the display.

• FRAMEADDR - This integer contains the address of the first byte of memory used for the frame
buffer (bit-mapped display area). The first byte corresponds to the upper-left corner of the
display. Consecutive bytes above this address are screen locations.

• REPLREGCOPY - This shortint contains a copy of the replacement rule register.

• WI NDOWREGCOPY - This shortint contains a copy of the bitmap window width register.

• WRITEREGCOPY - This shortint contains a copy of more bit-map control register information
since the actual registers are write-only and cannot be read.

Changing Display Parameters
If you decide to change any of the display parameters described previously, you will need to
reinitialize the display. Simply changing the display parameters will not change the set up.

The following program will change the height of your display to 12 lines. The program first prints
the current screen height so you can restore the display height to its value after running the
program.

$s}'spros$
prosraM CRT4(output);

ilTIPO rt s}'sdel.ls;

var z: inteser;

besin
with SYScoMA.crtinfo do

end.

besin
IAlriteln(' Width Heisht');
IAlritelrdIAlidth:10, heisht:10) j

for z := 1 to 150000 do;
heisht := 12; {set new value}
call(crtinithooK); {chanse display}
I,.,lriteln;
writeln(' Width Heisht');
IAlritelrdl",idth:10, heisht:10);

end;

After running the program, try using the Editor or Filer. You will see that only the top lines
of the display are used. To return your display to normal, change the he i'~ h ~ parameter and
re-run it. Errors will result if you exceed the maximum values for your display Size. Note that
for ALPHAT\'PE displays, the width cannot be modified.

14-32 System Devices

Controlling the Cursor
SYSDEVS exports two variables, x PO sand }' PO s, which contain the column (x) and row (y) location
of the cursor. If you want to move the cursor by changing these values, you will also need to call
1.1 P d ate cur so rho 0 ~\ to actually change the location of the cursor. The following program demons­
trates moving the cursor.

$s}'spro~$

pro~ralTI CRTS(input toutPl.lt);

iMPort sys~lobalst sysdevst l.Iio;

var
i tj shortint;

z inte~er;

c char;

be~in

I,Hitelrd 'This pro~ral'l ITloves the cursor around the screen. ');
writeln('Press any key to stoP. ');
i := 1; j := 1;
XPos := 1; YPOS := 1;

{initial increMents}

while I.Initbl.lsy(Z) do {unitbl.lsy is froM UIO} {run until keypress}
b e ~ i n

if (xPos (= 0) or (xpos)= SYScoMA.crtinfo.width) {too I",ide}
then i := -i; {chan~e direction}

if (YPOS (= 0) or (YPOS)= SYScoMA.crtinfo.hei~ht-1) {too hi~h}

then j := -j;
XPos := XPos + i;
YPOS := YPOS + j;
call(l.Ipdatecl.lrsorhook) ;
for z := 1 to SOOO do;

end;
read(c) ;

end.

{chan~e direction}
{chan~e x cursor position}
{chan~e Y cursor position}
{update cursor location}
{1"lait a bit}

{clear the keystroke}

Running this program bounces the cursor around the screen. Pressing any key will cause it to stop.

Remember, if you use the file system rather than this method to position the cursor, your program is
less likely to require changes in the future.

Dumping the Display
Dumping the display means creating a printed copy of the contents of the display.

Two hooks are exported by SYSDEVS for prodUcing a printout of whatever is currently shown on
the display. If you call the DUMPALPHAHOOK or DUMPGRAPHICSHOOK inside a program, the contents of
the respective screen will be dumped to your local printer. If no printer is connected to the system, a
printer timeout will occur. You then may then either abort the dump or correct the problem (Le. put
a printer on-line).

If you have a bit-mapped display, your printer must have graphics capability for either the dump­
alpha or dump-graphics routines to work properly. As you might suspect, for a bit-mapped display
dump-alpha and dump-graphics are eqUivalent.

System Devices 14-33

Last Line Operations
Several operations can be performed on the last line of the display. SYSDEVS exports the following
type which lists the last-line operations.

CRTLLOPS=(CLLPUT,CLLSHIFTL,CLLSHIFTR,CLLCLEAR,CLLDISPLAY,PUTSTATUS);

These operations are, used with the CRTLLHDOK to control the last line. The following example
program demonstrates the various operations.

$s}'spro~$

pro~raM CRT7(output);

ilrlPort s}'sdel,ls;

t}' pe
dispstr = strin~[BO];
dispstrptr = Adispstr;

1.1 a r
i, z :
llchar
llpos
llstr

be~in

inte~er;

char;
: inte~er;

: dispstr;

save_echo := keybufferA.echo;
keybufferA.echo := false;
call(crtllhook, CLLCLEAR, llpos, llchar);

writeln('Display a strin~ in the last line');
llstr := 'Flashin~ Messa~es ~et attention. ';
for i := 1 to 16 do

be~in

call(crtllhoo~~, CLLDISPLAY, llstr, , ');
for z := 1 to 15000 do;
call(crtllhoo~~, CLLCLEAR, llpos, llchar);
for z := 1 to 15000 do;

end;
for z := 1 to 150000 do;

writeln('Writin~ into the last line');
llstr := 'This is the last line of the displaY,';
for i := 1 to strlen(llstr) do

b e ~ i n

{save echo state for later}
{don't echo type-ahead}
{clear the last line}

{displaY the strin~}

{clear the last line}

'_.::i 1. '" ;M •• r lLL~UI, •• ~~~. JJ~ {print each character}

call(crtllhoo~~, CLLPUT, i, llstr[i]);
for z := 1 to 15000 do;

end;
for z := 1 to 150000 do;

writeln('Movin~ text to the ri~ht. ');
for i := 1 to 10 do

be~in

for z := 1 to 15000 do;
end;

for z := 1 to 150000 do;

{print each character}

14-34 System Devices

writeln('Moving text to the left. ');
for i := 1 to 10 do

begin
call(crtllhoo~(, CLLSHIFTL, llpos, ' ');
for z := 1 to 15000 do;

end;
for z := 1 to 150000 do;

call(crtllhooK, CLLCLEAR, llpos, llchar);
writeln('Set SOMe status bytes. ');
for i := 1 to 5 do

begin
llpos := i;
llchar := chr(i+ord('0'));
call(crtllhoo~(, PUTSTATUS, llpos, llchar);
for z := 1 to 85000 do;

end;
for z := 1 to 150000 do;

writeln('Finished. Return to norMal. ');

{dance to the left}

{clear the last line}

{do the status bytes}

call(crtllhoo~(, CLLCLEAR, llpos, IlcharH {clear the last line}
for i := 1 to 5 do call(crtllhoo~(, PUTSTATUS, i, ' ');
KeybufferA.echo := save_echo;

end.
{restore echo state}

So that you can watch what happens, the example program was written to perform all the opera­
tions very slowly. If you ran a previous example that uses the status area, it may be difficult to see
the effects of the PUTSTATUS statement.

The Menus
In addition to displaying the contents of the type-ahead keybuffer, the last line of the display is
capable of displaying a menu. If your keyboard has a MENU key, pressing the key will result in a
menu being displayed insead of the keybuffer. If you do not have a MENU key on your keyboard,
you may still use the menu feature although the system menu definitions will not apply.

A menu is simply a prompt; a reminder of how the softkeys ("f" keys) are defined. The operating
system uses two menus, one for unshifted softkeys and one for shifted softkeys. The prompts do
not indicate which definition is in effect. For example, if the shifted menu is displayed, pressing the
unshifted softkey does not perform the shifted function (it performs the unshifted function).

SYSDEVS exports the following type.

The MENUS TATE variable indicates which menu is currently displayed. Only the first three menu types
are used by the operating system. The user menus are provided for your own use.

Two system menus are also exported by SYSDEVS .

• SYSMENU A string pointer to the unshifted system softkey menu .

• SYSMENUSH I FT A string pointer to the shifted system softkey menu.

System Devices 14-35

To simplify using the menus, SYSDEVS also exports a pointer type (STRINGBOPTR) that can be used
to point to menu strings. If you want to change a menu, change the pointer, not the string.

The following example program sets a user menu.

$syspro9"$
pro9"ralll CRT8(input ,output);

iMPort sys9"lobals, sysdevs;

const
SPMenu = strin9"80

[, : f 1 f2
var

z,
dUMMyi : inte9"er;
dUMMYC : chari

f3 fll

saveMode, saveecho : boolean;
saveMenustate : Menutype;
specialMenu : strin9"80ptr;

be 9" i rl
saveMode := KbdsYSMOde;
KbdsYSMOde := false;
saveMenustate := Menustate;
Menustate := M_none;
saveecho := KeYbufferA.echo;
KeybufferA.echo := false;
call(crtllhoo.' ,cliclear,dl.lllllllyi ,dUMMYC);
specialMenu := addr(sPMenu);

fG f7

{clear last line}
{point at the Menu}

call(crtllhooK,clldisplay,speciaIMenuA,dulllmyc);
writeln('Wow. A menu. ');
for z := 1 to 250000 do;
write(tH2) ;
call<crtllhooK ,cliclear,dltllllilyi ,dUMII1YC);
KbdsYSMOde := saveMode;
Menustate := savemenustate;
KeYbufferA.echo := saveecho;
if menustate = M_SYSNORM then

call(crtllhook,clldisplay,SYSMENUA,dummyc);

if menustate = M_SYSSHIFT then
call(crtllhook,clldisplay,SYSMENUSHIFTA,dummyc);

end.

{clear last line}

A more complete menu example is given in a later program.

The Status Area

f8

The last eight character positions on the display are used for status indicators and the runlight. The
operating system uses the last position as the runlight and the next to the last character as the menu
mode ("U" for user or "S" for system). The debugger uses the entire status area to display its
information. If you are not using the debugger, you may use any of the first six positions of
the status area without disturbing other functions.

14-36 System Devices

SYSDEVS exports a procedure that lets you change the contents of the status area. Although this
includes the runlight position, there is special procedure for changing the runlight (described next).
The status area can also be controlled by the last line hook mentioned previously .

• SET STAT U S (n t c) - This procedure lets you position (n) a character (c) in the status area.

An error will occur if the position (n) is outside the range 0 through 7.

While characters can be written to the status area by the SET STAT U S procedure or by the crt 11 h 0 0 ~(,
to read the current values you will need to use the STATUSLINE variable .

• STATUSLINE - This variable contains a readable copy of the status display area of the system
CRT (e.g. STATUSLINE[7J is the runlight.

The following program manipulates the contents of the status area.

prOgralTl CRT8(input t output);

ilT1Port s}'sdel.ls;

l.lar it Jt Z : integer;
c : char;

beg i n
for
begin

:= 1 to 100 do

for J := 0 to 7 do
begin

setstatus(J t '*');
for Z := 1 to 1888 do;
setstatus(J t ' ');

end;
end;

end.

The Runlight
The last character position on the display is reserved for the runlight. The runlight indicates which
subsystem is in use or which operation is in progress. When the system is waiting for input, the
runlight usually indicates an 110 condition.

SYSDEVS exports a function and a procedure for accessing the runlight.

• RUNL I GHT - This function returns the current character being displayed in the runlight position .

• SETRUNL I GHT (c) - This procedure sets the runlight to the specified character.

The following program plays with the runlight.

pro~raM CRT10(inputt output);

iIT1PO rt s}'sdel.ls;

var it Z : inte~er;

c : char;

begin
c := runli~ht;

for i := 32 to 127 do
b e ~ i n

setrunli~ht(chr(i)) ;
for Z := 1 to 1888 do;

end;
setrunli~ht(c) ;

end.

{save value for later}

{restore runlight value}

System Devices 14-37

Unless you have changed it, the RUNL I GHT function returns an R, }(, or D during the running,
execution, or debugging of a program.

By now you may have noticed that there are at least three different ways to change the runlight.
(Y ou can use the last line hook, the status area procedure, or the runlight procedure.)

The Debugger Window
SYSDEVS supports an independent window into the display screen. Although originally designed
for the Debugger subsystem's use, the window can be used by your programs.

SYSDEVS exports the following type which lists the operations for controlling the debugger
window.

DBCRTOPS =(DBINFOt DBEXCGt DBGOTDXYt DBPUTt DBINITt DBCLEARt DBCLINEt
DBSCROLLUPt DBSCROLLDNt DBSCROLLLt DBSCROLLRt DBHIGHL);

These operations are used with the debugger display hook (DBCRTHOOK) and a debugger window
record (type DBCINFO) to create and maintain a separate display window. An example call to set the
highlight byte (e.g. inverse or underlined) would appear as follows.

call(dbcrthookt DBHIGHLt dbinfo);

The variable DEBUGH I GHL I GHT indicates which highlight{s) should be applied to characters put in a debug­
ger window using the DBPUT operation. (The DBH I GHL operation is a no-op for Series 300 and 98700
bit-mapped displays.)

14-38 System Devices

Where the data parameter db in f 0 is a variable of type DBC I NFO. The various operations are listed
below.

Command

DBINFO

DBE}{CG

DBGOTo}{Y

DBPUT

DBINIT

DBCLEAR

DBCLINE

DBSCROLLUP

DBSCROLLDN

DBSCROLLL

DBSCROLLR

DBHIGHL

Action

Requests information about the window parameters. The values are returned in
the data parameter.

Exchanges the contents of the display area with the save area. (See below.)

Positions the cursor at the specified coordinates.

Prints the specified character at the given coordinate.

Initializes the window.

Clears the window.

Clears the current line.

Scrolls the contents of the window up one line. (The contents of the top line are
lost.)

Scrolls the contents of the window down one line. (The contents of the bottom
line are lost.)

Scrolls the contents of the window left one column. (The contents of the first
column are lost.)

Scrolls the contents of the window right one column. (The contents of the last
column are lost.)

Sets the default highlight byte. (e.g. blinking, inverse, etc.)

One nice feature of the debugger window is its ability to save the current display contents. This
allows you to use the window then restore the original contents.

The steps to set up and use this feature are outlined below.

1. Choose and set the window margins.

2. Call DB I NFO to compute the number of bytes needed to save the display area.

3. Call the system procedure 1"Je IAI b}' t e s (found in module ASM) to reserve space for the display
contents.

4. Call DB I NIT to initialize the window.

5. Call DBE}{CG to exchange the contents of the display with the contents of the save area.

6. Call DB CLEAR to clear the window for use.

7. After using the window, call DBEXCG to restore the original contents to the display.

System Devices 14-39

The following program demonstrates the various debugger window operations and then restores
the original window contents.

$s}'spro9'$
pro9'ralTI CRT11 (input ,output);

iMPort svsglobals, aSM, svsdevs;

t}' pe

var

dbstring = string[255J;
tricKy = record case boolean of

true: (i : integer);
false: (a : anvptr);

end;

i, IAI, h, z: integer;
dbcx, dbcv : integer;
dbs : d~,string;

dbcrtinfo : dbcinfo;
tricKrec : tricKy;

procedure debug_info;
begin

c a I I (d b crt h 0 0 f~ ,D BIN F 0 ,d b crt i n f 0) ;

with dbcrtinfo do
begin

{request info}

tricKrec.a := savearea; {tricK to print pointer value}
write(I xMin XMax vMin VMax curx cury/);
if w < 80 then writeln; {sMall screen}
writeln(I savearea savesize dcuraddr ' " areaisdbgcrt /);
I", r i t e (x ITI in: 5 , x ITI a x : 5 ,}' ITI in: 5 ,}' ITI a x : 5 , cur s x : 5 , cur s y : 5) ;
if w < 80 then writeln;
IAI r i tel n (t ric f~ r e c • i : 9 , s a v e 5 i z e : 9 , d cur s 0 r add r :9 , are a i s d b crt: 13) j

end;
end; {proc}

procedure open_dbwindow;
var

I : integer;
begin

with dbcrtinfo do
beg i n

xITlin := 0;
vITlin := h-5;

XITlax : = IAI-1;
}'ITlaX := h-1;

cursx := xMin; cursy := YMin;
call (dbc rthoof, ,DBINFO ,dbc rt info) ;
n e IAI b }' t e s (s a \) ear e a , s a v e s i z e) j

call (dbc rthooK ,DBINIT ,dbc rtinfo);
call(dbcrthoof, ,DBD(CG,dbcrtinfo);

end; {I",ith}
end; {proc}

{set desired window size}

{set cursor inside window}
{coMPute savearea size}
{create space for iMage}
{initialize window}
{save display contents}

14-40 System Devices

procedure dbwrite(uar dbcxt dbcy
var

i : integer;
begin
with dbcrtinfo do

be gi n

integer; dbs

call (db crt h 0 0 ~\ t DB INFO t d b crt in f 0) ;

if dbcx > xmax then dbcx := xmax;
if dbcx < xmin then dbcx := xmin;
if dbcy > ymax then dbcy := ymax;
if dbcy < ymin then dbcy := ymin;
cursx := dbcx; cursy:= dbcy;
call(dbcrthooKtDBGOTOXYtdbcrtinfo) ;
for i := 1 to strlen(dbs) do

begin
c := dbs[iJ;
call (dbc rthooK tDBPUT tdbc rt info) ;
cursx := cursx + 1;
if cursx > xmax then

begin
cursx := xfTlird
cursy := cursy + 1;
if cursy > ymax then

dbstring);

{chec~\ values}
{ched\ boundns}

{set cursor}

{print each character}
{compute new cursor position}

begin
call(dbcrthooKtDBSCROLLUPtdbcrtinfo) ;

end;

cursy := }'fTlaX;
end;

call (d b c T tho 0 ~\ t DB GOT m{ Y t d b crt i n f 0) ;

end;
dbcx := cursx; dbcy := cursy;

end; {I"lith}
end; {proc}

begin
with syscom~.crtinfo do

begin
1,,1 := 1"lidth;
h := height;

end;
for i := 1 to h-1 do writeln(' ':w-3ti:0);
1"lrite(' ':I"I-3th:0);
writeln(#1 t#10t'Initial Conditions'); debug_info;
open_dbl"lindol..J;

{update cursor position}

{return the new position}

{display-screen width}
{display-screen height}

{print line numbers}
{print last line number}

writeln(#10t'Debugger window parameters'); debug_info;
writeln(#10t'Writing into debug window. ');
dbcx := 0; dbcy := 0; {cursor position}
for i := 1 to 200 do dbwrite(dbcxt dbcYt 'This is the Debugger window. ');
for z := 1 to 10000 do;
dbs := "; dbcx := 0; dbc}' := 22; dbl"lrite(dbcxtdbc}'tdbs);
for z := 1 to 100000 do;
beep; call(dbcrthoo~\tdbscrolluPtdbcrtinfo); {gO up}
for z := 1 to 100000 do;
beep; call(dbcrthoo~\tdbscrolldntdbcrtinfo); {gO dOI,HI}
for z := 1 to 100000 do;
beep; call(dbcrthoo~\tdbscroilltdbcrtinfo); {gO left}
for z := 1 to 100000 do;
beep; call(dbcrthoo~\ tdbscrollrtdbcrtinfo); {gO right}

System Devices 14-41

for z := 1 to 100000 do;
beep; call(dbcrthooktD6EXCGtdbcrtinfo);
writeln(#10t ' Display restored. '); debu~_info;

{restore iflla~e}

end.

No checking is performed by the debugger window hook to ensure that you stay within the window
boundaries. Of course, if you change something outside the window area, the original contents will
not be restored by the D6D{CG command.

Note that during the scrolling operations, characters on the edge of the window are lost and not
restored by later operations.

A Simplified Window
If you do not care what happens to the original contents of the display window, several of the steps
previously explained can be eliminated.

The following steps create a window but do not save the original contents of the display.

1. Choose and set th~ window margins.

2. Call D6 I NIT to initialize the window.

3. When you are finished with the window, call D6CLEAR to clear the window.

This simpler method may improve performance when using multiple windows.

14-42 System Devices

The Keyboard
Currently, there are three different styles of keyboards used with Series 200/300 Computers and
supported by SYSDEVS.

• The HP 98203A Keyboard. A small detachable keyboard with a rotary pulse generator
(knob).

• The HP 98203B/C Keyboard. A large keyboard with a rotary pulse generator (knob).
The HP 98203C is electronically compatible with the Hewlett-Packard Human Interface
Link (HP _HIL).

• The HP 46020A and HP 46021A Keyboards. Thin keyboards that are electronically
compatible with the Hewlett-Packard Human Interface Link (HP-HIL).

Program Portability: All of these keyboards are supported by SYSDEVS, however, only one of
these keyboards is used by a particular Series 200/300 Computer. This is no problem if you are
writing programs for your computer. If you plan to write programs that will work on all Series
200/300 Computers, your program should only use those keys that are available on all keyboards.
(See the section on Keyboards and Keycodes.)

Determining Keyboard Type: To determine the type of keyboard, SYSDEVS exports the follow-
ing enumerated type. .

KEYBOARDTYPE(NOKBDtLARGEKBDtSMALLKBDtITFKBDtSPECIALKBD1 tSPECIALKBDZ);

At this time only the first four types are supported by the system. (The HP 4602X Series of
keyboards is the in the preceding type declaration. ITF stands for Integrated Terminal
Family.) If you create some special hardware configuration that acts like a keyboard, you might
wish to stop the system from trying to interpret your signals by setting the keyboard type to
one of the unused values.

Keyboard Language Options: SYSDEVS also exports the following type that lists the languages
which can be supported by Pascal.

LANGTYPE = (NO_KBDtFINISH_KBDtBELGIAN_KBDtCDN_ENG_KBDtCDN_FR_KBDt
NORWEGIAN_KBDtDANISH_KBDtDUTCH_KBDtSWISS_GR_KBDtSWISS_FR_KBDt
SPANISH_EUR_KBDtSPANISH_LATIN_KBDtUK_KBDtITALIAN_KBDt
FRENCH_KBDtGERMAN_KBDtSWEDISH_KBDtSPANISH_KBDt
KATAKANA_KBDtUS_KBDtROMANB_KBDtNS1_KBDtNSZ_KBDtNS3_KBD t

SWISS_GZ_B_KBDtSWISS_FR_B_KBD)j

$s}'spro9'$
pro9'rarTl KBD1(input toutput);

iMPort sys9'lobalst sysdeus;

uar it ru : inte9'er;
s : strin9'[Z55]j
~~bdata: b}'te;

be9'in
callO~bdreqhoo~~ t SET_KBDLANGt ~~bdata);

call(~(bdreqhoo~(t SET_KBDTYPE, ~(bdata);

IAlriteln('Confi9'uration bne
writeln(' Keyboard lan9'ua9'e
IAlriteln(,

end.

't Kbdconfi9':3);
'tf~bdlan9') ;
, tKbdt}'pe) ;

{sets ~~bdlan9'}

{sets kbdconfi9' and kbdtype}

System Devices 14-43

The Keyboard Hooks
SYSDEVS exports several hooks (procedure variables) for accessing the features of the keyboard.

KBDREQHDDK

KBDIDHDDK

KBDISRHDDK

KBDPDLLHDDK

This hook is used to pass information to and from the keyboard controller
hardware.

This is the procedure variable called by the file system to read from the typea­
head buffer.

This hook is invoked when a key is pressed, to handle key codes. (This is an
extension of the keyboard interrupt service routine found in earlier releases of
Pascal.)

This procedure variabl,e is used to allow keyboard operations when the proces­
sor priority is too high for normal operations.

Most of these hooks are explained below.

Keyboard Request Hook
This procedure has two parameters. The first is the command or request code and the second is the
data value to be sent or returned. Thus, a typical system call would appear as follows.

CALL(f,bdre9hoof" re9lJest, f,data);

Where f, d a t a is a variable of type by t e. The supported requests are given below.

Request

KBD_ENABLE

KBD_DISABLE

GET_AUTD_DELAY

SET_AUTD_REPEAT

GET_AUTD_REPEAT

SET_KBDTYPE

SET_KBDLANG

Description

Allows the keyboard controller to interrupt. The data parameter is not used
or changed. Note that for non-HP-HIL keyboards this operation is identical
to RPG_ENABLE. (See the later section about the 'Knob.)

Stops the keyboard controller from interrupting. The data parameter is not
used or changed. Note that for non-HP-HIL keyboards this operation is
identical to R PG_D I SABLE. (See the later section about the Knob.)

Sets the time delay from keypress to first auto repeat of the key. The data
parameter is the time in centiseconds.

Returns the value set by the last SET _AUTO_DELAY. The value is returned in
the data parameter.

Sets the time interval between auto repeated keys. The data parameter is
the time in centiseconds.

Returns the value set by the last SET _AUTO_REPEAT. The value is returned in
the data parameter.

Reads the configuration byte from the keyboard controller and sets KBDCDN­
FIG and KBDTYPE. The data parameter will be the same value as KBDCDNFIG.

Reads the language byte from the keyboard controller and decodes the
byte to set KBDLANG. The data parameter will be the same value as the
language byte.

14-44 System Devices

The following program lets you change the keyboard repeat and delay settings.

$s}'spr09'$
pro9'ralTl K6D2(input ,output);

iMPort SVS9'lobals, svsdevs;

var i, rv : inte9'er;
s : strin9'[255H
auto_repeat,
auto_delay : byte;

be9'in
call(kbdreqhook, GET_AUTD_REPEAl, auto_repeat);
writeln('Current auto-repeat-rate = " auto_repeat);
call(~,bdreqhoo~" GET_AUTD_DELAY, auto_dela}');
writeJn('Current delav-before-repeat tiMe = " auto_delay);
l,.,Iritelrd
l.uite('Enter nHI auto-repeat-rate (0 •• 255): ');
readlrds) j

if strlen(s) > 0 then
be9'in

trY
strread(stl ,rvti);
if i in [0 •• 255] then

be9'in
auto_repeat := i;
call(kbdreqhook, SET_AUTD_REPEAT, auto_repeat);

end
else

IHitelrd 'Dl.lt-of-ran9'e');
recover IAlriteln('*** not-lHlf,leric input ***');

end;
IAlritelrd
IAlrite('Enter l"lelAI dela}'-before-auto-repeat (0 •• 255): ');
readlrds) ;
if strlen(s) > 0 then

be9'in

end.

trY
strread(s,l ,rv,i);
if i in [0 •• 255] then

be9'in
auto_dela}':= i;
call(kbdreqhook, SET_AUTD_DELAY, auto_delay);

end
else

writeln('Dut-of-range');
recol.!er IAlriteln('*** not-l"Iuf,leric input ***');

end;

System Devices 14-45

Keyboard ISR Hook
The KBDISRHOOK procedure variable is called by the keyboard controller to handle keycodes. You
must exercise caution if you take control of this hook. If an error should occur, you may not be able
to regain control of the keyboard. You may have to cycle power to restore the system.

This is the second hook to be invoked whenever a key is pressed. The first hook is the KBDTRAN­

SHOOK. See the later section on Translation Services for the details of that hook.

Inside the KBD I SF.~HOOK procedure, the parameter do i t is used to decide how to process the data
(the statb·~te and d.:stab.~te). Normally you would process the data only if dcoi t is TF.~UE. Setting
doi t to FALSE advises any procedure in the chain that processing of the data has already been
completed.

A program normally chains itself into KBDISF.~HOOK with a replacement procedure. That is, ii
the old value of the KBDISRHOOK procedure variable into a save procedure variable global an(
the value of its replacement procedure into KBD I SRHOOK The replacement KBD I ~;F.~HOOK pro'
will usually call the stored procedure variable during its own processing, either before it do\. ~~
Qwn operations (the new procedure postprocesses the data), or after it is done (it preprocesses
the data). It is unusual for a hook replacement procedure not to call the procedure it replaces,
but it is legal, if you understand what you are doing. The replacement proced~re may set dc. i t

to TF.~UE or FALSE before calling the saved hook in order to advise the saved procedure whether
the data has been processed. The replacement procedure may also set dc. i t before exiting to
advise the procedure that called it whether or not it has processed the data.

The following program prints the keycode and modifiers for each keystroke. This code is an
improved version of what is on. the DOC: disc.

$sYspro!1$
pro!1raM KBD3(inputtoutput);

iMPort sys!1lobalst sysdevs;

var Keycount inte!1er;
savehooK KbdhooKtype;

procedure kbdhook(var statbytet databyte byte; var doit boolean);
be!1i n

(InterruPt Service Routine>
if doi t then

be'3 in

Keycount := Keycount + 1;
write(keycount:3t' ');
if not odd(statbyte div 32) then write('Control-') else write('
if not odd(statbyte div 16) then write('Shift-') else write('
if not odd(statbyte div 8) then write('Extend-') else write('
writeln(' Databyte: 'tdatabyte:3t' ');
dcoi t : = FALSE.:

end.:

call(savehook,statbyte,databyteJdoit);

') ;
,) ;

') ;

14-46 System Devices

begin
trY

~\e}'count := OJ
savehook := kbdisrhookj
kbdisrhook := kbdhookj
writeln('Waiting for keystrokes') j
repeat
until keycount) Z4j
escape(O)j

recove r
be 1i n

end.

kbdisrhook := savehook;
writeln< 'Stopped');

end;

{initialize count}
{save old key hook}
{use ne'''! hook}

{restore old hook}

Running this program will suspend normal processing of keystrokes and print the keycode for each
key. After a few keystrokes, the system will be returned to normal.

Keyboard Poll Hook
To use the Ke':lboaf d Pc.ll HCII:'~::, you will need to reference two of the books in the System Internals
Document (a four volume set): the System Designer's Guide, Chapter 7 "Interrupt Handling";
and the Pascal Source Codes Listings, Vol. II, the A804XDVR source.

System Devices 14-47

This page left intentionally blank.

14-48 System Devices

The Keybuffer
The main purpose of the type-ahead keybuffer is to provide a place for the keyboard interrupt
service routine to store keydata until the system or current program is ready to read it. Access to this
buffer is provided through a procedure named KEYBUFOPS.

Control of the keybuffer has changed in 3.0 and later revisions of Pascal. The buffer is now
managed through a procedure residing in SYSDEVS which allows the keyboard system to
operate even if no display hardware exists inside the computer. For speed of operations, the
buffer is now maintained as a circular queue. The array containing the keydata is available for
direct access but it is not recommended that this be done. Instead, SYSDEVS exports several
procedures for maintaining the key buffer .

The variable KEYBUFFER is a pointer to a KBUFREC which is shown below.

KBUFREC = RECORD
ECHO: BOOLEAN;
NON_CHAR: CHAR;
MAXSIZE,SIZE,INP,OUTP: INTEGER;
BUFFER: KBUFPTR;

END;

The fields are described below.

ECHO

MA}{S I ZE

SIZE

INP

OUTP

Returns TRUE if operations on the BUFFER and NON_CHAR are to be reflected on the
system display. You may set this variable true or false depending on whether you
want the operations to be reflected on the system display.

Used to store a readable copy of the current non_advanced character (if any)
used by keyboard semantic procedures.

The current maximum size of the buffer (in practice this is set by the CRT driver
depending on the amount of display area devoted to the typeahead).

The number of characters currently in the buffer.

Internal buffer input index. This variable points to the next location where keydata
will be placed. This is not the pointer to the displayed type-ahead keybuffer.

Internal buffer output index. This variable points to the next location where
keydata will be removed. This is not the pointer to the displayed type-ahead
keybuffer.

The following program prints the current values of the keybuffer record.

pro~raM KBD5(output);

ifT1PO rt s}'sdevs;

b e ~ i n
with Keybuffer A do

be~in

IAlriteln('Echo: I ,echo);
IAlriteln(/Non-char: II/,non_char,/1I Ord(non_char): l,ord(non_char):3);
IAlriteln('Maxsize: I tfTlaXsize:3,' Size: l,size:3,

Inp: I tinp:3, I Dutp: I ,outp:3);

end.

System Devices 14-49

Try running this program several times (use the User-restart command). Each time the program is
run, the input and output pointers will change. If you hold down the key, the buffer will fill and the
5 i z e parameter will increase.

Keybuffer Control
To manipulate the contents of the keybuffer, SYSDEVS exports the KEYBUFOPS procedure. This
procedure has two parameters, the first is the keybuffer operation and the second is a character.
The operations are listed in the following type and explained below.

KOPTYPE = (KGETCHAR,KAPPEND,KNONAOVANCE,KCLEAR,KDISPLAY,
KGETLAST,KPUTFIRST) j

Each operation is explained below.

A typical call to append a character to contents of the type-ahead buffer would appear as follows:

KEYBUFOPS(KAPPEND,c) j

Where c is of type char. An example of this feature is shown in the next section.

KGETCHAR

KAPPEND

K NONADI.JANCE

KCLEAR

KDISPLAY

KGETLAST

KPUTFIRST

The first character in the buffer is moved to C, then deleted from the buffer.
Do not do this if the buffer is empty (Le. K EYBUFFER ,', t SIZE = (I).

Move the character c to the end of the buffer. NON_CHAR is set to an ASCII
space. Do not make this call if the buffer is full (i.e.
KEYBUFFER ,', t SIZE = KEYBUFFER ,', t MA}{S I ZE).

The character c is moved to NON_CHAR.

The buffer is cleared (set to a size of 0).

If ECHO = TRUE then display line is cleared, the current buffer contents sent to
the display, otherwise do nothing.

Move the last character in the buffer to c then delete it from the buffer. Do not
make this call if the buffer is empty (Le. K EYBUFFER ,', t SIZE = (I).

Move the character c to the front of the buffer. Do not make this call if the
buffer is full (KEYBUFFER'" tSIZE = KEYBUFFER'" tMA}{SIZE).

Keybuffer I/O Hooks
A pair of hooks exists for the file system interface to the keybuffer. These procedure variables allow
you to control the access to the keybuffer .

• K BDWA I THOOK - This procedure variable is called when there is a read request from the file
system and the typeahead buffer is empty .

• KBDRELEASEHOOK - This procedure variable is called from the keyboard ISR when data is placed
in the buffer.

14-50 System Devices

The following example demonstrates these hooks.

$sysprog$
prOgralTl K6DG(input ,output);

ilTlPO rt s}'sdel.ls;

var
c,d : char;
z integer;
i : integer;
s : string[255Ji
done: boolean;
savewaithooK : procedure;
savereleasehooK : procedure;

procedure release_here;
begin

writeln('Rele~se hooK activated. ');
if Keybuffer~.inp = 0 then
c := ~\eybuffer···.buffer·'[Ke}'buffer···.ITlaxsize]

else
c := Keybuffer~.buffer~[Keybuffer·.inp-l];

if c = chr(13) then done := true;
end;

procedure wait_her~;
begin

done := false;
writeln('Wait hooK activated. ');
repeat {nothin~} until done;

end;

begin
tn'

{get the last character}

{get the last character}
{IAlas it a C/R?}

{wait until a C/R?}

writeln('If YOU have a Menu displayed, please turn it off. ');
for z := 1 to 300000 do;
IAlriteln;
IAI r it e I rd ' I n a f elAI sec 0 n d s, '

'the file SYsteM will atteMPt to read froM the Keybuffer');
for z := 1 to 300000 do;
IAlriteln;
IAlriteln('When }'OU see that the IAlait hoo~~ has been activated,');
IAlritelrd 'press a felAI ~\e}'s and then press <enter> or <return>.');
I,Hiteln;
savewaithooK := KbdwaithooK;
KbdwaithooK := wait_here;
savereleasehooK := KbdreleasehooK;
KbdreleasehooK := release_here;
forz := 1 to 200000 do;
readlrds);
I,Hiteln;

{save release hooK}

{file SYsteM request}

write('The string returned by the readln stateMent is: ');
IAlritelrds) ;
IAlriteln;
escape(O) ;

recover

end.

be9'in
if escapee ode <> 0 then IAlriteln('Error: ',escapecode:3);
KbdwaithooK := savewaithooK;
KbdreleasehooK := savereleasehooK;
writeln('Done. ');

end;

Key Translation Services

System Devices 14-51

A new set of procedures has been created as part of the translation services facility. These proce­
dures provide mappings of key codes to "universal keycodes" and keycode to character (see the
Keycode section for details on keycode mapping). The main purpose of this package is to centralize
system translation requirements. If you take control of the keyboard hook, you can use these
services to decode keystrokes.

Keystrokes are processed on two levels. When a key is pressed, the system first invokes the key
translation hook (KBDTRANSHOOK). This hook will provide whatever semantics are necessary to
perform the requested operation regardless of the keyboard type. When the translation hook is
finished, a call is made to the keyboard ISR hook (KBDISRHOOK) where normal key processing can
occur.

The Translation Hook
All keystrokes are first interpreted by the translation hook (KBDTRANSHOOK). SYSDEVS exports a
type (KEYTRANSTYPE) and a variable of that type (TRANSMODE) which control the actions performed by
the translation hook. The possible modes are:

KEYTRANSTYPE = (KPASSTHRU, KSHIFT_EXTC, KPASS_EXTC);

These types are explained below.

KPASSTHRU

KSHIFT _Dnc

This mode causes no keycode interpretation. All first level keycode interpretation
is by-passed (including SYSTEM/USER mode conversions of softkeys).

This mode treats the "Extend char" keys as shift keys. (This is the "normal"
setting.)

In this mode, only the down-stroke of the "Extend char" keys is passed. (This is
the "normal" setting for KAT AKANA keyboards.)

14-52 System Devices

The common language record variable, LANGCOM, is a record (type LANGCOMREC) which contains the
original keystroke information and the results of the semantic action of the translation hook. The
fields for a LANGCOMREC are listed below.

STATUS

DATA

KEY

RESULT

SHIFT

CONTROL

E>(TENS I ON

Contains the original keyboard status register value.

Contains the original keyboard data register value.

Interpreted k~y (usually an ascii character code).

The return code from the semantic routine.

This boolean returns true if the shift key was held down.

This boolean returns true if the control key was held down.

This boolean returns true if the extension key was in the "down" mode.

Another important keycode translation variable is LANG TABLE (an array [0 .. 1] of type LANGPTR where
LANG PTR is a pointer to a LANGRECORD). This variable is the "look-up" table for the translation of
keycodes into characters and is the control record for the current keyboard "language". The fields
are shown below.

LANG CODE

SEMANTICS

KEYTABLE

When true this' variable indicates non-advancing keys are allowed.

Contains the language code for this record (type LANGTYPE).

This procedure does translations for the given language.

An array used to translate keycodes.

The last field (KEYTABLE) is an array of LANGKEYREC. Each LANGKEYREC record contains the translation
controls for a single key. The fields for a LANGKEYREC are described as follows.

NO_CA PSLOCK If true, ignore the capslock state (KBDCA PSLOCK).

NO_SH I FT If true, ignore the shift key state.

NO_E)-(TENS I ON If true, ignore the extension key state (may use shift interpretation).

KEYCLASS The general key class (shown below).

KEYS These two codes (usually ASCII) are for the unshifted and shifted interpretation of
the key.

System Devices 14-53

The following program takes control of the key translation hook and prints selected fields of the
preceeding records.

$s~'sprog$

prOgraM KBD7(input,output);

iMPort sys9'lobals, sysdevs;

var f,e~'count

sal.lehooR
integer;
f,bdhooRt}'pe;

procedure RbdhooR(var statbyte, databyte : byte; uar doit boolean) ;
be9'in

{Translation Interrupt Service Routine}
Reycount := Reycount + 1;
write(Reycount:3,' ');
with lan9'table[lan9'index]A, Reytable[databyte] do
be9'in

writeln(' no-caps no-shift no-ctrl no-ext Reyclass Rey sh-Rey');
1,..1 r i tel n (' ': 4 ,n 0 _ cap s I 0 c f, : 8 ,n 0 _ s h i f t : 8 ,n 0 _ con t r 0 I : 8 ,n 0 _ ext en s ion: 8 ,

f, e ~' c I ass: 12 If, e ~' s [f a I s e] : 5 If, e ~' s [t rue] : G) j

end;
doit := false;

end; {proc}

begin
tn'

f,e~'count := 0;
savehooR := RbdtranshooR;
RbdtranshooR := RbdhooR;
writeln('Waiting for ReystroRes');
repeat
until Reycount > 24;
escape(O) ;

reCOl.ler
be 9' i n

end.

RbdtranshooR := savehooR;
INriteln('Stopped');

end;

{tell ISR hooR to i9'nore Rey}

{initialize count}
{save old trans hooR}
{use nel,,1 hoof,}

{restore old hooR}

One other noteworthy variable controls the semantic actions of the translation
services. When this variable is true, the softkeys will be specially mapped for the HP 4602X
Series of keyboards (see the Keyboard Hardware section for an explanation of this mapping).

14-54 System Devices

Modifying the Language Table
As mentioned previously, the ,,··,·ii·; i iH l....E: variable is a two-element array. This allows two
independent key lookup tables. For HP 4602X Series of keyboards, the default language uses
the first table, while the ROMAN8 characters occupy the second table. For non-HP 4602X
Series keyboards, the second table is used only if the default language is KATAKANA.

If you want to make slight modifications to the lookup table, the following short program generates
a long program that can be edited and then executed to change the lookup table.

pro~raM KBDB(inputtoutput);

ifrlPort s}'sdevs;

const
test

var

false;

s strin~[I];

f text;
it c inte~er;

be~in

I,Hitelrd 'This pro~rafrl IAIiII create a pro~rafrl nafrled KBDBALT');
writeln('on the default (prefixed) voluMe, ');
luitelrd
write('Do YOU wish to proceed? (YIN) ');
read(s) ;
if not (s[l] = 'y') and not (s[l] = 'Y') then halt(O);
IAlritelrd
{Set the IItest ll constant true to display pro~rafrlt false to create prOgrafll}
if test then relAlrite(ft 'CONSOLE:') else relAlrite(ft ':KBDBALT.TD(T');
IAlriteln(f t'PROGRAM KBDBALT(INPUTtOUTPUT); ');
IAlriteln(f) ;
IAlriteln(ft'IMPORT SYSDEl,lS;');
IAlriteln(f) ;
writeln(f t'{This prograM installs and enables an alternate language,}');
writeln(f t'{Change the variables for each Keycode as YOU desire,}');
IAlriteln(f) ;
writeln(f t'BEGIN');
with langtable[O]" do

be~in

IAI ri te I n (f t' LANGTABLE[O] .,., CAN_NONADI.) : = ' tcan_nonadv t' ;') ;
writeln(f t' LANGTABLE[O]",LANGCODE:= ' tlangcodet';');
IAlritelrdf) ;
for i := 0 to 127 do

begin
if not (i in [OtLld2Gd27]) then
begin

System Devices 14-55

IAlrite(i!O,' ,');
luiteln(f,' WITH LANGTABLE[OJ .. ·.KEYTABLE['ti:O,'J DO');
writeln(f,' BEGIN');
write(f,' NO_CAPSLOCK:=' ,keytable[iJ.no_capslock:5,'; ');
writeln(f,'NO_SHIFT := ',keytable[iJ.no_shift:5,'; ');
luite(f,' NO_CONTROL:= 'd~enat;le[iJ.no_control:5,'; ');
writeln(f,'NO_EXTENSION := ',keytable[iJ.no_extension:5,'; ');
writeln(f,' KEYCLASS:=' ,keytable[iJ.keYclass,'; ');
c := ord(keytable[iJ.keYs[falseJ);
write(f,' KEYS[FALSEJ:= CHR(' ,c:O,') ');
if not (c in [0 .. 321125J) then luite(f,'{',chr(c),'}; ')

else IAlrite(f,'{}; ');
c := ord(f~enable[iJ.f~e}'s[trueJ);

luite(f,'KEYS[TRUEJ := CHR(',c:O,/)/)j
if not (c in [0 .. 321125J) thenluiteln(f,/{/,chr(c),/};/)

else IAlriteln(f,'{};');
writeln(f,' END;/);

end;
end;

writeln(f " WRITELN(I 'The lan~ua~e table has been Modified. "); ');
writeln(f ,'END. ');

end;
if test = false then close(f,/lock/);
IAlriteln;
writeln('Done. ');

end.

Running this program creates another program which, when executed, modifies the language
lookup table. Once created, the new program can be easily modified to suit your needs.

14-56 System Devices

The Knob
The ,knob or RPG (Rotary Pulse Generator) is available with some keyboards and provides a way
to qUickly move the cursor around the display. By taking control of its hook, you can have the knob
perform other functions. Of course, if you do not have this hardware, this hook is of little interest
(skip ahead to the next section).

Earlier release of Pascal used the keyboard hook to handle knob interrupts. SYSDEVS now
supports a separate hook (RPGISRHOOK) for the knob.

Interrupts from the knob can be enabled or disabled by sending a command through another knob
hook (RPGREQHOOK). This procedure has two parameters. The first is the operation while the second
is the data value.

The knob request hook allows the following operations.

Allow the controller to interrupt. The data parameter is not used or changed.
Note that this is the same as KBD_ENABLE for non-HP-HIL keyboards.

Stop the controller from interrupting. The data parameter is not used or
changed. Note that this is the same as KBD_DISABLE for non-HP-HIL
keyboards.

Sets the knob sampling rate to the value specified by the data parameter. The
data represents the sample period in centiseconds.

Returns the knob sampling rate in the data parameter. The data represents the
sample period in centiseconds.

The knob accumulation period can be modified by the following program.
$s}'spro9'$
pro9'raM KNOB1(inputtoutput);

iMPort sys9'lobals t sysdevs;

var it rv : inte9'er;
s : strin9'[255];
rate: byte;

be9'in
call(rp9'reqhoo~\t GET_RPG_RATEt rate);
I,Hiteln('Current ~\nob-rate = 't rate);
I,Hiteln;
I,Hite('Enter lHI,,1 rate (0 •• 255): ');
readlrds);
if strlen(s) > ° then

be9'in

end.

tn'
s t r re ad (s t 1 t rl,J t i) ;
if i in [0 •• 255] then

be9'in
rate := i;
call(rp9'reqhooKt SET_RPG_RATEt rate);

end
else

1"lriteln('Out-of-ran9'e');
recover 1"lriteln('*** not-nufTleric input ***');

end;

The next program takes over the RPGISRHOOK momentarily.

$s}'spro9'$

pro9'raM KNOB2(output);

iMPort sys9'lobals, sysdevs;

1.1 a r
z : inte9'er;
shift, control: boolean;
saverp9'hooK : KbdhooKtype;

System Devices 14-57

procedure KnobhooK(var statbyte, databyte boolean) ;
be9'in

{RPG Interrupt Service Routine}
shift := not odd(statbyte div 16);
control := not odd(statbyte div 32);
if shift then

if datab}'te >= 128 then l,Jriteln('dolAln') else IAlriteln('up')
else

if databyte >= 128 then writeln('ri9'ht') else writeln('left');
end;

be9'in
saverp9'hooK := rp9'isrhooK;
rp9'isrhooK := KnobhooK;
IAlriteln('Tn' turnin9' the Knob.');
for z := 1 to 500000 do {nothin9'};
beep;
rp9'isrhooK := saverp9'hooK;

end.

Running this program will cause the knob to print "up", "down", "left", or "right" depending on
the direction of the rotation and the status of the shift key. After a few seconds the system will return
to normal.

Note

The HP 46083A HP-HIL Rotary Control Knob, and the knob on the
HP 98203C HP-HIL keyboard, are not controlled by the above procedures.
Instead, they communicate via the HP-HIL and Mouse (or DGL_REL) mod­
ules.

14-58 System Devices

Keyboard Hardware
In general, application programs written and compiled prior to the Pascal 3.0 release can execute
with the HP 4602X Series of keyboards without change. However, since some keys do not
exist on the HP 4602X keyboards, two softkey interpretation modes are supported (User mode
and System mode). The current mode is signified by the letter "S" or "U" appearing in the
lower-right corner next to the run light.

In system mode, the following softkeys (' 'f" keys) are defined as follows.

982038 Key 4602X Series Key

OU ClO
(RECALL) []L)
(CLR ~ END) OD
(CONTINUE) OD
(STEP) CJO
(ALPHA) OD
(GRAPHICS) Of]

OU OD

At powerup the keyboard is in System mode. In User mode the "f" keys (£1 through f8) are
mapped to the "k" keys (kl through k8) found on the older type keyboards. Only the (}Q[) key
and the ~ key found on the older keyboards have no equivalent keys on the new keyboard.

Other keys are mapped as follows.

982038 Key

(ENTER)

~
(EXECUTE)

(PAUSE)

(CLR I/O)

(STOP)

(DUMP ALPHA)

(DUMP GRAPHICS)

4602X Series Key

(Enter) (Appears in a different location)

(Return)

(Select)

(Break)

~
~
~
(CTRL)-armD

The following illustrations show the keycodes generated by the keys found on each of the three
classes of keyboards supported by SYSDEVS. A key-action table follows that can be used to
determine the system's response to a particular keystroke.

Shift-CTRL 26-sh 27 -sh 28-sh 32-sh 33-sh 38-ct 39-ct 42-ct 40-ct 43-ct 44-ct
CTRL 76-sh 77 -sh 78-sh 79-sh 75-sh 71-sh 67 -sh 63-sh 62-sh 79 44
Shift 26 27 28 32 33 34 35 42-sh 41 53-sh 54-sh

IIIIIIIIIIHB
29 30 31 36 37 38 39 42 40 43 44

1111111111111111111111
80 81 82 83 84 85 86 87 88 89 90 91

11111111111111111111
104 105 106 107 108 109 110 111 100 101

11111111111111111111 * 11 2 113 114 115 116 117 118 1 02 1 03 94

11111111111111 * 120

25 24

HP 98203A Keyboard

RESET

59

(j)
'C
(Jl
ro
3
o ro
<
0"
ro
(Jl

"'"" ~ ,
C11
\0

----- ---26 27 28 32 33 34 35 40 41 42

----- ---29 30 31 36 37 38 39 43 44 45

•••••••••••••• * 80 81 82 83 84 85 86 87 88 89 90 91 46 ••••••••••••• 25 104 105 106 107 108 109 110 111 100 101 92 93 ••••••••••• 112 113 114 115 116 117 118 1 02 1 03 94 95 •••••••••• 120 121 122 123 124 125 119 96 97 98

HP 98203B/C Keyboard

----48 49 50 51

----52 53 54 55

• ••• 76 77 78 79 •••• 72 73 74 75 • ••• 58 68 69 70 71 •••• 64 65 66 67 •••• 60 61 62 63

....
~
I

0'\ o

(f)
'<:
en ro
3
o ro
<:
0'
ro
en

5 6 27 28 32 33 21 20 29 30 31 36 22 23

(Reset) EJtoP
Break Dr:=JDDEJ[;dDDDDII~~J

O [J. f@l(il($l(%l(Al(&l[][]rrll-l 1+1 ~ ~ ~
, 1 lLJ lLJ lLJ lLJ lLJ ~ 8 9 ~ l:....-.J L=-J ~ ~ L:...J

1 80 81 82 83 84 85 86 87 88 89 90 91 46 40 41

[E) @] ~ D ~ [] U ~ 0 ~ EJ [] [] [] ~ :!~te
25 104 105 106 107 108 109 110 111 100 101 92 93 2 43 44

EJEJ~[]~[J~EJeJ~DOD(Return) ~LJ
24 * 112 113 114115 116 117 118 102 103 94 95 57 14 15

~ EJ[]uEJEJ~~EJDEJ[]EJ EJ~LJ
3 * 120 121 122 123 124 125 119 96 97 98 * 7 35 16
~
~
17

1~86~ [] ~1~~ ~ C!J ~
99 38 34 39

HP 46020A and HP 46021A Keyboard

10 11 12 13

[OO-OQ]
i i
j I

i I

i I
, I

, I , ,

EJDEJD
71 75 63 67

~~[JU
72 73 74 8

E][][]O
68 69 70 62

DD~~~ 64 65 66

[0] 0
60 61 9

(f)
'C
VI
ro+-
ro
3
o
ro
<: o·
ro
VI

I-l
~ ,
0'\
I-l

14-62 System Devices

Key-Actions
The following table lists all possible keycodes and the operating system's response to each keycode.

Note
Not all keycodes can be generated by your keyboard. Please refer to the
previous illustrations to determine which key codes can be generated by
your keyboard.

o Undefined. All keycodes labeled "Undefined" are either ignored or cause a beep
depending on the language semantics routine installed. The only way to generate an
undefined keycode is to call the keyboard or translation hook with the proper data byte
and status byte.

1 HP 4602X Series only - A language dependant character is placed in the typea­
head buffer.

2 HP 4602X Series only - A language dependant character is placed in the typea­
head buffer.

3 HP 4602X Series only - ESC Places chr(27) in the typeahead buffer. Shifted-key
(DEL) places chr(127) in the typeahead buffer.

4 Undefined.

5 HP 4602X Series only - With debugger, pauses the system. Otherwise ignored.

Shift or Shift-Control - With debugger, enters debugger's command interpreter.
Without debugger, performs powerup. (level 7 interrupt)

Control - With debugger, enters debugger's command interpreter. Otherwise
ignored.

6 HP 4602X Series only - Generates escape -20 and calls cleariohook.

7 HP 4602X Series only - Send chr(3) to the typeahead keybuffer. If shifted, send
chr(27).

8 HP 4602X Series only, keypad - Send chr(13) to the typeahead keybuffer.

9 HP 4602X Series only, keypad - Send chr(9) to the typeahead keybuffer.

10 HP 4602X Series only, keypad - Beeps.

11 HP 4602X Series only, keypad - Beeps.

12 HP 4602X Series only, keypad - Beeps.

13 HP 4602X Series only, keypad - Beeps.

14 HP 4602X Series only - Beeps.

15 HP 4602X Series only - Beeps.

16 HP 4602X Series only - Beeps.

System Devices 14-63

1 7 HP 4602X Series only - Send chr(13} to the typeahead buffer.

Shift - Dump alpha. Sends the current contents of the alpha display to the system
printer.

Shift-Control - Dump Graphics. Sends the current contents of the graphics display
to the system printer.

Control - Beeps.

18 HP 4602X Series only - For non-KATAKANA keyboards, this key acts as a
shift key to invoke the ROMAN8 translation of the keycodes (while this key is
held down). For KATAKANA keyboards this sets ASCII mode (switches to ASCII
translation until key code 19). Keycode 146 is sent when this key is released.

19 HP 4602X Series only - For non-KATAKANA keyboards, this key functions the
same as keycode 18. For KATAKANA keyboards this sets KATAKANA mode
(switches to KATAKANA translation until key code 18). Keycode 147 is sent when
this key is released.

20 HP 4602X Series only - Sets system mode.

Shift - Sets user mode.

Control - Ignored.

21 HP 4602X Series only - Beeps if in user mode.

If in system mode, the key will change the menu display as follows:

Toggles the display between no menu and the unshifted menu unless the shifted
menu is displayed in which case the unshifted menu is displayed.

Shift - Toggles the display between no menu and the shifted menu unless the
unshifted menu is displayed in which case the no menu is displayed.

22 HP 4602X Series only - Send chr(127} to the typeahead keybuffer.

Control - clears the typeahead buffer.

23 HP 4602X Series only - Send chr(12} to the typeahead keybuffer.

Control - clears the typeahead buffer.

24 Toggles caps lock state variable.

25 Send chr(9} to the typeahead key buffer .

26 Non-HP 4602X Series only - Beeps.

27 Beeps.

28 Beeps.

29 Beeps.

30 Beeps.

31 Beeps.

32 Beeps.

33 Beeps.

14-64 System Devices

34 Send chr(10) to the typeahead keybuffer.

35 Send chr(31) to the typeahead key buffer .

36 Beeps.

37 Non-HP 4602X Series only - Beeps.

38 Send chr(8) to the typeahead keybuffer.

Control - Clears last character in typeahead buffer.

39 Send chr(28) to the typeahead key buffer .

40 Send the letter "I" to the typeahead keybuffer.

41 Send the letter "0" to the typeahead keybuffer.

Shift - If the keyboard type is "small" then this key is interpreted to be the
ALPHA key. (See keycode 49.)

42 Non-HP 4602X Series only - Beeps.

Shift - If the keyboard type is "small" then this key is interpreted to be the
GRAPHICS key. (See keycode 50.)

43 Send the letter "I" to the typeahead keybuffer.

Shift - If the keyboard type is "small" then this key is interpreted to be the DUMP
ALPHA key. (See keycode 49.)

44 Send the letter "0" to the typeahead keybuffer.

Shift - If the keyboard type is "small" then this key is interpreted to be the DUMP
GRAPHICS key. (See keycode 50.)

45 Non-HP 4602X Series only - Beeps.

46 Send chr(8)to the typeahead key buffer .

Control - Removes the last character in the typeahead buffer.

47 Non-HP 4602X Series only - Send the letter "R" to the typeahead keybuffer.

48 Non-HP 4602X Series only - Send the letter "E" to the typeahead keybuffer.

49 Non-HP 4602X Series only - If the alpha screen is displayed, turn off the graphics
screen. Otherwise turn on the alpha screen.

Shift - Dump alpha. Sends the current contents of the alpha display to the system
printer.

50 Non-HP 4602X Series only - If the graphics screen is displayed, turn off the alpha
screen. Otherwise turn on the graphics screen.

Shift - Dump graphics. Sends the current contents of the graphics display to the
system printer.

51 Non HP 4602X Series only - Ignored without debugger. See the Debugger.

Shift - The next 3 digit keys are combined to produce a character (e.g. 065 is
the character A).

System Devices 14-65

52 Non-HP 4602X Series only - Send chr(127) to the typeahead key buffer.

Shift - Send chr(12) to the typeahead key buffer .

Control - Clears the typeahead buffer.

53 Non-HP 4602X Series only - Beeps.

54 Non-HP 4602X Series only - Beeps.

55 Non-HP 4602X Series only - Generates escape -20 and calls c1eariohook.

56 Non-HP 4602X Series only - With debugger, pauses the system. Otherwise ig­
nored.

Shift or Shift-Control - With debugger, enters debugger's command interpreter.
Without debugger, performs powerup (level 7 interrupt)

Control - With debugger, enters-debugger's command interpreter. Otherwise
ignored.

57 Non-HP 4602X Series only - Send chr(13) to the typeahead keybuffer.

58 Non-HP 4602X Series only - Resumes from paused state. Ignored if no DEBUG­
GER installed.

59 Non-HP 4602X Series only - Send chr(3) to the typeahead keybuffer.

Shift - Send chr(27) to the typeahead key buffer .

60 t h r u All keycodes in this range are alpha keys and the exact character placed in the typea-
125 head buffer depends on the language conversion table active when the key is pressed.

125 thru All keycodes above 125 are undefined except 146 and 147.
255

146 Keycode generated when key 18 is released.

147 Keycode generated when key 19 is released.

14-66 System Devices

Typing Aids Program
What follows is a listing of a program which lets you redefine the action of all non-alpha keys. It
makes use of several features described in this chapter.

This program allows all non-alpha keys (including the "softkeys") to be used as typing aids. The
keys may be defined and used at any time (e.g. you can define a key while using the Editor, Filer, or
other subsystem).

To define a key, press and hold both (CTRL) and (SHIFT) keys as you press the (non-alpha) key to be
defined. A window will appear on the display and you will then be able to create or edit the
keystrokes which will be placed in the typeahead keybuffer when that key is pressed. Each key
allows two strings, one for the key and one for the shifted key.

The first seven characters of the edit-string are reserved for the label portion of the string. (The
softkey labels appear in the menus.) The remaining characters are what's placed in the type-ahead
buffer.

To enter a control-character in the string, press and hold the (CTRL) key down while pressing the
key you want (e.g. RETURN, (ENTER), (BACK SPACE), etc.) The insert character and delete character
keys may also be used to help in the editing process.

When you are finished editing the string, press (EXECUTE) or SELECT (depending on your keyboard)
to return to normal operation. The next time you press the key you defined, its string will be placed
in the type-ahead keybuffer. If the key is undefined, its normal action will occur.

Note that this program will not work if an application program takes control of the keyboard hook.
Erratic behavior may occur if you try to define a key during 110 operations.

System Devices 14-67

The program installs itself in the operating system and can be "unhooked" if you need to use the
keyboard hooks for some other purpose. If some other program changes the "hooks" you may be
able to recover by executing the program and pressing "R" (Remove) and then "I" (Install).

Once you have defined some keys, you can save them in a file called "SOFTKEYS" on the default
volume by executing the program and giving the "S" (Save) command. You can then load those
definitions by the "G" (Get) command. Remember, the Get command expects to load the key
definitions from the default (prefixed) volume.

$sysprog on$
$partial_eval on$
$heap_dispose on$
prOgraM KBD8P(inputtoutput);

{ This prOgraM is part of the dOCUMentation YOU received and not part
of the supported SYsteM software. With this prOgraM YOU can define
all non-alphanuMeric Keys as typing-aids. This prOgraM May not worK
correctly on all Series 200 COMPuters or with all SYsteM software. }

fllodule passf~ey;

iMPort sysglobalst aSMt sysdevs;

export

\.1 a r
initialized
using_hoof~s
edit_fllode

boolean;
boolean;
boolean;

procedure build_Menus;
procedure do_hooKs;
procedure undo_hooKs;
procedure get_Keys;
procedure save_Keys;
procedure pasKey_init;

ifllPlelllent

t}' pe
dbstring = string[BO];
Key table = pacKed arraY[O •• 58tfalse •• true] of dbstring;
Keyfile = file of Key table;

\.1 a r
local t sl ine t
shiftt controlt
Knobt ecaps : boolean;
f~char char;
f~code b}'te;
ecode b}'te;
faype f~e}'t}'pe;
edptr shortint;
schar: string[l];
Ke}'filptr: "'Kedile;
Keytabptr : AKeytable;
usernorlllt usershift : stringB(lptr;
saveisrhooK : KbdhooKtype;
saverpghooK : KbdhooKtype;
savetranshooK : KbdhooKtype;
dbcrtinfo : dbcinfo;
dbcxt dbcy : shortint;
dbs : dbstring;

procedure init_dbwindow;
\.1 a r

i : integer;

{ecaps = edit Mode caps}
{current Key char}
{current Key code}
{edit-f~eY code}

{edit-string pointer}
{string character}

{fllenus}

{debug window record}
{cursor location}
{editing string}

14-68 System Devices

be~in
call(db~rthooKtDBINFOtdbcrtinfo) ;
with dbcrtinfot SYSCOMA.crtinfo do

b e ~ i n
xlllin := 0;
XITlax := 1"lidth-1;
YMin := hei~ht-a;
YMaX := hei~ht-1;
cursx := xlTlin; CIHS}' .- }'ITlird
call(dbcrthooKtDBINFOtdbcrtinfo) ;
newbytes(saveareatsavesize) ;

end; {I"lith}
end; {proc}

procedure dbwrite(var dbcxt dbcy
I,! a r

i : inte~er;
be~in

with dbcrtinfo do
be~in

shortint; dbs dbstrin~) ;

call (dbc rthoo~~ tDBINFO tdbc rtinfo);
if dbcx > XMax then dbcx := xMax;
if dbcx < xMin then dbcx := xMin;
if dbcy > YMaX then dbcy := YMaX;
if dbcy < YMin then dbcy := YMin;

{checK values}
{checK boundarys}

cursx := dbcx; cursy:= dbcY;
call(dbcrthooKtDBGOTOXYtdbcrtinfo) ;
for i := 1 to strlen(dbs) do

be~in
c := dbs[i];

{set cursor}

c a I I (d b crt h 0 0 ~~ t DB PUT ,d b crt i n f 0) ;
if cursx < XMax then cursx := cursx + 1;
call (dbc rthoo~~ tDBGOTm<y ,dbc rt info);

{print each character}
{stop froM wrappin~}

{update cursor position}
end;

dbcx := cursx; dbcy := cursy;
end; {I"lith}

{return the new position}

end; {proc}

procedure build_Menus;
I.} a r

rl,l: inte~er;
dUITlITIYC: char;
dUMMyi : inte~er;

be~in
setstrlen(usernorlll'" ,71);
s t r 1,,1 r i t e (use r nor III'" d , r I,! , ' : ' ,s t r 0; e Y tab p t r ... [27 tf a I s e] d ,7 ,':'

s t r (f~ e y tab pt r'" [28 tf a Is e] d ,7) " ,
str(f~eytabptr"'[32tfalse] d ,7),' ,
str(f~enabptr"'[33,false] d ,7),' ,

, ~:~:~ ~:~:~ 1 ~:~:~ ~:::~ , " ,
s t r (f~ e Y ta b p t r .'. [29 ,f a Is e] d ,7) " I

S t r (f~ e nab p t r'" [30 tf a Is e] d ,7) " ,
st r(f~enabpt r'" [31 ,false] d ,7) " "
s t r (f(e,' tab p t r'" [3G ,f a Is e] d ,7) " ');

setstrlen(usershift .. ··,71) ;
s t r 1,,1 r i t e (use r s h i f t ... ,1 , r I,! , I : ' ,s t r (~(e " tab p t r ... [27 , t rue] ,1 ,7 ,':'

s t r O(e nab p t r'" [28 ,t rue] d ,7) " ,
str(f(enabptr"'[32,true] d ,7),' ,
str(f~eYtabptr"·[33,tru.e] d ,7),' ,

I j:j:~ ~:~:~ 2 ~:l:~ j:~:l I , I ,

str(f~enabptr"'[29,true] d ,7),' ,
s t r (f(e y tab p t r .'. [30 ,t r u. e] d ,7) " "
strO~eytabptr"'[31 ,true] d ,7),' "
strO(enabptr"'[3G,true] t1 ,7),' ');

case Menustate of
111_1.11 call(crtllhoo~(,clldisplaY ,usernorITI'" ,dUITlITl}'C);
111-1.12 call(crtllhoo~(,clldisplaY ,usershift'" ,dUITlITIYC);
III_none : be~in

Menustate := M_u1;
KbdsysMode := false; {set user Mode}
setstatus(G,'U'); {set status li.ht}
KeYbufferA.echo := false; {don't echo typeahead}
call(crtllhoo~(,cllclear,dufllllld,dullllll}'C); {clear last line}
c a I I (crt I I h 0 0 ~('c I I dis p I a Y 'u s ern 0 rIll .'. t d UITlITI}'C) ;

end;
otherlAlise

end; {case}
end;

procedure translate_Key;
t }'pe

clp = pacKed array[0 •• 59] of char;
const

{assi~n add-characters to 'controlled' Keycodes for editor}
{ 0 1 2 3 a 5 8 7 8 9}

ctrlooKup = clp [#000#000#000#027#000#000#000#003#013#009,
#010#011#012#013#014#015#018#000#000#000,
#010#011#127#012#000#009#010#011#012#015,
#018#017#013#014#010#031#018#019#008#028,
#000#000#000#000#000#000#008#000#000#000,
#000#000#127#000#000#000#000#013#027#003J;

be~in
Ktype := lan~table[lan~index]A.Keytable[Kcode].Keyclass;
if Kcode < 3 then

System Devices 14-69

{O thru 59}

Kchar := lan~table[lan~index]A.Keytable[KcodeJ.Keys[ecaps<>shift]
else
if Kcode < 80 then

Kchar := ctrlooKup[Kcode]
else

end;

if Kcode < 100 then
Kchar := lan~table[lanfindexJA.Keytable[Kcode].Keys[shift]

else
if Kcode < 128 then

Kchar := lanftable[lan~indexJA.Keytable[KcodeJ.Keys[ecaps<>shift]
else

Kchar := lan~table[lanfindex]A.Keytable[KcodeJ.Keys[shiftJ;

procedure finish_edit;
be~in

while strlen(dbs) < 7 do strappend(dbs,' ');
if strlen(dbs) > 80 then setstrlen(dbs,80);
if NOT shift then KeytabptrA[ecode,sline] := dbs; {save the edited line}
call (db crt h 0 0 ~\ ,DB INFO, d b crt in f 0) ;
call(dbcrthooK,DBEXCG,dbcrtinfo); {restore iMa~e}
if (ecode in [27 •• 33J) or (ecode = 38) then build_Menus;
edit_Mode := false;
local := true;

end;

procedure edit_entry;
var

i, rv : integer;
be~in

if not control and «Kcode=7) or (Kcode=59)) then finish_edit
else
be~in

translate_Ke}';
strl,Hite(schartl ,i tf\char); {COP}' into str-t}'pe if IAle need it}
if control or (Ktype = alpha_Key) then

be~in
if edptr <= strlen(dbs) then

end

be~in
dbs[edptr] := Kchar;
if edptr < 78 then edptr := edptr+l;
dblAlrite(dbcx ,dbc}' ,schar);

end
else
be~in

if strlen(dbs) < 78 then
b e ~ i n

setstrlen(dbs ,strlen(dbs)+I);
strlAlrite(dbs ,strlen(dbs) ,i tf\char);
edptr := edptr+l;
dblAlrite(dbcx ,dbc}' ,schar);

end;
end;

else {NOT ~ontrol}
case ~\code of

24: {caps locK}
b e ~ i n

ecaps := not ecaps;
end;

{tof~le local capslocK}

14-70 System Devices

34,35: {down-arrow, up-arrow}
begin

while strlen(dbs) < 7 do strappend(dbs,' ');
Keytabptr~[ecode,slineJ := dbs; {save edited line}
sline := not sline;
dbcx := 0; i := 2; if sline then i := 3;
dbcy:=dbcrtinfo.YMin + i;
dbs := Keytabptr~[ecode,slineJ;
dtll.~lrite(dbcx, dbc}', dbs);
dbcx := 0; if strlen(dbs)=7 then dbcx := 7;
dbcy:=dbcrtinfo.YMin + i;
edptr := dbcx + 1;
dbwrite(dbcx, dbcy, ");

end;

38,46: {left-arrow, bacK-space}
beg i n

if edptr > 1 then
begin

end;

edptr := edptr-l;
dbcx := dbcx - 1; dbwrite(dbcx,dbcY ,");

end;

38: {right-arrow}
beg i n

if edptr <= strlen(dbs) then
begin

end;

edptr := edptr+l;
dbcx := dbcx + 1; dbwrite(dbcx,dbcY ,");

end;

43: {insert-char}
begin

if strlen(dbs) < 78 then
begin

en d ;

i := strlen(dbs) - edptr + 1;
if i > 0 then

end;

begin
setstrlen(dbs,strlen(dbs)+I) ;
s triAl r i t e (d b s ,e d p t r + 1 , r 1,J ,s t r (d b s ,e d p t r Ii)) ;
strIAlrite(dbs,edptr,i,' ');
dbcx := 0; i := 2; if sline then i := 3;
dbcy:=dbcrtinfo.YMin + i;
dblAI ri te (dbcx, dbcy, dbs);
dbcx:= edptr-l; dbIAlrite(dbcx, dbci', ");

en d ;

44: {delete-char}
begin

if strlen(dbs) > 0 then
begin

i := strlen(dbs) - edptr + 1;
if i > 0 then

beg i n
stnlrite(dbs ,edptr ,rl,J ,str(dbs ,edptr+l ,i-I));
setstrlerddbs ,strlerddbs)-l) i
dbcx := 0; i := 2; if sline then i := 3;
dbcy =dbcrtinfo.YMin + i;
dblAlr te(dbcx, dbcy, dbs);
dblAlr te(dbcx, dbcy, ' i); {blan~\-out last char}
dbcx:= edptr-l; dbIAlrite(dbcx, dbcYt ");

end;
end;

end;
otherlAlise beep;

end; {case}
end; {if-then-else}

end; {proc}

procedure start_edit;
var

i : integer;
beg i n

call (db crt h 0 0 f; t DB I NIT t d b crt i n f 0)
call(dbcrthooKtDBEXCGtdbcrtinfo)
dbcx:=O; dbcy:=dbcrtinfo.YMin + ;
dbs := '***************** DEFINE KEY xx *****************';
s t rlH it e (db s t 30 ti If; cod e : 2) ;
dbl,Jrite(dbcx t dbCi't dbs);
dbcx:=O; dbcy:=dbcrtinfo.YMin + 1;

System Devices 14-71

{init IhndolAI}
{sal.le ifllage}

{fix nUfllber}

dblAlrite(dbcxt dbci't 'Label •• Definition •••••••••••••••••••••• ');
dbcx:=O; dbcy:=dbcrtinfo.YMin + 2;
dbl,Jrite(dbcxt dbc,'t f;eytabptr .. ·[f~codetfalseJ);
dbcx:=O; dbcy:=dbcrtinfo.YMin + 3;
dblAlrite(dbcxt dbcYt f;eytabptr"'[KcodettrueJ);
ecode := f;code; Keycode for finish_edit}
if Menustate = M_u2 then beg i n

sline := true;
dbcy:=dbcrtinfo.YMin

end
e Is e

begin

{edit-shift}

sline := false;
dbcy:=dbcrtinfo.YMin

{edit-norfllal}
+ ,..,.

,;;,. ,
end;

dbs := f(eytabptr"'[ecode tslineJ;
edptr := 1; if strlen(dbs))= 7 then edptr := 8;
dblAlrite(dbcxt dbcYt ");

{copy string to edit}
dbcx:=edptr-l;

{position cursor}
edit_Mode := true;
local := true;

end;

procedure newrpghooK(var statbYtet databyte byte; var doit boolean);
begin

{RPG Interrupt Service Routine}
if not edit_Mode then

call (s a I} e r p g h 0 0 K t S tat b '/ t e t d a tab Y t e t d 0 it)
else

begin
local := true;
Kcode := databyte;
shift := not odd(statbyte div 16);
control := not odd(statbyte div 32);
if shift then

if databyte ~= 128 then Kcode := 34 else Kcode := 35
else

if databyte }= 128 then Kcode := 39 else Kcode := 38;
edit_entrl';

end;
end;

procedure newtranshooK(var sta~byte t databyte
I} a r

dUfllfll}'C : char;
dUMMyi : integer;

beg i n

byte; I.lar doit

{First Keyboard ISRt Keycode translation and seMantics hooK}
local := false;
Kcode := databyte;
shift := not odd(statbyte div 16);
control := not odd(statbyte div 32);
if edit_Mode then edit_entry;
if not edit_Mode and shift and control and

(Kcode < 60) and (kcode > 2) then start_edit
else

begin

boolean) ;

if (databyte = 21) or (databYte=26) and (Kbdtype <> itfKbd) then
beg i n

databyte := 21; {Convert KO (26) Key to be MENU Key}
if NOT KbdsYSMOde then

begin {userMode}
doit := not doit;
if shift then

if Menustate = M_u2 then Menustate := M_none
else Menustate := M_u2

14-72 System Devices

else
if Menustate = M_ul then Menustate := M_none

else Menustate := M_ul;
Keybuffer~.echo := (Menustate=M_nonel; {don't echo typeahead}
call(crtllhooKtcllcleartduITIITldtdUITIITD'cl; {clear last line}
case Menustate of

ITI_none : begin
Keybufops(Kdisplay,duMMycl;
Keybuffer~.echo := true;

end;
ITI_ u 1 c a I I (crt I I h 0 0 K 'c 11 dis p I a}' 'u s ern 0 r ITI ,', ,d U ITIITI Y C I ;
ITL U 2 : c a I I (crt I I h 0 0 K t c I I dis p I a}' 'u s e r s h i f t ,', t d U ITIITI }' c I ;
otherl..,lise

end; {case}
end; {if}

end;

if (databyte = 201 or (databYte=371 and (Kbdtype <> itfKbdl then
begin

databyte := 20; {Convert K9 (371 to be USER/SYSTEM Key}
KbdsYSMOde := not shift;
if (Menustate = M_ul1 or (Menustate = M_u21 then

begin
Menustate := M_none;
f,edluffe r"'. eGho : = true;
Keybufops(Kdisplay,duMMycl;

end;
end;

if doit then call(sal)etranshoof,tstattl}'tetdatab}'te,doitl;
end;

end; {proc}

procedure addtobuffer;
I) a r

c : char;
i : integer;
tas : dbstring;

beg i n
i := strlen(KeYtabptr~[Kcode,shift]l;
tas := str(f,e}'tabptr"'U\code ,shift] ,8ti-71;
if (strlen(tas) <= (Keybuffer~.Maxsize-Keybuffer~.sizell then

for i := 1 to strlen(tas) do

end;

begin
c:= tas[iJi f,e}'bufops(KAPPEND, c);

end
else

beep;

procedure newisrhooK(var statbYte, databyte byte; var doit
begin

{Keyboard Interrupt Service Routine}
if not edit_Mode and not local then

beg i n
if (Kcode < 3) or (Kcode > 59) then

call (saveis rhoof, ,statbyte ,databne ,doi t)
else
if (strlen(f,e}'tabptr"'U,code,shift]1 < 8) then

call (saveisrhoof, ,statbyte ,databyte ,doit)
else
addtobuffer; {typeahead}

end;
end;

procedure do_hooKs;
I) a r

hooK 1 , hooK2 : boolean;
begin

if initialized then writeln;
hooK 1 := false;
hooK2 := false;
if KbdisrhooK <> newisrhooK then

begin
hoof\1 := true;
saveisrhooK := KbdisrhooK;
KbdisrhooK := newisrhooK;
saverpghooK := rpgisrhooK;
rpgisrhooK := newrpghooK;
writeln('ISR HooKs Installed. I ,#9);

end

booleanl;

else writeln('*** ISR already hooKed. ***');
if KbdtranshooK <> newtranshooK then

begin
hoo~i2 := true;
savetranshooK := KbdtranshooK;
KbdtranshooK := newtranshooK;
IAlriteln('Translation Hoo~i Installed.' t#9);

end
else writeln('*** Translation already hooKed. ***');

if hooK 1 and hooK2 then using_hooKs := true;
end;

procedure undo_hooKs;
var

hooK 1 t hooK2 : boolean;
begin

if initialized then writeln;
hoo~il := false;
hoo~i2:= false;
if KbdisrhooK <> saveisrhooK then

begin
hoo~il := true;
KbdisrhooK := saveisrhooK;
rpgisrhooK := saverpghooK;
IAlriteln('ISR Hoo~is RefTloved.' t#9);

end
else l"triteln('*** ISR alread}' unhoo~ied. ***');

if KbdtranshooK <> savetranshooK then
begin

hoo~i2 := true;
KbdtranshooK := savetranshooK;
IAlriteln('Translation Hoo~i RefTloved.' t#9);

end
else writeln('*** Translation already unhooKed. ***');

if hooK 1 and hook2 then using_hooKs := false;
end;

procedure get_keYs;
begin

neIAI(~iedilptr) ;
tn'

11.1 r i tel n (# 1 2 t ' T r}' i n 9 t 0 loa d II KEY F I L Ell. ') ;
reset(keyfilptr A t':KEYFILE');
read(keyfilptr A

t keytabptrA);
close(keyfilptr A) ;
buillLfTlenus;
escape(O) ;

reCOl.ler
begin

if (escapecode = 0) then writeln('Keys loaded. ')

System Devices 14-73

else l"triteln('FAILED to load. escapecode = ',escapecode:3);
end;

dispose(Keyfilptr) ;
end;

procedure save_keys;
begin

neIAIOie}'filptr) ;
tn

IAlriteln(#12t'Tr}'ing to sal)e IIKEYFILE II .');
rewrite(keyfilptr A ,':KEYFILE');
IAlriteOie}'filptr." dienabptr"');
close(keyfilptr A ,'LOCK');
escape(O) ;

reCOl.ler
begin

if (escapecode = 0) then writeln('Keys saved. ')
else IAlriteln('FAILED to sal)e. escapecode = ',escapecode:3);

end;
dispose(keyfilptr) ;

end;

14-74 System Devices

procedure pasKey_init;
I,! a r

i : integer;
begin

if not initialized then
begin

end
else

if Keytabptr = nil then new(Keytabptr);
if usernorM = nil then new(usernorM);
if usershift = nil then new(usershift);
for i := 0 to 58 do

begin
KeytabptrA[i ,false] := '-plain-';
KeytabptrA[i ,true] := '-shift-';

end;
{Default Key labels}
s t fIIH it eO, e}' tab p t r ,', [27 ,f a 1 s e] t1 ti , ' f 1 ') ;
stfll,lriteO,e}'tabptr"'[27,true] d ,i, 'Fl ');
strl,.,triteO'e}'tabptr"'[28,false] t1 ti,' f2 ');
strIAlriteO,e}'tabptr"'[28,true] d ,i, ' F2 ');
s triAl r it eO, e}' tab p t r ,', [32 ,f a Is e] t1 ,i , ' f 3 ' ,) ;
strIAlriteO,eYtabptr"'[32,true] d ,i, ' F3 ');
strIAlriteO,e}'tabptr"'[33,false]t1,i,' f4 ');
strIAlriteO'eytabptr."[33,true]dti,' Fa ');
strIAlriteO'e}'tabptr."[28,false]t1,i,' f5 ');
strIAlriteO,e}'tabptr"'[28,true] t1 ,i,' F5 ');
strIAlriteO,e}'tabptr"'[30,false] t1 ti,' f6 ');
strIAlriteO,e}'tabptr"'[30,true] d Ii, ' FG ');
strIAlriteO,e}'tabptr"'[31 ,false] t1 Ii,' f7 ');
strIAlr·iteO'e}'tabptr"'[31 ,true] d ti,' F7 ');
strIAlriteO,e}'tabptr"'[3G,false] t1 ti,' f8 ');
strIAlriteO,e}'tabptr"'[3G,true] d ,i, ' F8 ');
dbcx := 0; dbc}' := 0;
i nit _ d b IAI i n d OIAI ;
ecaps := false;
local ::; false;
edit_Mode := false;
bui I,Lfrlenus;
writeln(#10,'PassKey is initialized. ');
IAlriteln(#10,#10,'To define alH non-alpha f,e)', ');
IAlritelrd 'press <CTRL} and <SHIFT} and [KEY] ');
writeln('at the saMe tiMe. ');
if Kbdtype <> itfKbd then

writeln(#10,#13,'Press KO to toggle Menu.
#10,#13,'Key K8 sets SYSTEM Mode, "
#10,#13,'<shift}f,8 sets USER frlode. ');

writeln('Already initialized. ');
end;

end; {frIOdule}

{prOgrafrl KBD8P(input ,output) j}

iMPort sysglobals, sysdevs, loader, passKey;

I,! a r
i : integer;
Cfrldchar: char;
quittiMe : boolean;

beg i n
tn-

if not initialized then
tn-

begin
do_hoof,s;
pasf,e}'_init;
initialized := true;
fTlarf,user;

end;
recover

begin
BEEP;
if using_hooKs then undo_hooKs;
initialized := false;
escape(es~apecode) ;

end;

quittime := false;
repeat

IAlrite(#I,'Pas~~e}': Install hoo~~s, ReIT10Ve hoo~~s, ,
'Get ~~e}'s, 5al,le ~~eys, Quit [1.0]? ',#8);

read(clTldchar) ;
case Cfrldchar of

'I','i': do_hoo~~s;
'R' ,'r' : undo_hooKs;
'G' ,'g' : get_~~e}'s;
'5' ,'5' : save_Keys;
'Q','q',#27: quittifrle. true;
, ; : write(#12);
otherlAlise

'Alrite(#12,#7) ;
end;

System Devices' 14-75

until quittifrle; {program done, return to command interpreter}
recover

begin

en d.

if not initialized then writeln('Initialization FAILED. ')
else writeln('Program crashed. ');

writeln('Escape: ',escapecode);
escape(escapecode) ;

end;

Powerfail
Some Series 200 Computers may be equipped with an optional battery powered back-up supply,
which also contains an un interruptible real-time clock and some non-volatile CMOS RAM. This
section describes the features of this option and how they are accessed. The interface is the same as
earlier releases of Pascal.

SYSDEVS exports a boolean (BATTERY PRESENT) which returns TRUE if the hardware is present. To
determine if your computer has the optional.powerfail circuit, test this boolean.

When power fails, the battery and its controller are capable of giving a warning and supplying
power for a programmable amount of time. The Pascal Language System only uses the battery to
provide 60 second protection (the maximum) and to store the system date and time between
powerdown and powerup.

The boolean variable BATTERY PRESENT is set by the Boot ROM at powerup. If its value is true, then a
battery is present.

The BATCOMMAND procedure is used to communicate with the powerfail hardware. BATCOMMAND takes
a command byte, followed by a number telling how many bytes of data to send to the battery,
followed by five bytes of data. To send, for instance, a command followed by three bytes, use the
call: .

batcofrlfrland (Cofrlfrlandbyte ,3 ,datal ,data2 ,data3 ,0 ,0)

with dummy bytes f()r the unused data arguments.

Function BATBYTEREC I EI,JED waits until a data byte is available from the battery and then returns it to
the caller.

The powerfaif hardware may also be accessed by two hd~ks exported by SYSDEVS .

• BATCMDHOOK is a procedure variable used to pass information to the controller.'

• BAT READ HOD K is a procedure variable' used to read information from the' controller.

14-76 System Devices

Battery Features
The Powerfail option contains an 18 volt, 2 amp-hour nickel-cadmium (NICAD) battery with its
associated charging and transfer circuitry, a real-time clock, and CMOS RAM which is battery
powered when the AC power is off.

The Powerfail option is controlled by an 8041A microcomputer which provides some user­
programmable features. Two 5-volt power supplies are included on the Powerfail circuit board.
One insures that the Powerfail microcomputer and voltage comparators are operating before the
rest of the computer comes up, and the other keeps the CMOS circuitry operating when AC power
is off.

Note
The word "battery" is generally used in the following discussion to
denote the entire Powerfail "smart peripheral", under the control of its
8041 microcomputer.

Powerfail Behavior
Once the battery turns on and passes its self-test, it may be thought of as having four states: Power
Valid, Power Failed, Last Second, and Switched Off. The 8041 may be programmed to interrupt
the host CPU via level 7 (non-maskable interrupt) at each transition among these states, or host
CPU interrupts may be suppressed. (Obviously, there is no interrupt on the transition to Switched
Off.)

Note that the computer's power switch has been specially wired to prevent the battery from
thinking power has failed when the computer is turned off. Pulling the power cord from the socket
will invoke the powerfail option.

1. Power Valid: This is the normal state, when things are running properly. When power fails,
the battery will immediately go to Power Failed state.

2. Power Failed: In this state, the battery provides protective power to the mainframe for a
limited time (default 60 seconds). After a delay which is programmable (default zero
seconds) the battery will try to interrupt the mainframe with a power-failed interrupt. If power
does not return during the protection period or the NICAD battery is about to die, the battery
will go to Last Second state. If power returns and stays up for a specified time (default 1
second) the battery returns to Power Valid state.

3. Last Second: One second after this state is entered, the battery will go to Switched Off state
and shut down the computer. After Last Second is entered, the computer will be shut down
even if power comes back.

4. Switched Off: Once this happens, if the power is restored the computer will go through its
normal power-up sequence as if someone had turned on the main power switch.

Note that in Power Failed state, if power is restored but protection time runs out before the
power-back delay is elapsed, the battery will go to Last Second anyway.

There is a fourth timer in the battery which is not programmable. Its purpose is to prevent the power
supply from h,eating up too much while the fan is off. It counts up to 60 seconds when there is a
power failure, and if it reaches 60 seconds the computer is shut off. This timer is not cleared when
power comes back, but counts back down toward zero at half speed. For instance if power was
down for 40 seconds, it would have to be. on for 80 seconds before a full minute of protection is
again available.

System Devices 14-77

Powerfail Real-Time Clock
The non-interruptible real-time clock is kept as a combination of three pieces of data: a 32-bit timer
which counts in 10 millisecond increments, a record of the timer value when the clock was set, and
the time and date when the clock was set (the date and time use the same format as the system
clock.

To figure out the real time, the battery subtracts the current timer count from the timer value when
the clock was set, and adds the difference to the time and date when the clock was set. This is a
time-consuming operation which is normally only done when the machine is turned on. For
moment-to-moment timing while the computer is on, use the keyboard microcomputer which has a
number of timing features.

Note that in Pascal 3.2 the base date for this clock is midnight 1 January 1970.

Non-Volatile RAM
The battery contains 128 bytes of battery-powered CMOS RAM. 16 bytes are used by the battery
for its own purposes; 112 are available for user-programmed purposes.

This RAM is accessed by moving it into 8041 memory in 16-byte blocks. Commands are available
which enable the host CPU to read or modify a block while it is in the 8041' s memory.

No standards have been established for how users may allocate space in this RAM, except that the
first 16 byte block is reserved for the real-time clock.

Here is the layout of bytes in the first 16 byte block:

Byte Usage / Meaning

0-2 Will be $OF, $A5, $C2 if the battery has been commanded to set the real time since the
CMOS RAM woke up; else garbage. You can use these values to verify that the real
time is probably meaningful.

3 Least significant byte of time when clock was set.

a 2nd byte of time when clock was set.

5 Most significant byte of time when clock was set.

6 Least significant byte of day number when clock was set.

7 Most significant byte of day when clock was set.

S - 11 Value of 32-bit CMOS counter at time when clock was set.

12 - 15 Used as temporary cell during computation of real time to honor $41 command.

Interface to the Host CPU
The host CPU can send commands to the battery by writing to the byte at address $458021.
Reading a byte from this address yields battery status information.

The host CPU can write data bytes to the battery through address $458001, or read data from the
battery via the same byte address.

14-78 System Devices

The battery status register bits are interpreted as follows:

Bit . Meaning

o If = 1, there is data ready to read at $458001.

If = 1, command buffer full; If = 0, battery is ready for a command to be written to
$458021. MUST be zero before a command is sent.

2 If = 1, battery is interrupting the host CPU on level 7.

5 If = 1 and bit 2 = 1, this is Last Second interrupt.

s If = 1 and bit 2 = 1, this is power returning interrupt.

7 If = 1 and bit 2 = 1, this is power fail interrupt.

In general the host CPU communicates with the battery by sending a command to the. command
register, then sending one or more bytes of data to the data register. If the battery is enabled to
interrupt the host CPU, level 7 (non-maskable) interrupts will signal the mainframe of changes in
battery state. Otherwise the host CPU may ask the battery what's up. See commands $Ox and $C3
below.

Commands to the Battery
The following commands can be sent to the battery.

$01 Tells the battery to turn off backup power. This command is used to discontinue
battery protection in order to conserve the charge. It will turn power off even if there is
not a power failure; if there is no power failure, the machine will come back up in about
one second.

$10 Tells the battery to stop interrupting on level 7. It takes the battery about 200 mic­
roseconds to stop interrupting after this command is received. (The command has
been received when bit 1 of the status register goes to zero).

$ 2 x Set the interrupt mask. This command disables the three types of interrupt. The lower
four bits of the command are:

bit 0 must be zero.

bit 1 - If one, power fail interrupt disabled. If zero, enable condition stays unchanged.

bit 2 - If one, power back interrupt disabled. If zero, enable condition stays un­
changed.

bit 3 - If one, last second interrupt disabled. If zero, enable condition stays unchanged.

$Ox Clear the interrupt mask. Used to enable the three types of interrupt. The lower four
bits of the command are:

bit 0 - must be zero.

bit 1 - If one, power fail interrupt enabled. If zero, enable condition stays unchanged.

bit 2 - If one, power ?ack interrupt enabled. If zero, enable condition stays unchanged.

bit 3 - If one, last second interrupt enabled. If zero, enable condition stays unchanged.

Note that command $OE will be ignored. Only one or two of these bits should be
cleared at a time.

System Devices 14-79

Data is written to and read from the CMOS memory through a 16 byte buffer in the 8041's address
space. The following four commands have to do with using the CMOS memory and the buffer.

$Fx Tells the ba.ttery to send a byte from the CMOS buffer to the host CPU. The lower four
bits of the command act as a pointer to the byte to be sent. Bit zero of the status register
will be 1 when the data is ready.

$5x Used to write to the CMOS buffer. The four lower bits of the command act as a pointer
to the byte to be written in the buffer. The command is followed by sending the data.
The buffer pointer is retained and decremented when a data byte is received, so if all
16 bytes of the buffer are to be sent, issue command $BF followed by 16 data bytes.

$ 7 x This command tells the battery to load the CMOS buffer with a 16 byte block of
CMOS memory. Bit zero must be a zero. Bits one through three tell what block to load,
and must indicate 1 through 7; block zero is used by the Real Time Clock.

$Gx Tells the battery to write the CMOS buffer into one of the 16-byte blocks of CMOS
RAM. Bit zero must be zero. Bits one through three tell what block to write. If block
zero is written to, the real time will be lost.

The real time is read and written through the same buffer that is used to read and write CMOS
memory. The following three commands are used to read and write the real time.

$57 Sets up the real time in the CMOS buffer. Tells the battery that the next five bytes of
data sent will be the real time. The five data bytes must be sent in this order:

MSB (most significant byte) of days.

LSB (least significant byte) of days.

MSB of time of day.

Second byte of time of day.

LSB of time of day.

"Days" is an arbitrary integer. "Time of day" is the number of 10 msec ticks since
midnight.

$40 Tells the battery to set the time to what is in the buffer.

$41 Tells the battery to load the buffer with the real time. Then particular bytes of the real
time can be requested by the host CPU using these commands:

$F7 MSB of day

$FG LSB of day

$F5 MSB of time of day

$F 4 Second byte of time of day

$F3 LSB of time of day

14-80 System Devices

There are three ongoing timers that may be·read. These are maintained by the 8041 and are all two
bytes long; they are' 'volatile" in that they are cleared when the machine shuts down. A single timer
buffer in 8041 memory is used by the host CPU to access these timers.

$82 Tells the battery to load the timer buffer with the value of the non-programmable
60-second power-supply cooling timer.

$80 Load timer buffer with the amount of time that power has been back without leaving
Power Fail state.

#8£1 Load timer buffer with the length of the most recent power failure since power-up. This
timer is set to zero whenever the power fail state is· first entered.

$EB Send the MSB of the timer buffer to the host CPU.

$EA Send the LSB of the timer buffer to the host CPU.

$A7 Set the amount of protection time. Command is followed by two bytes of data (MSB
first) indicating the protection time in 10-msec tics. Anything greater than 60 seconds
will be treated ,as 60 seconds.

$A5 Set the amount of time power must be gone before giving a level 7 interrupt. Com­
mand is followed by two data bytes (MSB first). Time is in 10-msec tics.

$A3 Set the amount of time power must be back before leaving the power fail state.
Command is followed by two data bytes (MSB first). Time is in 10-msec tics.

$DB Tells battery to send power status to the host CPU. The data bits returned are:

bit 0 - If one, power is down.

bit 1 - If one, power fail interrupt delay is up.

bit 5 - If one, the AC is gone.

$C3 Tells battery to send a status word to the host CPU.

bit 1 - If one, power fail interrupt is masked.

bit 2 - If one, power back interrupt is masked.

bit 3 - If one, last second interrupt is masked.

bit 4 - If one, battery is in Last Second state and power is about to go away.

bit 6 - If one, the battery is in power fail state.

$CG Tells battery to send host CPU the self-test status. A value of zero means 8041 thinks
battery passed self-test. A value of 2 means it failed.

$ C 7 This command tells the battery to send the amount of the last second that has been
used up. It is only valid in Last Second state, and returns time in 10-msec tics.

SYSDEVS Listing
The following pages are the commented export text of the SYSDEVS module.

IMPORT SYSGLOBALS;
E;:·:;P 0 F.: T
{t DUMMY DECLARATIONS t*t*************************t*t*tt}
T\'PE

KBDHOOKTYPE = PROCEDURE(VAR STATBYTE}DATABYTE: BYTE;
VAR DOlT: BOOLEAN);

OUT2TYPE = PROCEOURE(VALUE1}VALUE2: BYTE);
REQUEST1TYPE PROCEDURE(CMD: BYTE; V~R VALUE: BYTE);
BOOLPROC = PROCEDURE(B:BOOLEAN);

{* CRT ****tt***t*t*****ttt**tt****tt*tt*t***t*ttt*ttt*t}
{***** THIS SECTION HAS HARD OFFSET REFERENCES *tt****t*}

IN MODULES CRTB (ASSY FILE GASSM)
T\'PE

CRTWORD = RECORD CASE INTEGER OF
l:CHIGHLIGHTBYTE}CHARACTER: CHAR);

HW.:

System Devices 14-81

CRTLLOPS =CCLLPUT,CLLSHIFTL}CLLSHIFTR,CLLCLEAR}CLLDISPLAY,PUT TATUS);
CRTLLTYPE=PROCEDURECOP:CRTLLOPS; ANYVAR POSITION:INTEGER; C:C AR);·
DBCRTOPS =(D8INFO}DBEXCG}DBGOTOXY}DBPUT}OBINIT}DBCLEAR,DBCLIN ,DBSCROLLUP,

DBSCROLLDN}DBSCROLLL,DBSCROLLR1DBHIGHL);
DBCINFO = RECORD

SAVEAREA : WINDOWP;
SAVESIZE : INTEGER;
DCURSORADDR : INTEGER;
XMIN,XMAX}YMIN;YMAX SHORTINT;
CURSX}CURSY : SHORTINT;
C : CHAF.:.:
AREAISDBCRT BOOLEAN;
CHARISMAPPED: BOOLEAN; { 3/25/85 }
DEBUGH I GHL I GHT: SHOF.:T I tH.: -:: 3 ... ··25 .. ···85

END.:
DBCRTTYPE=PROCEDURECOP:DBCRTOPS; VAR DBCRT:DBCINFO);

crtfrec = packed record
nobreak,stupid,slowterm,hasxycrt}
haslccrt{built in crt}}hasclock}
canupscroll,candownscroll

end.:

b9 = p.:lck ed ar I' .:t l;:![l1, , :::] 0 f boo 1 e.:ln.:
b14= p.:tcked .:trr.:lI;:l[O, ,13J of boolean.:
crtcrec = packed record

rlf}ndfs}eraseeol}
er·:tseeos, home,
escape
b.:td: sp·:tce
fill C(II.H"! t

c 1 e·:tr SCI' een}
cle.:lr 1 ine
prefi::-::ed

end.:

ch.~r .:
ch.~r .:

char.:
b9

(* CRT CONTROL CHARS t)

14-82 System Devices

crtMemaddr,crtcorrtroraddr,
keybufferaddr,progstateinfoaddr: integer;
keybuffersize: shortint;
crtcon crtconstty~e;

(i:; h ~ ,lIe f t ,I d (I !.I.i n .: !.A p: c h a r ,:
badch,chardel,stop,
b r e·; k ,I f 1 i) S h ,I eo f char .!

.~l ~mode" 1 inedel ! char.:

en",lironptr

Er t ::< ,I pre f i >::

prefi>::ed
cut'" sor rn.~:::k
spare

end.:

fi!iscinfo: ct"tt"rec.:

crtctrl: crtcrec;
crtinfo: crtirec;

end .:

.. ···en iron.:

hat" .:
14 .:

n t e9 et" .:

cr tk inds = (t·lOCRT., ALPHAT'lPE., E:IH1APT'lPE .. SPECIALCRT1., ~:;PECIALCPT2).:

dWi!PS t I~ 1 e = (1, ,255.:

!,}A~:

SYSCOM: ENVIRONPTR;
ALPHASTATE[~ALPHAFLAG!J

GPAPHICSTATE[!GPAPHICSFLAG~J

BOOLEAt·i .:

C~:T I OHOOK
TOGGLEALPHAHOOK
TOGGLEGRAPHICSHOOK
DUt'1PALPHAHOOK
DUt'1PGF.:APH I CSHOOK
UPDATECUF.:SOF.:HOOK
CRT I t·~ I THOOK
CF.:TLLHOOK

DBCRTHOOK
>::POS
'iPOS
CUF.:F.:Et·iTCRT
BIH1APADDR
FRAt'1EADDR
F.:EPLF.:EGCOP'l
l'~ I NDOl'~F.:EGCOP\'
t'~R I TEF.:EGCOP'l

BOOLEAt·~ .:
At'1T\'PE .:
PPOCEDUF.:E·.:
PROCEDURE .:
PF.:OCEDURE .:
PF.:OCEDUF.:E .:
PROCEDURE .:
PF.:OCEDUF.:E .:
CF.:TLL T\'PE.:

DBCF.:TT\'PE .:
SHORTltH .:
~:;HORT I tH.:
CF.:TK I t·iDS.:
ItHEGEF.:.:
ItHEGER.:
SHORTItH .:
SHO~:T I tH.:
SHOF.:T I tH.:

CURSGR X POSITION)
CUR~:;O F: Y POS n IOt·i }
ACTIVE ALPHA DRIVER TYPE }
ADDRESS OF BITMAP CONTROL SPACE
ADDRESS OF BITMAP FRAME BUFFER }
REGISTER COPIES FOR BITMAP DISPLAY
MUST BE IN GLOBALS SECAUSE REGISTERS,
ARE NOT READABLE -- MAY BE UNDEFINED

K Et·jABL i:
~ ,

S ~UTO ELAY ?, S~T AU70 R~PE~T= 3;
G AUTO ELAY 4; GET AUTO_REPEAT= 5;

~ RING80PTR ASTRING80;

System Devices 14-83

k YBOARDTYPE = (NOKBD,LARGEKBD,SMALLKBD,ITFKBD,SPECIALKBOI SPE IALKBD2);
L t'~GT\'PE = (0 ~'::BD.FI~·~I:::~ ;:BD.tBELG:~rj t·:'E:].C[':· E~jG t'::E'Ll.,CDti ~: t::: D,I

o ::J E G I P. ~ ~ r::: E: ~I . [A til ::; H }:': E; D t D uTe H ~:'. E: ~i ,I :; ~:~ ISS G ~~ t::" B .: S ~IJ S S _ F ~: _ K B D ,:

A ii~":At'iA ~::E D ,I Li': t·:·~·D.f ~'or'1Atl::; ~·:'BD ,I t'~::,l t·:~:D ,: t'~S2 ~:::BD" ~'iS3 ~:··E~~i.:

i'1Er'~UT'lPE =
W SS_GR_B_KBD,SWISS_FR_B_KBD.{ADDED FOR 3.1--SFB-5/22/85} };

ONE,M_SYSNORM.M SYSS~!FT,M_Ul.M G2:M_U3,M_U4);
i,)A~:

KBDREG!HOOK
KBDIOHOOK
KBD I S~:HOOK
KBDPOLLHOOK

KBDCOt·{F I G

KBOHOOKT\'PE .i

BOOLF~:OC .;
:.':-:: 1""" •• - •• -.:-. ro : ::-.:--
t: .. t::."(t;UHr::U i Of r°t..:

KBDLANG LANGTYPE;
SYSMENU STRING80PTR;
SYSMENUSHIFT STRING80PTR;

KEYBOARD CONFIGURATION JUMPER

{* ENABLE / DISABLE ************************************}
COt·;ST

KBDMASK=1;RESETMASK=2;TIMERMASK=4;PSIMASK~8;FHIMASK=16;

{t BEEPER **}
BEEPERHOOK: OUT2TYPE;
BFREQUENCY, BDURATION: BYTE;

{* RPG ***}
COt'~ST

~j.: ~:PC<D I SABLE = 1.:
SET RPG RATE 2; GET_RPG RATE =3;

RPGREQHOOK: REQUESTITYPE;
RPGISRHOOK: KBDHOOKTYPE;

VI
Q)
u .:;
Q)

o
E
2
VI
:>,

(/)

~
00

f

~
~

* * * * * ~ * w * 0 * ww * ~~
.;t.-:- ::::: ":-.
.:..~. ..,. •• -t eel
.~:­

.:. . .;.
':I'~' (r.: l()
.;.-S:. 1---· 1::0
':...:. (I::
':l-I~ L::"J
'OM:' :~:::: .,::t. Lt..I
':H:' :::) co 1-·
.!t·I:, ::;:~:: .. :-.
.: ... ~. -. 0::,
";1-1;' r,)
.;.~. l.t..I CO _ ..
';1-1:' 1-.. - (I::
';1-1;' •• :-. 1·"-

* * * * * * *

1::(1 (t . .I G::
co C:i

CI -. Ct.::
:::::: (1::
c.) co -

* * * * * * * * * * *

I..Ll LLI
L.I:' Ct.::

*

C)
I.JJ
C)
C)
CI:::
0 ...

* w
~

::.... ::-
~ ~
W 0
~ E
~ U
~ ~
mw~

::1
Ci
I..LI
C)
c:)
Ct.::
0_.

II
l.U
(L

~­
L.I
(I:
LLI
Oc:
I··· .. ·
0::

::z::
0]:::
Lt..I
• __ .1
C)
C) LJ.J
1::0 1..L1 CL.

0. __ '-'
:::- I-

~I-O

MO~
~EW
~u~
II-I­
~ ~ ~
I-mro
z
W
00 ~
W~O
~oo
~OI
.>IO
~O~
WEW
I-U~
I-~I­
~~~ 

0. .. O:i 
~I":- :::-

eo 0::: IXI e(j co 
0::: 

1,-", .... ::. 

* * * * * * * * * * * * * ~ * W * 0 * W * I­* Z 
* ~. 
* W * I­* ~ * 0 * 0 * W * ~ * U * ~ * ~ .;...:. 

* ow * ~E * 0 * UI­* WO * ~W * ~ * OU * W~ * ~~ * U * ~ * ~ 
* * * LJJ 
:::a:~ :::.:: 
-:....:-.=. r-
--I c. 
(.) l.J.J I-

0._ 0::: 
~I-€- :-:--

I-

W 
::z: 
C) 
r···J 
I­
l.J..I 
((I 

-:"':1 

LU 
E 

~.-

1--­
LLI 
(0 I • .LI 

C) CO ..... 
l.J..I r"_ 
~.-
(I: ..... 
CI -.::r 
1--
L.LI ((, 
((I :::::: 
1:"':1 -:. 

I . .LI >. 
~=::: CCI 

1--, CI 
1--' LLI 
l.I.J CJ 
C~I C:I 
(..:. (I: 

W 1..1..1 
I- 2:: 
II .=. 
o r···J 
I- I­
L.LI W 
1:"::1 ((I 

--.. :...:- .:...:­
o 
z. 
LJJ II 

C) 
::z: =. 
1..1_ 
:::.::: 
c.) .=. 
_J 
C) 

(.0 
L.L. 
(,(1 

Ii';' 
0) 
•.... 

.::t. 

1-' 
,:r~ 

C) 
co (I) 

&:~ 
L~t:: I·i) .=. (0 
LL. -.... 

r"-' 
o 
W , 
o-.::r 
o 
~o 

W 
WO 
~o 
~~ 
o 
~N 
~I­
UU 

r···J 
1-. 
I:"':' 

l.J..I 
1--. 
'1:: 
C) 
~ =. 
1:"':-

1-­
W 
(,(. 

C) 

I­
l.J.J 
C.r:1 
C) 

I:L .=. 
:::.::: 
C) .=, 
_I 
Co) 

c.) C) 
L.LI LJ.J 
L.t~ I::t~ 
L.LI LJ.J 
E ~ ... -

.J:: 
~-. (.::J 

I..L. l.U l.U 
C::. ii... l~L_ 

-> 
ZI-I­
~WW 
WEI­
--I ~ 
01-0 

.J:: 
I­
.J:: 
o 
:::.::: 
.:...:. W (=. E 
--I 
UI-

U 
~I­
I-~ 
~ 
O~ 

I­
~~ 
~o =:. 
::- ~ 
:::~ (I: 
.J:: :::0. 

.:-) 
z 
:::::. 0 ... 
U_. c:) 
:::,:~ :::.::: 
c.) C) 

C) .=. 
_I --I 
( .. ) c.) 

C) C) 
::.::: ::::~: 
Co) (. .. ) 

L.U LLl 
L".t:: I:~~: =, :::. 

0:::' C:I ':':J 
ro l.J.J LJJ 

W C) -:...:. 
DWW(O .=11=. 
0::: ((I =. --I L.~ (:t:: 
C. 'J:: I~ 'I: --. ~ (.I­
.:...;. I:"':' I- L.I- 0 
L.LI 
Ct:: 

II 

o::c 
/--. 
.J:: 
CJ 
:::'::: 
(.w:, 
C) 
•.•.• .1 

:z: II 
LJ.J 

LJ..I 
L.I_ W 
::--. 0 ... 
1-'-' 
c::; 1-­
I.J..I c::o 
ct:: 
~:a;:: ~:.::: 
C) .:...:' (::. .=. 
._1 _J 

W 
.:...:. LLI 
(1: .:...:­
L.I- 'J:: 
~ l.J._ 
W 0::: 
I- I.J.J 
:z: 1--

:z: 

W 
--I ~ =. L.LI 
0=:· .=. fo"'" 

E: 0::: 
C:I 

:::.::: 
C) L-:::. ,=. Ct:: 
--I (I:: 
.:...:. c.) 

LJJ 
0 ... LJ.J 
::- CL •. 
~- ::-­
C; 1-. 
W·:::­
(ol:: 
:::a::: :::.::: 
(.) .:...:. 

~~ 
(.) C) 

:::.::: .=:. :::.::: 
.=:' ,=, 
I 0::::0 
I:::::; :c 
l.J.J 0::::0 
Oc: 
:x:: :::.::: 
.:...:- -:...:­(=, .=. 
......I --I 

C) C) (_) (t::: .:...:' (_) 
oJ:: 
::=. 

.;..t:­

.;.+.. 
~. 

¥.. 

* * * 

~­
I 
(.) 

I­
'J:: 
::::: 

.:r: 
~-. 

'I: 
C) 
Ct~ 
W 
::::: 
1--· 

C:I 
1-" 

(ol~ 
(C 
=::. 
L.LI 
CL .. 
::-
I­
Ct.. ,=. 
0-':: 
LLJ 
:E: 

* I-.,... 1-.-
.,... r··_ 

* .~ 
~ . 
~. 

.;...:. 

* .;...;. 
-=* -:w:. 

* *'=, 
.;...:. 

* ':.t:o 
.:.-e:. 
.;...:. 
.:t+.. 
.:e-.:. 
.;...:. 
~. 

.;..:. 
~. 

-:...:. 

* .~. 

.;...:. 
-:.-.:. 

::-
.J:: 
._-' 
W 
C) 

~-
:::-. 
'J: 
._J 
l.J.J C' 
CI l.J... 

... ::-.:~ 

~.-
c.) 1--­.......... -
CJ LJ.J 
(:) .:.:.' 
Ct~ ~-. 
lJ.J C) 
0._ oJ:: 

-. l.U 
I- (l::: 
C) 

Ct~ 
W 
C~I 

LJ..I 
1-
:::::: 

--. L.LI 
co!) 

U::: C) Z 
l.J..1 W (1: 
c.~, I:J::: cot:: 

l.t .. l.J.J I.J..I 
,=) 1---. ~:: ::-:: 

::;!!: 
0::: 
L.Ll 
f r , 

C) 
t-- ....... 

~-. '--. 
~I-I--I 
I-ZUO 
:Z:~I-OO 
O~W 
UE~ 

Lt .. 
1=' 
((. 

l.LJ 
Ct.. 
::-. 
1-­
Ct:: 
L.LI 
::::::: 
1--.. 

(l::: 
l.U 
::::: 
1-._. 

LU 
Ct~ 
:::. 
L::-J 
l.U 
I:"':. 

.... , C) 

C:I 0::: * * -=* 
* * -!i-t:, 

~I­

......I~O 
UW~W 
>00000 
u U~ 

w .:...) I~I 

II (:t:: 

Z ~ 
('.J L.LI 

.~. 

.;..:. 
~. 

.;...:. 

~ 
W 
::.=.:: 

1-- LJ.J 

II 
W II 

OO~ 
W>~ 
~I-I­- ~~ 
1-00 
~~~ 
WWW
EEE

I.J.I
0_.

/-_. ,=.
C.t::
I..LI
::::::

l.U W
CL .. LL.
:: :.:-'
~.- 1·­
(::' ~:.:::

,=:­
C.a::: 1='
WI
L: (':'j

w
I- :::.:~

~
~O
00
OI
I~
000 -~~ WW
EE

(.I- ~.-. j._.. ~ .. -
.;...:. :: 1-.... ~;::~.-- 1-...

1-

* ~ * ~ * N .;.t:.
.~. II

*~.
W

~ N

W -l.J... 00
~ l.J...
~ ~
ro ro
> x
l.t.l ~-.- .J::
:::.::: ((I ::::::: LJJ

:Z: :::'c: L.L
.;tot:. c::a

(".:0 /-...

'I:
_I
~
(I)

CJ
:::.:::

ct:: ~
(I: 'J::
W ::c
.-J .:...:-
I~I

~ L.I-
C)

l.U
0:"':' r,
::-.:"!"~ W
11:: r··.J
::::.
o 00
OC l.J...
Z ~
o m
z x
~:.:~ 1-- 'I:

M. ((I ::::::

1.7':1 0·':: ~:.:::
::;:~

LJ..I l.J...
CI_ 1-. I::;:'
fL ... __ 1 1.....1

(I:: (:1 ... ::-.
:::a:: :::.::: (I:: 1:"':-

... ~ ··-.W
~ I- 0::: W Lt::
'I: ((. .J:: CL. l.J...
I (I: ::- =,
':..) _J 0 I- CO
~-I-Wl.J...~
LLI W :::.::: =,
1:":1 I:":' C) a
:::.::: :".::: .J:: :::.::: II

0_ -::

II

LLJ
L.L
::-.
I-
0._
c:)
:::.:::

Ct~
II II I-

LU CL.
CL ~ .:...:.
::- I- W
1-. (.L. Lt::
U ... l.J... l.J... =. =, =.
(D LU u::.
:::L :::.::.: ::L

KBUFF:EC ~:EC PD

i,}AP

E HO: BOOL At·~

t·~ tLCHA~:: HA
1'1 ;':;:3 I ZE, S IE.. p., ClUlP; If HEGER .:
B FFER: KB FP

Et·W.:

KEYBUFFER : KBUFRECPTR;
KBDWAITHOOK: PROCEDURE;
KBDRELEASEHOOK: PROCEDURE;
STATUSLHiE: PACKED AF.:F.:A'"!'[(i,,?J OF CHAR.:
{0 S or f = STEP/FLASH IN PROGRESS (WAITING FOR TRAP Ie)}
{ 1 , ,5 1.:1s"\ e::·::eci.~ t e d .. '"cw· r en"\ 1 i ne t"ltlmber
{6 S=SYSTEM U=USEP DEFINITION FOR ITF SOFT KEYS}

BLANK FOR NON ITF KEYBOARDS }
-:: ? RUt·iL I GHT }

{* KEY TRANSLATION SERVICES ********************************}
T'···'e,c

111-

System Devices 14-85

KEYTYPE = (ALPHA_KEY .. NONADV_KEY .. SPECIAL_KEY .. IGNORED_KEY .. NONA_ALPHA_KEY);
{ ADDED NONA_ALPHA_KEY 5/9/84 RQ/SFB }

LANGCOMREC = RECORD
STATUS B,"!'TE.:
DATA BVTE.:
KE'"!", CHAR.:
RESULT KEVTYPE;
SHIFT,CONTROL .. EXTENSION: BOOLEAN;

Et·iD.:
LANGKEVREC = RECORD

NO_CAPSLOCK: BOOLEAN;
NO_SHIFT BOOLEAN;
NO_CONTROL : BOOLEAN;
NO_EXTENSION : BOOLEAN;
KEYCLASS KEYTYPE;
KEYS : ARRAY[BOOLEANJ OF CHAR;

HiD.:
LANGRECORD= RECORD

CAN_NONAOV: BOOLEAN;
LANGCOOE LANGTVPE;
SEMANTICS PROCEDURE;
KE'"!"'TABLE ARRA'l[[1, ,127 J OF LANGKE',!,REC.:

Et·m.:
LANGPTR = ALANGRECORD;

LANGCOM LANGCOMREC;
LAt'~GTABLE ARRA'l[~3, ,1 J OF LAt·lGPTR.:
LANG HiDE::-:: 0, ,1.:
KBOTRANSHOOK : KBOHOOKTVPE;
TRANSMOOE : KEVTRANSTVPE;
KBDSVSMODE, KBDALTLOCK, KBDCAPSLOCK : BOOLEAN;

{* HPHIL ***}
(MOVED INTO SVSDEVS 4/6/84 SFB}
const

14-86 System Devices

h!:?::<;:: ", (1 ",

1e error he::-::('" 1'"
he::{(2'"

1 e _1 oopdo! ... !n hE'::«'" 4'"

1 m.:i::<de',l ices ! ,I

I oopd' ... 'r op = (datastarting .. dataende .. resetdeviee,uninitdeviee);
{UNINIT ADDED 4/8/85 FB}

I Oopd"lr pr oc procedure(op:loopdvrop

{HPHILOP DEFINED AS NEW TYPE 4/6/84 SFB}
HPHILOP = (RAWSHIFTOP .. NORMSHIFTOP .. CHECKLOOPOP .. CONFIGUREOP .. LCOMMANDOP);
{5 ~ROCEDURES HOOKED AS TYPE HPHILCMDPROC 4/6/84 SFB}
HPHILCMDPROC = PROCEDURE(OP : HPHILOP);

deseriprec packed record { DEVICE DESCRIBE RECORD
case boo I e·:in 0 f
trl.le :(id

twosets boolean;
abscoords: boolean;
size16 boolean;
hasprompts:boolean;
reser',led 0, ,3.:
e::< t _desc
secw" i t '::I
nIJma::<es

boc,l e·~n.:
til) 0 I e ·9n.:

0" 3.:
counts shortint;
ma::<':C,IJn t ::<: shor tin t .:
ril.~::<col.lnt'::I: shc,r tint·.:
m.~:::::,:·,)!.m t z:· shor tin t .:
promptack: boolean;
nprompts: ~3,,7.:

{DELETED 3/2 /85 SFB}
-:: 3 .. ···27 85 SFB
{3 26 :::5 ::;FB

{ADDEO 3/15/85 SFB}

proximity: boolean; {ADDEO 3/15/85 SFB}
nbl.4t tN"IS 0, ,7).:

false: (darr'~'::1 : .~rr'~'::1[1, ,11] of ch.~r).:

end.:

devicerec = record
devstate integer;
descrip : deseripree;
opsproe
da t ·~F't" oc

end.:

1 oopd"lr pr c'c.:
: k bdhook t '::Ipe.:

loopdvrptr = Aloopdriverrec;
loopdriverree = record

lowid .. highid,daddr : byte;
opsproc
d.:i t .~pr oc
ne::< t

end.:

LOOPCONTROLREC = RECORD
rawmode : boolean;

l,)opd"lr pr oc.:
k bdhook t ',d-pe.:
I Oopcl"lr p t r .:

{REDEFINED AS RECORD - 4/6/84 SFB}

" 00
I

"d4
1""4

VI
Q)
u
'5
Q)

o
E
Q) ...
VI
~

U)

U
III

~-
111

U

:::.
'1'
~

.... -
.:'
r,
III

'1'
U

::.
~

'1'
Il.

~
CI

o'1J
~
~ ~
~ ~
o 0

~ - ~
~ ~ ~
o'1J ~

cn

-:j­
(0
.....

r··-
..••.

r-~·

cr".
r-~·
::f:I::

I:":' =,
LlJ

I~I

r .. ,)

o'1J
+_.

00;:1 '"0
~ -;::. 11' .. ~
C:3~' ... ·CL
ilJ C' CI ~ 1"0 =;
a:= c. S
E····. -::s I_I i:

crt -of

C·
C' 11- III C. Col.
tJ ~ !..... !_ ,_, !:.:

:3
0.. U cr.
Cf III I_I C !:::
c. :r.':1 II'

..D CI l.il
!._ -0

() cr­
u ~

Iii -i!J
·lJ
'1'

~ -X ~ ~
11:. c. + .. ' I::' .• !
..... ' !... :::: Ii, ()

o'1J ~ o'1J
S U

::.
III

·;:'1
'_.J >::
:::r. 1"0
.. ~I i:::

11J !.... CI 1"1) C-
'~::I III :::

~ ~ ~ ~

:;:-~
flJ
(L'

o'1J o'1J o'1J o'1J 0
~ ~ ~ ~ 0

!toO. III (I.' r· _~:I

!..-n:,
---0000
~ ~ 0 0 0 0
..D..D..D..D..D..Dm

L
cr.

IIi '1' .. ;::1
11. III 1,+- !;:: ,':1
U U ~ ~ 0 ~

1'1:1 C, CI ~::I ..::.:: :....
:::. :;:. -;~ !._ I_I --;::1 .:. :.:.

~ ~ E o'1J ~ ~ S ~ ~
1;:1 "Z,1 '_I T-I III 1_' "~J

0.. LJ_ ,:J.. LJ.. 0.. LJ.. L'_ LL LJ_
000 0 0 0 000
000 000 000

• ---'1 - r""'"

,::::J
:::::
LLI

CO
LJ_.
((I

u·-;.
(0
.

I·i)
(•. J
.

r--;.

W
LL
::-
I-

C)
LL.I
ct::

I
E
:::: .=, . :...:.

I
..-I

::c
0._
:::r::

LL ,=.
c.)
:z:
w
,=,
I-

::-~
I..IJ
::;;=:

I­
(0
:--c.
C)
C.)

(I")

-.I
.:..= •
o

!..­
Ct

..... -

~

'1' :::.
!....

'1'
Iii
1] .•

~

u-)

'1'
cn
~:

'1;'
~~

C:;: ("1 • .1

LLI II II
LL
> ~~
I- 00
~I-I­

~W~~
W~uU
~ 00
-~..-I..-I
~OOO..-l
oorow
Z~~

LJJ
C,
C:·
.:...:­
LL
C)

_I

:I:
LL
:L~

Ct::
LlJ
::r::
1-­
(::a

0:::
C)

:::.:::
C)
(:)

_.J
co
..-I
..-I
C)
I::t.. f:!:~f

:::-= ,=.
L:~::
LL_

00 00

(' • .1 r··)

II

w WOOOO
~ oww
>00000
I-WUOO
WO-UU
00 N
OUU~~
UOOOWW
Z~OOOO

L.LI
CL
:::-..
1···_·

C()

LL_
Cf)

1.1-:'
0:-...
In
(' . .1

r-)

III

0_
:TI

I
U
III

!..­
I

i.:::i
~:
()
I_I

I

~::
(J..
.!....

LlJ
LL
::-
1--

I
C.t::
1--.
L~L.

I
C)
LLJ
Ct::

I
E:
:::::: (=.
.::...:'

I
_.J

::r.:
(L
:'1::

0::'
LL
((I

LI~'
(0
.....

u-)
':\J
r"~1

LL.
C::.

~z:
.:r.
J.JJ
..-I .=,
C)
0::'

J.J..I
((I

.:r.:
c.)

L::,
Ct::
C:.
-:...:­
LJ..1
LJ:::

II

LJ.J
CL
:: .. -
~-

I
.:-=.
W
Ct::

I
E
E
.:=,
':...:.

I
_..J I..LJ

::::.
:::r:: C~.::
(L 1·_·
~J.::

~::

~._ r·····
C)
. .!:.~
til (~:)

III !....

§!; i~

~;:::
(ll
::.
'1'

'i. 'l,
'1'
!..-
,:) ..

!:.~
()

:3
.. ~:I

!.... .l.

~ ~
00 U

~
U >

E ~
o ~
!.... ~.

"+e'" III 11'
IIi U

'l'
+ .. ' -i;.:i :::.
IlJ L

-i~1 :3 '11
I::t. () III

::. ..!~~:
'.1,1-._.

:r. .=,
f{1 L ~z.:

'1'

'1'
+-.
flJ U

.z., '1'
CJ.. ~
:3 tlJ
tlJ t"IJ
.... -;:1
11:1 "ZJ

'1' '~J ~ !-
0.. -:1 111
:::r. r-i I.J

'1' ~::::
I () ! 'r'"

! C.L c-
;=. 0..

0_ <::' ;=.
I '1' () '.I,

U ::r. u .lJ
III :::. -Z:I III trJ
I~I L r·--t

!.o..:3 I III

-. -i!:1 c. '_I f:: 'i~:1

'1' ::-:: 'l'
III ::.

'.+.. :::n ~:: tIl':::: ~:

I"IJ 'l. +~. 'i. !.... () _!:: :r.
Ct:: :::'.lJ I I_I '.I.

.U (0 _!::J _~ !.... i:= I ::~

11) u
.. ;::' :;:.~ ~ ~

!.... ~
m I ~

(L' i.::::
:;:. CI "

'_I ..!..-:
1 ~ .:.

~~ !_ . .c
:::.

.. ~.
III
0 __ :::,
:1'1

'.I,
I ~:: ~ o'1J S !....

;=.~~~ + .. ' '1' L 111
·lJ

'1:' "i!J
.. ;~J

O~!....
U 11) ~

I~~

.....
'l. !a... 11:1 J .. ::<

.;:J I '1'
~ ~ !.... 0 3 ~ ,:J.. LL U
3 !.... > 0
3~

LJ ..
.::::. tJ ::. '11 L

. 'l'
..!:::: L

!.... C·
I"·

CI CJ_ i:=
- o'1J ~ .~ ~ o'1J ;=.
III 1 . ..1 •• -. :'~:I C.L. :::: ~ 1 . ..1 CI

!~:: :"3 t.t!....
.(1 "i~1 I III

'1' '1' rT.
...• '1' u .i.
() CI..!.::
c. ::r, !.... o..~:

.. !::I .. ~J LI.. ..!;::

-;:J
11:1 .. ::...

~ m ~
~ ~ ~
~ .~ U '1' C

..::.:: tl' 11.-1 ~

L > - - o'1J > > ~ o'1J U ~ ~
~~ o'1J~~

11:'
0:.1
0..
::!i

>::
'1'

.. ;::1

!;::
·lJ
i.==:
;,:::
-:­
' • ..1

c­o_
;=.
()

~

"

'l.
'1'
(J..
::1',

·lJ
+-.
-1:1
~

U
.~

IIi
~

!....

~~

..-I

I
L~L.
I

L

·l.
'1' •• ;:::1

()
I_I

'.+-
C)

L
'1'
!:=: L
CI (I:'
I.J .. ~:::

U ~
Ii. 11:1
III

_~:::. e·!.-
·lJ

!.._ n::-
1 • ..1 I,,()

Il. !
III .. CI

-,!:I .. '

LJ '1'
:r, .. !.:.
·lJ
L Ii,
~. C
1'1:1 '1'

T'
Il.l III

!....~!....~

o 0 0 U
~~~11) 
~ ~ ~ ~ 

'1' 
0.. 
:r. 'l' 
+-. III Ii, 

1_' I_I I_I '1' v III 
CI':' CIV C'·7.) 
--I ....... --' ':1 1_' CI 
::-:: ::r. N U :::: U 

W 
(0 
..-I 

~ 
(I) 

~ 
U 

...... 
':1 

r-, 
r"~· 
Ln 

.::.;:. 
L....I 
::t., 
·lJ 
~ 
~ .. 
flJ 

:r. 
·lJ 
~ 

:.... 
11) 

..D 

II 0 
LL :z: 

W ~ 

''1:1 
::. 



14-88 System Devices 

L 0 0 P C 0 t·~ T F.~ 0 L 
HPH I LCr:1D.HOOK 

: 1 , ~ 

I' n 

rp 

o t·~ L ~~ E C .: -:: 4 ..... 6 ..... 84 SFB::-
{4 ..... 6./;::4 SFt::;' 

HIL PRESENT: BOOLEAN; {8/28/86 JWS} 

TIMEZONE: INTEGER; {LOCAL + TIMEZONE GMT> { JWS 4/17/86 

alphadumpstyle dumpstyle; 
graphicsdumpstyle: dumpstyle; 

{-----------------------------------------------------------------------------} 
PROCEDURE SYSDEV_INIT; 
{* BEEPER **********************************************} 
PROCEDURE BEEP.: 
PROCEDURE BEEPER(FREQUENCY,DURATION:8YTE); 
{* RPG *************************************************> 
PROCEDURE SETRPGRATE(RATE : BYTE); 
{* KEYBOARD ********************************************> 
PROCEDURE KBDSETUP(CMD,VALUE:8YTE); 
PROCEDURE KBDIO(FP: FIBP; REQUEST: AMREQUESTTYPE; 

At-l,-:"",)AR BUFFEF.:: ~'Jlr·lDO~'J.: BUFSIZE., POSITIOt·l: It·lTEGER).: 
procedure lockedaction(a: action); 
<* CRT *************************************************} 
PROCEDURE CRTIO(FP: FIBP; REQUEST: AMREQUESTTYPE; 

At'l'/I,}AR BUFFEF.:: (,J I t·lDOl,J.: BUFS I ZE., POS I T I Ot'l: I NTEGEF.:) .: 
PROCEDURE DUMMYCRTLL(OP:CRTLLOPS; ANYVAR POSITION:INTEGER; C:CHAR); 
{* BATTERY *********************************************} 
PROCEDURE BATCOMMAND(CMD:BYTE; NUMDATA:INTEGER; Bl, B2, B3, B4, B5: BYTE); 
FUNCTION BATBYTERECEIVED:BYTE; 
{* CLOCK ***********************************************} 
function sysclock: integer; <centiseconds from midnight} 
procedure sysdate (var thedatel daterec); 
procedure systime (var thetime: timerec); 
procedure setsysdate ( thedate: daterec); 
procedure setsystime ( thetime: timerec); 
function sysgmttime: integer; {seconds from 1 Jan 1970 GMT} 
procedure settimezone(tz: integer); 
procedure secs_to_timedate(secs:integer; 

var date:daterec; var time:timerec); 
function timedate_to_secs(date : daterec; time: timerec) : integer; 
{* 'KEYBUFFER *******************************************} 
PROCEDURE KEYBUFOPS(OP:KOPTYPE; VAR C: CHAR); 
<* STATUSLINE ******************************************} 
PROCEDURE SETSTATUS(N:INTEGER; C:CHAR); 
FUNCTION RUNLIGHT:CHAR; 
PROCEDURE SETRUNLIGHT(C:CHAR); 



Segmentation Procedures 
Chapter 

15 

Introduction 
The SEGMENTER library file (prOVided on the CONFIG: disc - ACCESS: on double sided 
discs) provides a set of procedures to permit programmers to dynamically (programatically) 
load, execute, and unload program segments. These dynamically loaded program segments may 
import modules already loaded to gain access to their procedures and variables. Entire program 
files may be loaded and executed, or the files may be loaded and individual procedures may 
be called as needed. Dynamically loaded programs may in turn load other program segments. 

Programmers may use these procedures to write applications which require much more code space 
than may be available in the computer, or run applications on a computer with only a minimum 
amount of memory, thus redUcing costs for other users. 

A Word to the Wise 
The SEGMENTER library provides a powerful set of capabilities to the programmer. With this 
power comes some danger. These procedures make use of internal system variables and proce­
dures. Improper use of the SEGMENTER procedures can produce drastic side effects (such as the 
computer hanging up, or data being destroyed). 

Before using these procedures in your code, study the procedure descriptions and examples 
carefully. Be familiar with the $SYSPROG$ extensions, especially the use of procedure vari­
ables. You should also be aware that these procedures are provided as an optional library -
they are not a part of HP Standard Pascal, and they are implemented only on the HP Series 
200/300 computers. Similar capabilities may be· available from other manufacturers, but the 
details of implementation are probably quite different. 

15-1 



15-2 Segmentation Procedures 

Using the SEGMENTER Procedures 
Using the SEGMENTER library procedures is similar to using other Pascal libraries. A program that 
uses the procedures must IMPORT module SEGMENTER. In order to be imported successfully, 
this module must be accessible at two times: at load time, and at compile time. The easiest way to 
ensure accessibility at these two times is to put the module into the current System Library file. (See 
the Overview chapter for other methods.) The SEGMENTER code file actually contains two 
modules, so make sure you copy both modules into the library file. 

Since the SEGMENTER module imports other system modules (LOADER, LOR, SYSGLOBALS, 
and MISC), the interface text of these modules (provided in the standard CONFIG:INTERFACE 
file) must also be accessible to the Compiler. 

You will also need the $SYSPROG$ Compiler option, since the procedures make use of the 
ANYVAR construct and procedure variables. 

Note 
A program using the SEGMENTER library procedures should not be 
compiled with the $HEAP _DISPOSE ON$ Compiler option. If you do, 
unpredictable results may occur. 

Note 

None of the segmenter LOAD_ or CALL_ procedures will access the system 
library. Therefore, a program which loads correctly under the command 
interpreter may generate error 119 (unresolved externals) under the 
segmenter if it needs symbols not found in the object file or p-Ioaded 
in RAM. You should include these library routines in the program object 
file (linked or copied) or p-Ioad them before execution. 



Segmentation Procedures 15-3 

SEGMENTER Procedure Descriptions 
The following section provides a detailed description of the procedures provided by the SEGMEN­
TER library. Note that the programmer has a choice of three places into which to load code: into a 
user-specified area, onto the stack, or into the heap. Each of these choices has its own advantages 
and disadvantages, and it is up to the programmer to choose the best fit for a particular application. 

SEGMENTER Initialization 
This procedure allocates two explicit areas to be used by the loader to load code files. 

procedure init_se~Menter(anyuar lowcode, hi~hcode, 

IOIAI~lobal, hi~h~lobal: b}'te); 

The code area, bounded by I OIAIC 0 de to h i ~h cod e, is used by procedure 10 ad_ s e ~Illen t as the area 
where code is loaded. The code area may be allocated anywhere. The global area, bounded by 
1 0 I", ~ lob a 1 to h i ~ h ~ 1 0 to aI, is used by procedures loa d _ s e ~ III e 1'1 t, loa d _ he a P _ S e ~ III e nt, c a II _ s e ~ III e nt, 

and c a 11_ s e ~ III e n t _ pro c; the area is used to allocate all global variables declared by modules in the 
code file which is loaded. The global area must be allocated from global data space. 

Note that since the parameters are of type ANYVAR, the program may pass variables of any type as 
the boundaries of the code and global areas. The variables are typically elements of arrays. If the 
loa d _ s e ~ III e n t procedure will not be used, any variables may be passed as I 0 IAI cod e and h i ~ h cod e. 

In i t _ s e ~ III e n t e r should be called only once during a program, and it must be called before the first 
call to loa'Lse~lllent, load_heap_Se!1fTlent, call_se~lllent, call_seglllent_proc, IJnloa,Lseglllent, or 
unloa,Lall. 

Segmentation Free Space 
This procedure returns the number of bytes still remaining in the explicit code and global areas 
which were set up by in i t _ s e ~ III e n t e r. 

procedure se~Ment_space(uar code, ~lobal: integer); 

Segmentation Using the Stack 
The following two procedures are used to load program segments onto the stack, then execute the 
programs or procedures in the segments. 

Calling a Program 
This procedure is used to call a program. 

procedure call_se~Ment(filenaMe: fid); 

The parameter f i len allle is a string (TYPE f i d = s t r i 1'1 9 [ 120]) which contains the name of a code file. 
The code file is expected to contain one or more programs. (Programs have main bodies and start 
execution addresses, whereas other modules do not.) C a 11_ s e gIll e n t loads the code file onto the 
stack. The global data for the modules is allocated from the explicit global area set up by 
in i t _ s e ~ III e n t e r. After loading the code file, all of the programs in it are called as if they were 
procedures. 



15-4 Segmentation Procedures 

When the program or programs finish (or if there is an error exit), then code file is automatically 
unloaded. Note that since the code is loaded on the stack, the heap is not involved in this operation. 
Therefore, the program which is called is at liberty to add or subtract from the heap during its 
execution. 

The following example shows how call_se!tltlent may be used. Note that the "HI" program 
imports a global variable defined in the program which loaded it. 

Compile the folloWing program into "MAIN.CODE": 
$S'lSF'POG$ 
$ALLOW_PACKED ON$ 
$SEARCH 'SEGMENTER,','INTERFACE,'$ 

PROGRAM MAIN(INPUT, OUTPUT); 

MODULE STUFF; 
EXPORT VAR S: STRING[SO]; 
IMPLEMENT 
END; 

IMPORT SEGMENTER, STUFF; 

VAR G: PACKED ARRAY [0 •• 4000] OF 0 •• 255; 

BEGIN 
INIT_SEGMENTER(G, Gt G, G[4000]); 
CALL_SEGMENT('HI.CODE'); 
WRITELN; 
WRITELN('S = " S); 

END. 

The folloWing program is compiled into the file "HI.CODE": 

SSEARCH 'MAIN'S 

PROGRAM HI(OUTPUT); 
IMPORT STUFF; 

BEGIN 
S : = 'HOWDY'; 

END. 



Segmentation Procedures 15-5 

Calling a Procedure 
procedure call_se~Ment_proc(filenaMe: fid; SYMbol: proc_naMe); 

This procedure is identical to c a 11_ 5 e ~ ITI e nt, except that the parameter S}' ITI b 0 1 is the name of the 
entry point which is to be called instead of the start execution address 
(TYPE prOC_IHITle=st rin!tU20J). If the entry point already exists in the system from a previously 
loaded file, then no file is loaded. The code file does not need to contain a program. The entry point 
consists of the module name followed by an underscore followed by the procedure name as used in 
the module. For example, procedure PROCl contained in module MOD}{ is referred to as MOD}CPROC1. 
The following example shows how this procedure may be used: 

This is the main program: 

$SEARCH 'SEGMENTER.' t'INTERFACE. '$ 

$ALLOW_PACKED ON$ 

PROGRAM MAIN(INPUTt OUTPUT); 

IMPORT SEGMENTER; 

VAR G: PACKED ARRAY [0 •• 4000] OF 0 •• 255; 

BEGIN 
INIT_SEGMENTER(Gt Gt Gt G[4000]); 
CALL_SEGMENT_PROC( 'OVERLAY.CODE' t 'MODX_PROC1'); 
WRITELN; 
WRITELN( 'END OF MAIN PROGRAM'); 

END. 

The following module should be compiled into file "OVERLAY.CODE": 

MODULE MOD}{; 

EXPORT PROCEDURE PROC1; 

IMPLEMENT 

PROCEDURE PROC1; 
BEGIN 

WRITELN( 'HELLO FROM PROCl '); 
END; 

END. 

Be very careful. If the symbol being called is a procedure which uses files which are local to the 
module in which it exists, the initialization body of the module containing the procedure. will not 
have been called, so the file variables will be in an uninitialized state. In such cases,' it is better to use 
loa d _ s e ~ ITI en t or loa d _ h e a p _ s e ~ ITI e n t and then call the initialization body of the module before 
calling the procedure. Alternatively, you could write the segment so that the main body of the 
segment is a call to the desired procedure and use c a 11_ 5 e !t ITI e n t. 



15-6 Segmentation Procedures 

Searching For a Procedure Name 

This function returns a procedure variable whose name is passed in the parameter s}' ITI b 0 1. If no 
such symbol can be found among those already loaded, then a dummy procedure is returned in the 
procedure variable. If the dummy procedure is called, it will do an ESCAPE(120). 

This function can be used to search for any procedure in the system, not just those loaded by the 
SEGMENTER procedures. The following example shows how this may be done by locating a 
system procedure which performs cursor addressing. 

$SYSPROG$ 
$SEARCH 'SEGMENTER.' ,'INTERFACE. '$ 

PROGRAM MAIN(INPUT, OUTPUT); 

IMPORT SEGMENTER; 

VAR P: RECORD CASE INTEGER OF 
0: (PR: SEGMENT _PROC) j 

1: (P2: PROCEDURE (VAR T: TE)<T; )(, Y: INTEGER)); 
END; 

BEGIN 

P. PR : = F I ND_PROC ( 'FS_FGOTm{y' ) ; 

CALl(P.P2, OUTPUT, 10,10); 

WRITE('HI'); 

END. 

Checking a Procedure Variable 
function exists_proc(p: se~Ment_proc): boolean; 

This function is a predicate which indicates whether the procedure p is not the dummy procedure 
mentioned in fin d _ pro c. It can be used to determine whether fin d _ pro c was successful. An 
example of its usage is shown below: 

$SYSPROG$ 
$SEARCH 'SEGMENTER.' ,'*INTERFACE. '$ 

PROGRAM MAIN(INPUT, OUTPUT); 

IMPORT SEGMENTER; 

VAR S: PROC_NAME; 
P: SEGMENT_PROC; 

BEGIN 
WRITE( 'EXECUTE WHAT PROCEDURE? '); READLN(S); 

P := FIND_PROC(S); 
IF EXISTS_PROC(P) THEN CALL(P) 

ELSE WRITELN( 'NO SUCH PROCEDURE'); 
END. 



Segmentation Procedures 15-7 

Loading Into the Explicit Code Area 
procedure load_se~Ment(filenaMe: fid); 

The f i 1 en able parameter is a string (TYPE f i d = s t r i n ~ [120]) which contains the name of a code file. 
The loa.L s e ~ ITI e n t parameter will load the code file and associated global variables into the two 
areas explicitly defined by in i t _ s e ~ ITI e n t e r. Global variables defined by the modules in this file will 
be zeroed. No code is actually executed. Especially note that the initialization bodies of modules are 
not executed at this time. 

In order to call procedures or module initialization bodies contained within the code segment, the 
f i 1"1 d _ pro c function must be used to search for the entry pOint. In addition, U 1"1 loa d _ s e ~ ITI e 1"1 t or 
U 1"1 loa d _ a 11 must be called before the program terminates. 

The following program gives an example of the use of loa d _ s e ~ ITI e n t and fin d _ pro c: 

$SYSPROG$ 
$SEARCH 'SEGMENTER.' ,'INTERFACE. '$ 

$ALLOW_PACKED ON$ 

PROGRAM MAIN(INPUT, OUTPUT); 

IMPORT SEGMENTER; 

TYPE SPACE = PACKED ARRAY [o •• aOOO] OF 0 •• 255; 
SPACEPTR = ASPACE; 

I,JAR G: SPACE; 
C: SPACEPTR; 

BEGIN 
NEW(C) ; 
I NIT _SEGMENTER (C", [0], C .. · [aOOO], G, G [aOOO] ) ; 
TRY 

LOAD_SEGMENT( 'OVERLAY.CODE'); 
CALL(FIND_PROC( 'MODX_PROC1')); 
UNLOAD_SEGMENT; 
WRITELN; 
WRITELN( 'END OF MAIN PROGRAM'); 

RECOI,JER BEG I N 
UNLOAD_ALL; 
ESCAPE(ESCAPECODE) ; 
END; 

END. 

The following module should be compiled into file "OVERLAY. CODE": 

MODULE MOD}-(; 

EXPORT PROCEDURE PROC1; 

IMPLEMENT 

. PROCEDURE PROC 1 ; 
BEGIN 

WRITELN( 'HELLO FROM PROC1'); 
END; 

END. 



15-8 Segmentation Procedures 

Loading a Segment Onto the Heap 
procedure load_heap_se~Ment(filenaMe: fid); 

This procedure is the same as loa d _ s e ~ III e nt, except that the code file is loaded onto the heap 
instead of the explicit code area. The global variables for the modules in the file are still allocated 
from the explicit global area. 

The following program is an example of the use of loa d _ he a p _ s e ~ III e n t. Note that no space is 
allocated in the explicit code area. 

$SYSPROG$ 
$SEARCH 'SEGMENTER.' ,'INTERFACE. '$ 

PROGRAM MAIN(INPUT, OUTPUT);. 

IMPORT SEGMENTER; 

TYPE SPACE = PACKED ARRAY [0 •• 4000] OF 0 •• 255; 

t,JAR G: SPACE; 

BEGIN 
INIT_SEGMENTER(G, G, G, G[4000]); 
TRY 

LOAO_HEAP_SEGMENT( 'OVERLAY.CODE'); 
CALLIFIND_PROC( 'MOD)CPROC1')); 
UNLOAD_SEGMENT; 
WRITELN; 
WRITELN( 'END OF MAIN PROGRAM'); 

RECOt,JER BEG I N 
UNLOAD_ALL; 
ESCAPE(ESCAPECODE) ; 
END; 

END. 

The following module should be compiled into file "OVERLAY. CODE": 

MODULE MOD){; 

EXPORT PROCEDURE PROC1; 

IMPLEMENT 

PROCEDURE PROC1; 
BEGIN 

WRITELN( 'HELLO FROM PROC1'); 
END; 

END. 



Segmentation Procedures 15-9 

Unloading a Segment 
procedure unload_se'Ment; 

This procedure will unload the most recent code file which was loaded by loa d _ s e • ITI e n t or 
loa IL he a P _ S e • ITI e n t. Memory space in the explicit code and global space will be deallocated and 
made available for subsequent loading. If the file unloaded had been loaded by procedure 
load_heap_se'fTlent, then the heap is released to the size it was when load_heap_se'ITlent was 
called. Note that this will deallocate any heap variables that may have been allocated (with NEW) 
since the file was loaded. 

Note 
If all segments have already been unloaded, an ESCAPE (121) is ex­
ecuted. 

Unloading All Segments 
procedure unload_all; 

This procedure unloads all code files which have been loaded by either loa d _ s e • ITI e n t or 
load_heap_se'Ment. 

Note 
All code files loaded by loa,Lse'ITler,t or load_heap_se'ITler,t must 
be unloaded before the program terminates. It is the programmer's 
responsibility to see that this is done. If not done, the system may not be 
able to recover, and the machine may go "out to lunch". A good 
practice is to use a ''TRY .. RECOVER'' around the body of the program 
to do an un loa d _ a I 1 if there is any error escape. 



15-10 Segmentation Procedures 

SEGMENTER Errors 
Here is a list of errors that can be generated when using the SEGMENTER module (in addition to 
the usually defined system run -time errors): 

ESCAPECODE 
Value 

-2 
100 .. 105 

110 
III 
112 
116 
117 
118 
119/-119 
120 
121 
122 

Meaning 

stack overflow (not enough memory to execute loader) 
field overflow trying to link or relocate something 
circular or too deeply nested symbol definitions 
improper link info format 
not enough memory 
file was not a code file 
not enough space in the explicit global area 
incorrect version number 
unresolved external references 
generated by the dummy procedure returned by fincLproc 
unload-segment called when there are no more segments to unload 
not enough space in the explicit code area 



16 
HP 98646A VMEbus Support 

The HP 98646A VMEbus Interface Software Driver 
This section provides you with the following: 

• What is the VMEbus Interface? 

• Talking with the VMEbus 

• Where the VMELIBRARY file is Located 

• Using the VMELIBRARY Procedures 

What is the VMEbus Interface? 

The VMEbus Interface provides bi-directional data transfer capabilities between the Series 300 
and the VMEbus, permitting configurations of both HP-IB and VME systems. This means you 
will have the ability to add a larger variety of peripherals to your system. 

Software support for the VMEbus Interface card is included in the 3.22 release of the Pascal 
Workstation. Procedures for accessing the VMEbus Interface are the same as those documented 
for the HP 98358A VMEbus Interface. These procedures can be found in the VMELIBRARY 
file. This file can be used with Pascal Workstation 3.1 and later. 

The VMELIBRARY file provides procedures that allow you to programmatically use the 
VMEbus Interface card (HP 98646A) to communicate with the VMEbus system. In subsequent 
sections, you will learn about the procedures found in the VMELIBRARY file. 

Note The VMELIBRARY only provides a high level interface to the VMEbus Interface 
card. Unlike the I/O library, the VMELIBRARY does not provide a low level 
interface to the card itself, that is you cannot directly access the VMEbus 
Interface card's status and control registers. However, using the VMELIBRARY 
procedures, low level access to devices on the VMEbus can be made. 

The VMELIBRARY is not part of the I/O library, and except where noted in 
this section the procedures and functions found in the following modules: GEN­
ERAL_O, GENERAL_I, GENERAL_2, GENERAL_3, AND GENERAL_4 can­
not be used. 

HP 98646A VMEbus Support 16-1 



Talking with the VMEbus 

To talk to the VMEbus in Pascal, you need to think of the VMEbus as an address space, much 
like the address space of the Series 200/300 computer. Each device on the VMEbus exists at a 
certain address, or range of addresses. A simple device might, for example, have a status register 
at one VMEbus address, and a control register at another. The device is controlled by writing 
to the VMEbus address of the control register, and reading from the VMEbus address of the 
status register. Information about the specific addresses, as well as how the registers must be 
read and written, can be found in the manual for that device. 

The Pascal procedures included in the VMELIBRARY have several functions, including 
initialization and interrupt processing. Their main function is input/output, which allows you 
to read from or write to a particular VMEbus address. In your Pascal program, you call these 
routines to access the registers for your device. You should write the program only after studying 
the manual for the VMEbus device, which tells you the sequence of reads and writes you should 
execute, and to which addresses. 

As an example, let's suppose that you have a VMEbus printer and want to write to it. You 
can write a Pascal program that calls the VMELIBRARY procedures in order to read and write 
various addresses. You could write convenient routines that send a character or a string to the 
printer. These routines will consist of several low-level accesses to the printer registers. 

Where the VMELIBRARY File is Located 

This library file is located on the SYSVOL: disc for double-sided 3.5-inch discs and on the LIB: 
disc for single-sided 3.5-inch and 5.25-inch discs. 

Using the VMELIBRARY Procedures 

The procedures found in the library file called VMELIBRARY are used in a similar manner 
as those found in other Pascal libraries. A program that uses the procedures must IMPORT 
these modules: VME_DRIVER and IODECLARATIONS. In order to be imported successfully, 
these modules must be accessible during the compilation and loading of a program. The easiest 
way to ensure accessibility at these two times is to put the IMPORT modules into the current 
SYSTEM library file (see the section "Overview of the Procedure Library" in the "Overview" 
chapter of the Pascal Procedure Library manual). The VMELIBRARY actually contains these 
modules: VME_DRIVER and VME_ASM_DRIVER, so be sure to copy both modules into the 
library file. The section that follows this one describes these modules. 

16-2 HP 98646A VMEbus Support 



Description of the VME_DRIVER 

The module VME_DRIVER contains and exports five (5) data types and ten (10) procedures 
all accessible to the programmer. 

The VME_DRIVER Modules: Types and Procedures 

Types Procedures 

Mode_type VME_READ 
VME_Addr VME_WRITE 
Short_lnt VME_STRREAD 
Addr _IIlo<Ltypp VME_STRWRITE 
User_Prof VME_BLOCKREAD 

VME_BLOCKWRITE 
VME_RESET 
VME_INIT 
VME_EN ABLE_INTR 
VME_DISABLE_INTR 

Error Checking by the VME_DRIVER Procedures 

The VMELIBRARY reports all errors using the Pascal escape Inechanism. See the Pascal 
Language Reference, "Workstation Implementation" section, under the heading "System 
Progranuning Language Extensions," for details on escape, and the associated TRY-RECOVER 
lllCchanism. If you wish to handle errors that VMELIBRARY reports, you will need to invoke 
the $SYSPROG ON$ compiler option in order to enable the above language extensions. 

The following is a list of errors that the VME_ORIVER procedures check for. 

• They verify that the select code number is greater than 7 and less than 32. If this is not 
true escape(800) occurs. 

• They check to see if the select code is even. If it is not true, escape(801) occurs. 

• They check the HP VMEbus Card 10 to be sure that it is properly initialized. 
Initialization is accomplished by the procedure VME_INIT which is the first VMEbus 
related procedure to be called in a user progranl. An attempt to use any other VMEbus 
related procedure before VME_INIT results in escape(806) (wrong HP VMEbus Interface 
Card 10). 

• They verify that the paraIlleter numofbytes in procedures VME_BLOCKREAD and 
V~IE_BLOCKWRITE is nOll-negative. If numofbytes is negative, then escape(803) 
occurs. 

• They check the VME_BLOCKREAO and VME_BLOCKWRITE procedures to ensure 
that the user does not attempt to transfer an odd number of bytes in the "word" mode. 
If this does happen, escape(805) occurs. 

Parameter Conversions by the VME_DRIVER Procedures 

In some cases, a parameter conversion is also done within the procedures of VME_DRIVER. 
For instance, V~E_STRWRITE always transfers bytes. The use of a word transfer mode does 
not generate an error here, but the parameter is converted to a byte transfer. 

HP 98646A VMEbus Support 16-3 



VME_DRIVER Types 

Mode_ Type This is an enumerated data type with four possible values: ByteInc, WordInc, 
ByteFxd, and WordFxd. See the section "Common Parameters." 

VME_Addr A variable of this type accepts integer values but only the 24 least significant 
bits are used, which means the value will always be within the range 0 and 
16777215. 

Short_Int A 16-bit integer type. A variable of this type accepts values between -32768 
and 32767. 

Addr _mod_type A variable of this type accepts integer values in the range 0 through 63. 

User_Proc A user written procedure that is called during an interrupt. See the section 
"VMEbus Interrupt Procedures." 

VME_DRIVER Procedures 

There are three categories of procedures in the VME_DRIVER lllodule: 

• VMEbus Initialization Procedures 

• VMEbus Read/Write Procedures 

• VMEbus Interrupt Handling Procedures 

This section covers each of the procedures categories mentioned above. 

VMEbus Initialization Procedures 

There are two initialization procedures: 

VME_INIT (select code : TYPE_ISC) 

VME_RESET (selectcode : TYPE_ISC) 

You must call the VME_INIT procedure before calling any other VMELIBRARY procedure. 

To reset the VMEbus Interface card (HP 98646), call the procedure called VME_RESET. This 
routine disables interrupts and releases the VMEbus. 

VME_INIT calls VME_RESET automatically, so it is not necessary to call VME_RESET at 
the beginning of your program. 

Both of the procedures have a single parameter (selectcode), the select code of the HP 
VMEbus Interface. The type is TYPE_ISC, which is exported from the module called 
IODECLARATIONS. 

16-4 HP 98646A VMEbus Support 



VMEbus Read/Write Procedures 

This section covers VMEbus read and write procedures, and timeouts. 

The VME_DRIVER module has six read/write procedures: 

VMEbus Read/Write Procedures 

Name 

VME_READ (sc : TYPE_ISC; 
VAR data : Short_Int; 

VME_WRITE ( 

VME_STRREAD ( 

transfer_mode :Mode_type; 
addr_mod :Addr_mod_type; 
source :VME_Addr); 

sc 
data 
transfer_mode 
addr_mod 
destination 

sc 

: TYPE_ISC; 
:Short_Int; 
:Mode_type; 
: Addr_mod_type; 
:VME_Addr) ; 

:TYPE_ISC; 
VAR data. :String; 

numofchar :Short_Int; 
transfer_mode :Mode_type; 
addr_mod :Addr_mod_type; 
source :VME_Addr) ; 

VME_STRWRITE ( sc :TYPE_ISC; 
VAR data :String; 

transfer_mode :Mode_type; 
addr_mod : Addr_mod_type; 
destination :VME_Addr) ; 

VME_BLOCKREAD ( sc : TYPE_ISC; 
VAR data :ANYPTR; 

numofbytes : INTEGER; 
transfer_mode :Mode_type; 
addr_mod :Addr_mod_type; 
source :VME_Addr) ; 

VME_BLOCKWRITE ( sc :TYPE_ISC; 
VAR data :ANYPTR; 

numofbytes : INTEGER; 
transfer_mode :Mode_type; 
addr_mod : Addr_mod_type; 
destination :VME_Addr) ; 

Comrt:lon Parameters 

Transfers 

8-bit bytes or 16-bit words 

8-bit bytes or 16-bit words 

strings (8-hit bytes only) 

st rings (8-hi t byt('s only) 

any block of data 

any block of data 

The parameters of type TYPE_ISC, Mode_type, Addr_mod_type, and VME_Addr are common to 
all of the VMEbus Read/Write procedures and will be discussed here. The data, numof char, 
and numofbytes paranleters are described in the discussions of the procedures that use them. 

The select code (sc in the previous table) is of type TYPE_ISC and is declared in the 
IODECLARATIONS nl0dule. This type accepts a value in the range 0 to 31. The select code 
of the HP 98646A VMEbus Interface card is required for the sc parameter. 

HP 98646A VMEbus Support 16-5 



The transfer mode (transf er _mode in the previous table) is of type Mode_type and has one of 
the following values: 

Bytelnc 

Wordlnc 

Byh'Fxd 

WordFxd 

The modes beginning with "Byte" cause 8-bit transfers to and from the VMEbus. Those 
beginning with "Word" cause 16-bit transfers, which are faster. Word transfers are only possible 
if the VMEbus address is even. 

The transfer modes ending with "Fxd" cause the VMEbus address to be held fixed during 
the entire transfer. This allows you to write a series of bytes or words to a fixed VMEbus 
device register. The modes ending with "Inc" cause the VMEbus address to be incremented 
appropriately, writing to or reading from a block of consecutive bytes or words in the VMEbus 
address space. 

The address modifier (addr_mod in the previous table) is of type Addr_mod_type and can be 
any number from 0 through 63, inclusive. It allows more than one device to occupy the same 
VMEbus address; the modifier selects which device is intended. Some address modifier values 
have pre-defined meanings, others are user-definable. Consult the manual for your VMEbus 
device to see which address modifier is required. 

The VMEbus address (source or destination in the previous table) is of type VME_Addr and 
can be any integer expression, but only the 24 least significant bits are used, resulting in a range 
from 0 through decimal 16777215 (hex FFFFFF). Since the 8 most significant bits of the integer 
are ignored, you can use negative addresses for convenience. For example, all of the following 
addresses are equivalent: 

decimal -28 

decimal 16777188 

hex FFFFFFE4 

hex FFFFE4 

Using the VME_READ and VME_ WRITE Procedures 

The VME_READ and VME_ WRITE procedures allow you to read and write one byte (8 bits) 
or one word (16 bits) to or from the VMEbus. 

These procedures require an additional data parameter. In this case, the data parameter is 
of type Short_Int, which is a TYPE that is exported from the VME_DRIVER module. For 
VME_READ, this is a VAR parameter and it receives the information read from the VMEbus. 
For VME_ WRITE, this parameter contains the value that is to be written to the VMEbus. For 
transfer modes of type "Byte," the value of "Data" can be only from 0 to 255. 

16-6 HP 98646A VMEbus Support 



Using the VME_STRREAD and VME_STRWRITE Procedures 

The VME_STRREAD and VME_STRWRITE procedures allow you to read and write a series 
of bytes to or from the VMEbus. 

The VME_STRREAD procedure requires two additional parameters, data and numofchar. In 
this case, the data parameter is any declared variable of type String [1] through String [255] . 
This is a VAR parameter and will receive the information read from the VMEbus. The length 
of the string is set by VME_STRREAD. The parameter numofchar is of type Short_Int, which 
is a TYPE that is exported from the VME_DRIVER module. If the value of numofchar is 
negative or greater than what can be stored in the data parameter, an escape(803) occurs. The 
read operation is terminated when the numofchar parameter is exhausted. 

The VME_STRWRITE procedure requires an additional data parameter, which is also any 
declared variable of type String [1] through String [255]. The write operation is terminated 
when the number of characters in the string have been written. 

Byte transfers only occur when using VME_STRREAD or VME_STRWRITE. An error will not 
occur if the transfer mode is of type word; in this case, the transfer mode type is converted to 
the equivalent Byte type. 

Using the VME_BLOCKREAD and VME_BLOCKWRITE Procedures 

The VME_BLOCKREAD and VME_BLOCKWRITE procedures allow you to read and write 
one byte (8 bits) or one word (16 bits) to or from the VMEbus into a variable of no special type. 
This provides a flexible transfer capability. 

These procedure require two additional parameters: data and numofbytes. In this case, the 
data parameter is a pointer to a variable of any type except a string or file. In most cases, it 
will be a pointer to an array of integers or reals, but can also be a pointer to a Record, an array 
of characters, etc. 

For VME_BLOCKREAD, data points to the first location that is to be filled up with the 
information read from the HP VMEbus interface. For VME_BLOCKWRITE, data points to 
the first byte to be written to the HP VMEbus interface. 

Special care should be taken with the parameter numofbytes since the user can easily pass 
over the variable boundaries (when using VME_BLOCKREAD) or even overwrite the operating 
system if the parameter is too large. A negative numofbytes parameter results in escape(803). 

The safest way to handle it is to let the operating system find out the size of data for the 
programmer by using the compiler directive $SYSPROG ON$ and the sizeof function which 
always returns the size of the variable in bytes as required for the numofbytes parameter. 

Escape(805) occurs if the user attempts to transfer an odd number of bytes in the "word" mode 
(transfer_mode = WordInc or WordFxd). 

Setting Timeouts 

Every read/write procedure in the VMELIBRARY must acquire control of the VMEbus (if not 
already granted) before doing any data transfer. This involves asserting bus request, and waiting 
for the system controller on the VMEbus to assert bus granted. This wait can be arbitrarily 
long but you can set a limit to the wait with the SET_TIMEOUT procedure. This procedure is 
in the module GENERAL_I, which you must import in order to call SET_TIMEOUT. See the 
chapter "Errors and Timeouts" in the Pascal Procedure Library manual for more details. 

HP 98646A VMEbus Support 16-7 



If SET _ THvlEOUT is called, then the VMELIBRARY will wait the amount of seconds specified. 
Escape(802) occurs if the bus is not granted within the specified time. 

Note that a timeout is disabled during an interrupt acknowledge cycle. 

VMEbus Interrupt Handling Procedures 

VMEbus devices can interrupt at seven different priority levels. The priority level for a particular 
device can usually be set with switches or jumpers. 

The HP VMEbus Interface can only interrupt the Series 200/300 computer at a single priority 
level. This level is set with switches when the HP VMEbus Interface is installed. As a result, 
a VMEbus interrupt cannot itself be interrupted by another VMEbus interrupt, regardless of 
the level and timing of the requests. On the other hand, if there are pending VMEbus interrupt 
requests at several levels, the one with the highest priority will be serviced next. 

The HP 98646A VMEbus Interface passes VMEbus interrupts to the Series 200/300 when 
VMEbus interrupts are enabled. Specifically, a device that interrupts on the VMEbus will 
cause the HP VMEbus Interface to issue a conventional interrupt request to the Series 200/300 
computer. The VMELIBRARY allows you to specify an interrupt service routine, which is called 
whenever any VMEbus device interrupts. 

The following are interrupt procedures found in the VME_DRIVER module: 

VME_ENABLE_INTR(seleeteode : TYPE_ISC; userproe : User_Proe); 

VME_DISABLE_INTR(seleeteode : TYPE_ISC); 

VME_ENABLE_INTR enables interrupts, and VME_DISABLE_INTR disables them. 

VME_ENABLE_INTR requires a parameter of type user _proc. 
procedure ("ISR"), called with every VMEbus interrupt. 
VME_DRIVER module as follows: 

TYPE User_Proe = Proeedure(status_id. intlevel: INTEGER); 

This is your interrupt service 
user _proc is declared in the 

When your ISR is called, two parameters are passed to it. The first parameter is status_id. It 
is the statusid of the interrupting device during the Interrupt Acknowledge Cycle. Each device 
has a different statusid, which can usually be set with switches when the device is installed. 
Some devices put out a 8-bit statusid. The actions of the VMEbus cause the upper 8 (of 16) 
bits for these devices to be read as ones. That is, a device with an apparent statusid of, say, 20 
will cause your ISR to be called with a statusid of hex FF20. 

The second parameter, intlevel, is the VMEbus interrupt level of the device. 

When your ISR is called, VMEbus interrupts are in effect disabled, since, as mentioned above, 
all VMEbus interrupt come into the Series 200/300 computer at the same level. When your ISR 
returns, interrupts are automatically re-enabled before your program continues. 

Most interrupting devices will withdraw their interrupt request when their statusid is read. The 
Software Driver reads the statusid before your ISR is called, so these devices will no longer be 
requesting an interrupt when your ISR begins. Other devices do not withdraw their request 
until a particular register is read or written. If your device is one of these, your ISR must do 
whatever is required to make the device withdraw its interrupt. If it does not, the interrupt will 
recur when your ISR exits and the system will stay in an infinite loop. See the manual for your 
device to find out which type it is. 

16-8 HP98646A VMEbus Support 



You must be very careful when using VME_ENABLE_INTR. For example, if your program enables 
interrupts, then exits without disabling them, a VMEbus interrupt could cause your system to 
crash. You should be familiar with the chapters entitled "CPU Interrupt Handling" and "Device 
I/O" in the Pascal System Designer's Guide. 

Do not call any system timer routines or use hardware floating-point facilities within your ISR. 

You may use any of the VMELIBRARY read/write procedures within the ISR. 

If your ISR causes an escape, this is trapped by the VMELIBRARY. The ISR is automatically 
terminated, and the escape is passed to the program executing at the time the ISR was called. 

There is no timeout during the Interrupt Acknowledge Cycle when the software driver reads the 
statusid from the device. 

VMELIBRARY Errors 

When a VME error occurs while using the VME_DRIVER module procedures, you can deter­
mine which has occurred by using a TRY .. RECOVER construct and calling the ESCAPECODE 
function in the RECOVER block. 

Escape Code Description 

800 range error: select code < 7 or > 31 

801 tried to access the HP VMEbus Interface using an odd select 
code 

802 timeout error, the VMEbus System Controller did not grant 
the bus to the HP VMEbus Interface within the amount of 
seconds specified in the last 'SET_TIMEOUT' call. 

803 numof char < 0 or > dedared size of data in 
VME_STRREAD; numofbytes < 0 in VME_BLOCKREAD or 
VME_BLOCKWRITE 

805 odd numofbytes when using transfer_mode, WordInc, or 
WordFxd 

806 The interface card is not an HP 98646A VMEbus Interface 
Card 

HP 98646A VMEbus Support 16-9 



Notes: 

16-10 HP 98646A VMEbus Support 



17 
The HP Parallel Interface 

Introduction 
This chapter describes: 

• The techniques necessary for programming the HP parallel interface. 

• The details of how this interface works. 

• The details of how this interface is used to communicate with other devices. 

The HP parallel interface has its roots in the Centronics parallel interface developed by 
Centronics Incorporated in the late 1970s for use with its printers. With the advent of the 
PC, the Centronics parallel interface became an industry standard. 

As originally designed, the Centronics interface was an output only interface, that is, data 
could only flow from the host to the peripheral. When HP introduced the ScanJet optical 
scanner, it modified the Centronics interface and made it bidirectional. This allows data to 
flow from the host to the peripheral (output) and from the peripheral to the host (input). 

When IBM introduced the PS/2 product line of personal computers with the Micro Channel 
bus, it also introduced a bidirectional Centronics based parallel interface. The protocol this 
interface uses for data input is not compatible with HP's parallel input protocol. Note that 
although the input protocol between HP's and IBM's bidirectional implementation is different, 
the output protocol is unchanged with respect to the original Centronics standard. 

Support is provided for the HP parallel interface beginning with the Pascal Workstation 
3.23 release. This includes the original Centronics output protocol and HP's ScanJet optical 
scanner input extensions. The IBM bidirectional implementation is not supported by the 
Pascal Workstation. 

Except where noted in this chapter, full support of the standard I/O utilities found in 
modules GENERAL_O through GENERAL_4 is provided. Additional support specific 
to the HP parallel interface and driver has been added to the IOSTATUS function and 
IOCONTROL procedure. These utilities are declared in the GENERAL_O module; however, 
the operation of these utilities is interface dependent. The specifics for the HP parallel 
interface and driver are described in the "IOSTATUS and IOCONTROL Summary" section. 

The HP Parallel Interface 17-1 



Bus Description 
HP SPUs that provide support for the HP parallel interface provide a 25 pin connection. 
Peripherals generally provide a 36 pin connection. There are 17 lines used for communicating 
data between the host and the peripheral, consisting of: 

• 8 data lines 

• 4 handshake lines 

• 2 error lines 

• 2 device status lines 

• 1 reset line. 

Some lines are used only by the peripheral or host while other lines are used by the active 
sender or receiver. More details of line usage are given with the line and protocol descriptions. 

The following figure shows the HP parallel interface pin outs. Note that the n preceding the 
line labels indicates this line is asserted low (e.g., nStrobe). 

When discussing the setting or resetting of signals on the bus, this chapter will use the term 
assert to indicate the signal has been set, and release to indicate the signal has been reset. 

When a signal is asserted, it is driven to its active state. For example, when the Busy signal is 
asserted, it is driven high, and when the nStrobe signal is asserted, it is driven low. 

Alternatively, when a signal is released, it is driven to its inactive state. For example, when 
the Busy signal is released, it is driven low, and when the nStrobe signal is released, it is 
driven high. 

17 -2 The HP Parallel Interface 



The Data Lines 

Host 
(25 pins) 

Pin No. 

2 

3 

4 

5 

6 

7 

8 

9 

Line Label 

n Strobe 

Data 

Data 2 

Data 3 

Data 4 

Data 5 

Data 6 

Data 7 

Data 8 

10 --------------- nAck 

11 Busy 

12 ----------~--- PError 

13 ---------------Select 

Peripheral 
(36 pins) 

Pin No. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 Wrl n Rd (sometimes n AutoFd) -- 14 

15 n Error (sometimes nFault) -- 32 

16 ----- n Init (sometimes n Reset) ----31 

17 n Selectln 36 

Figure 17-1. HP Parallel Interface Pin Outs 

These lines carry the binary signals that make up the byte being transmitted. Because there 
is only one set of data lines, communication is half duplex (input and output cannot happen 
simultaneously) . 

The HP Parallel Interface 17 -3 



The Handshake Lines 

Line Label 

nStrobe 

nAck 

Busy 

Wr/nRd 

The Error Lines 

Line Label 

PError 

nError 

Description 

This signal is used by the sender to qualify the data currently being 
asserted on the data lines. 

This signal is a pulse used by the peripheral to inform the host that it is 
ready to receive data. Not all peripherals use this line, however all HP 
bidirectional devices must use it. 

This signal is used by the receiver to indicate it is not ready to receive 
another byte of data. 

This signal is used by the host to set the direction of data flow over the 
interface. Wr / nRd asserted (high) indicates an output data direction (out 
from the host to the peripheral). 

Description 

This signal is used by the peripheral to indicate to the host that there is 
currently a paper error of some sort. Generally, this signal is expanded 
upon to indicate that an error has occurred which requires operator 
intervention. This signal is not released until the paper error has been 
cleared up. (The HP ScanJet optical scanner uses this line for all error 
conditions) . 

This signal is used by the peripheral to indicate to the host that an error 
other than a paper error has occurred. This signal is not released until the 
error condition has been cleared up. (The HP ScanJet optical scanner does 
not use this signal). 

The Status Lines 

Line Label 

Select 

nSelectIn 

The Reset Line 

Line Label 

nInit 

Description 

This line is used by the peripheral to indicate to the host that it is online. 
During error conditions, this line is usually released. 

This line is used by the host to indicate to the peripheral that it is online. 

Description 

This line is used by the host to cause the peripheral to clear its buffers and 
do a soft reset (restoring the peripheral to power on conditions). Not all 
peripherals use this line, however all HP bidirectional devices must use it. 

17 -4 The HP Parallel Interface 



Bus Protocols 
This section describes the protocols used when transmitting data out of (output) or into 
(input) the SPU. The output protocol is that used by the Centronics parallel interface which 
is an industry standard. The input protocol is the HP extension of the Centronics parallel 
interface required for the HP ScanJet optical scanner product line. 

This information is provided for the application writer, however, it is not necessary for 
writing applications. When the PARALLEL module is loaded in memory, these protocols are 
automatically incorporated into the standard I/O libraries. 

Output 

The following figure shows what happens when transmitting data from the host to the 
peripheral. In the figure shown below: 

(H) means the host is driving the output line. 

(P) means the peripheral is driving the output line. 

Wrl n Rd (H) 
0 

< C Data (H) ) 
0 

\ nStrobe (H) / 0 

Busy (P) / L 0 

\ nAck (P) / 0 

Figure 17-2. Transmission from Host 

The HP Parallel Interface 17-5 



The sequence of events that occur when transmitting data from the host to the peripheral are: 

1. The host asserts the Wr / nRd line, putting the bus in an output state. 

2. The host checks the Peripheral error and status lines. If the peripheral is online and has no 
errors, then the host checks the status of the Busy line. If the peripheral is not busy, then 
normal data transfer can occur. 

3. The host sets the data lines to the binary value to be transmitted to the peripheral, and 
allows them to settle. 

4. The host asserts nStrobe indicating the data lines are valid. 

5. The peripheral latches the state of the data lines on the falling edge of nStrobe and asserts 
the Busy line. 

6. The host releases the nStrobe line when the Busy line is asserted. 

7. The peripheral may pulse the nAck line after the peripheral has processed the data, and 
after the nStrobe line has been released. The nAck pulse is optional, but must occur before 
the Busy line is released. 

8. The peripheral releases the Busy line indicating that it is ready to accept more data. 

9. The host may then begin a new cycle. 

17 -6 The HP Parallel Interface 



Input 

The following figure shows what happens when transmitting data from the peripheral to the 
host. In the figure shown below: 

(H) means the host is driving the input line. 

(P) means the peripheral is driving the input line. 

Wr / n Rd (H) 
0 

Data (P) < ) 
0 

>-----<C 
nStrobe \ / (P) 

0 

Busy (H) / 0 

nAck (P) 
0 

Figure 17-3. Transmission to Host 

The sequence of events that occur when transmitting data from the peripheral to the host are: 

1. The host has previously released the Wr / nRd signal that put the bus in an input state. 
(The details of this action are described in the the "Data Direction Change - Output to 
Input" section. 

2. The peripheral checks the state of the Wr / nRd , Busy, and nlnit lines. The peripheral can 
transfer data to host when these signals have been released. 

3. The peripheral sets the data lines to the binary value that is to be transmitted to the host, 
and allows them to settle. 

4. The peripheral asserts the nStrobe line indicating the data lines are valid. 

5. The host latches the state of the data lines on the falling edge of the nStrobe line and 
asserts the Busy line. 

6. The peripheral releases nStrobe line when the Busy line is asserted. 

7. The host releases the Busy line indicating it is ready to accept more data after the host has 
processed the data, and after the nStrobe line has been released. 

8. The peripheral may then begin a new cycle. 

The HP Parallel Interface 17-7 



Data Direction Change - Output to Input 

The following figure shows what happens when the bus is being turned around from output to 
input. In the figure shown below: 

(H) means the host is driving the line. 

(P) means the peripheral is driving the line. 

(N) means neither side of the line is driving the line so it floats high. 

(B) means both sides of the line are driving the line simultaneously. 

Wrl n Rd (H) 

"" a 

--< f-CN)-. -CP)--< Data (H) f-a 

nStrobe (H) ~CN)-CP)~ 
a 

Busy (P) ~B)-CH)~ a 

nAck (P) V a 
Figure 17-4. Data Direction Change - Output to Input 

17 -8 The HP Parallel Interface 



The sequence of events that occur when the bus is being turned around from output to input 
is: 

1. The host has previously identified this peripheral as HP bidirectional. (This is discussed in 
the section "Peripheral Reset and Bidirectional Check.") The host should not attempt a 
data direction change on a peripheral that is not bidirectional. 

2. The host sends its last byte of data to the peripheral, and the peripheral processes that 
byte as indicated by the Busy line and possibly the nAck line. 

3. The host gives up active control of the Data and nStrobe lines (they will float high). The 
host assumes active control of the Busy line, but does not assert it (thus it stays low). 

4. The host releases the Wr / nRd line after the bus has settled. This indicates to the 
peripheral that the bus is being placed in an input state. 

5. The peripheral responds by giving up active control of the Busy line. However, the line 
stays low because the host is now driving it. Note that the nAck line is still owned by the 
peripheral. 

6. The peripheral begins sending data as described in the "Input" section. 

The HP Parallel Interface 17-9 



Data Direction Change - Input to Output 
after Input Completion 

The following figure shows what happens when the bus is being turned around from output to 
input after the peripheni.l has completed its transfer. In the figure shown below: 

(H) means the host is driving the line. 

(P) means the peripheral is driving the line. 

(N) means neither side of the line is driving the line so it floats high. 

(B) means both sides of the line are driving the line simultaneously. 

Wrl n Rd (H) / 0 

Data (P) ~ --< ) (N)-(H)\ >-
(N)-(H)V-n Strobe (P) V 0 

/ \ (B)--(P~ Busy (H) 
0 

U V nAck (p) 
0 

Figure 17-5. Data Direction Change - Input to Output after Input Completion 

17 -10 The HP Parallel Interface 



The sequence of events that occur when the bus is being turned around from input to output 
after the peripheral has completed its transfer is: 

1. The peripheral sends its last byte of data to the host and the host processes that byte as 
indicated by the Busy signal line. 

2. The peripheral gives up active control of the Data and nStrobe lines (they float high). The 
peripheral assumes active control of the Busy line, but does not assert it (thus it stays 
low). 

3. The peripheral will pulse the nAck signal line after the bus has settled. This indicates to 
the host that the peripheral has completed its inbound transfer and is now ready to accept 
data. 

4. The host responds to the nAck pulse by asserting the Wr / nRd line. This indicates to the 
peripheral that the bus is being placed in an output state. The host also gives up active 
control of the Busy line. The line stays low, however, because the peripheral is now driving 
it. 

5. The host begins sending data as described in the "Output" section. 

The HP Parallel Interface 17 -11 



Data Direction Change - Input to Output 
before Input Completion. 

The following figure shows what happens when the bus is being turned around from input to 
output before the peripheral has completed its transfer. In the figure shown below: 

(H) means the host is driving the line. 

(P) means the peripheral is driving the line. 

(N) means neither side of the line is driving the line so it floats high. 

(B) means both sides of the line are driving the line simultaneously. 

Wrl n Rd (H) / 0 

Data (P) 
-< >- (N)-(H)-< >-0 

nStrobe (P) ~(N)-(H)~ 
0 

Busy (H) ~(B)_(P-JL 0 

nAck (P) 
0 

Figure 17-6. Data Direction Change - Input to Output before Input Completion 

17 -12 The HP Parallel Interface 



The sequence of events that occur when the bus is being turned around from input to output 
before the peripheral has completed its transfer is: 

1. The host asserts the Wr / nRd line. This can happen at any time. 

NOTE: In some peripherals, interruption during data transfer may cause an error 
condition. If that is the case, the peripheral may assert the PError line. 

2. The peripheral gives up active control of the Data and nStrobe lines (they float high). The 
peripheral assumes active control of the Busy line, but does not assert it (thus it stays 
low). 

3. The peripheral pulses the nAck signal line to indicate that it is now ready to accept data. 

NOTE: If the peripheral is interrupted during transmission of the last data byte, only 
one nAck pulse will be sent. The peripheral will not send an nAck for "Transmission 
Complete" as well as an nAck indicating it is ready to accept data. 

4. The host will give up active control of the Busy line before attempting to send data to the 
peripheral. 

5. The host begins sending data as described in the "Output" section. 

The HP Parallel Interface 17 -13 



Peripheral Reset and Bidirectional Check 

The following figure shows the events that occur when the peripheral is reset. A check is made 
to see if the peripheral understands HP bidirectional protocols. In the figure shown below: 

(H) means the host is driving the line. 

(P) means the peripheral is driving the line. 

(N) means neither side of the line is driving the line so it floats high. 

Wrl n Rd (H) / U a 
----- (N) (H)-

nStrobe _______ J a 

'LJ nlnit (H) 
a 

:~~~~~~N}f(P) (P) 
Busy 

a 

nAck (P) V V-a 
Figure 17-7. Peripheral Reset and Bidirectional Check 

17 -14 The HP Parallel Interface 



The sequence of events that occur when the peripheral is reset and a check is made to see if 
the peripheral understands HP bidirectional protocols are: 

1. The host asserts the Wr / nRd line, gives up active control of the nStrobe line and the data 
lines, and releases the Busy line before asserting the nInit line. 

2. The host sends an nInit pulse to the peripheral. 

NOTE: The peripheral may not recognize this signal. If this is the case, then the 
peripheral is an output only device. 

3. The peripheral responds by asserting the Busy line and all other lines set to the Output 
state. 

The peripheral will also clear all internal buffers. 

4. The Host verifies reset by checking to see if the Busy line is asserted. 

5. When peripheral is ready to receive data, it will signal the host by optionally sending the 
nAck pulse and by setting Busy low. 

6. The host releases the Wr / nRd line to determine if the peripheral supports HP 
bidirectional protocols. 

7. The HP bidirectional peripheral will give up active control of the Busy line allowing it to 
float high, when the host releases the Wr / nRd line. 

8. The host waits for the Busy line to go high or for a time out. If the line floats high, then 
the host recognizes this peripheral as supporting the HP bidirectional protocols. The host 
should wait a maximum of 2 seconds for the Busy line to float high. 

9. The Host asserts the Wr / nRd line in response to either Busy asserted or a timeout. 

10. The peripheral releases the Busy line and sends an nAck pulse indicating to the host that 
it is ready to receive data. 

11. The host may begin transmitting to the peripheral as described in the "Output" section. 

The HP Parallel Interface 17 -15 



Standard 1/0 Library Support 
The Pascal Workstation, beginning with release 3.23, provides programming support for 
the HP parallel interface via the GENERAL_O thru GENERAL_4 modules as described in 
Chapters 1 through 9 of this manual. However, as with all of the unique I/O subsystems 
supported by Pascal Workstation, there are a few variations for the HP parallel interface. 
These are detailed in the following list: 

• Calls to READWORD and WRITEWORD are accepted, however they are translated to 
two consecutive calls to READBYTE and WRITEBYTE respectively. This is done because 
the HP parallel interface is an 8 bit wide interface. 

READWORD, WRITEWORD, READBYTE, and WRITEBYTE are imported from the 
GENERAL_1 module. 

• TRANSFER_WORD, which is imported from the GENERAL_4 module, is not supported. 
This form of transfer interface specifically requests transfers of 16 bits which cannot be 
supported on the HP parallel interface. 

• TRANSFER_END, which is imported from the GENERAL_4 module, is only supported for 
input (TO_MEMORY) transfers. The ending condition is the nAck signal generated by an 
HP parallel bidirectional peripheral when the inbound data transmission has completed. 

• Some interfaces support full duplex operations (simultaneous input and output) on the same 
bus. The HP parallel interface, however, is half duplex and can not support this feature. 

• 10STATUS and 10CONTROL are by definition interface specific. A description of each 
of the 10STATUS/IOCONTROL registers is provided in the section "IOSTATUS and 
10CONTROL Summary." 

17 -16 The HP Parallel Interface 



Programming Techniques 
This section explains all of the techniques available for HP Parallel programming. Most 
applications will not require many of the techniques presented. In fact, the standard I/O 
library should provide most of the required solutions. 

A sample program, PSCAN.TEXT, is placed in the DOC: disc which illustrates many of the 
techniques discussed in this section. 

Overview of HP Parallel Interface Programming 

Programs written for the HP parallel interface will include part or all of the following 
elements: 

• Input procedures (including buffer transfers) 

• Output procedures (including buffer transfers) 

• 10STATUS function calls 

• 10CONTROL procedure calls 

• High level status functions 

• High level control functions 

When using the 10STATUS and 10CONTROL routines to access the HP parallel driver's 
registers, it is recommended that the register names and register data structures defined 
in P ARALLEL_3 be used. This chapter adheres to these usage standards. See the section 
"PARALLEL_3 Interface Declarations" for a complete definition. 

The following steps represent a normal sequence of operations in an HP parallel I/O program: 

1. Initialize the particular interface and driver with an 10RESET or initialize the entire I/O 
system by doing an 10INITIALIZE. The interface and driver can also be initialized by 
writing to 10CONTROL register 0 (PLLEL_REG_RESET). 

2. Set the operating parameters of the driver by using the IOSTATUS and 10CONTROL 
registers 20 through 26. This step can be skipped if the default driver parameters are 
acceptable. 

3. Optionally, a programmer may choose to use user ISRs. If so, then during this step the 
programmer should register a user ISR and set up user ISR conditions. User ISRs are 
registered with the SET _ USER_ISR procedure. User ISR conditions are set up with 
10CONTROL register 31 (PLLEL_REG_USER_ISR_ENABLE). 

4. I/O (input and output) should be done using the standard I/O library procedures and 
functions. This is where all the data is transferred between the computer and peripheral. 

If desired, the 10STATUS and 10CONTROL registers 10 through 14 can be used to 
manually control the bus handshake protocols to accomplish data transfer. 

5. If using user ISRs, then handle any user ISR occurrences that may happen during the data 
transfer step. 

The HP Parallel Interface 17-17 



6. If using user ISRs, then disable user ISR conditions and unregister the user ISR. The 
user ISR can be unregistered by calling the CLEAR_USER_ISR procedure or writing 
to 10CONTROL register 30 (PLLEL_REG_HOOK_CLEAR). User ISR conditions are 
disabled by writing to 10CONTROL register 31 (PLLEL_REG_USER_ISR_ENABLE). 

7. Reset, if necessary, the operating parameters of the driver to their default values. This is 
done with the 10STATUS and 10CONTROL registers 20 through 26. 

8. Clean up the interface and driver by calling 10RESET, or clean up the entire I/O system 
by calling 10INITIALIZE. The interface and driver can be initialized by writing to 
10CONTROL register 0 (PLLEL_REG_RESET). 

Initializing the HP Parallel Interface 

Before a program attempts to transfer data on the HP parallel interface, it is good practice 
to reset the interface and driver to a known state. This can be accomplished through the 
IOINITIALIZE, 10RESET, or IOCONTROL procedures. 

All interfaces are also automatically reset by the operating system upon power up, when 
the (Resed key is pressed, and when the (Stop) or (CLR I/O) (on a Series 200 keyboard) keys are 
pressed. 

For each of these situations, the HP parallel driver resets the parallel hardware, initializes 
itself, and initializes the 10STATUS and IOCONTROL registers. When using the 
10INITIALIZE call, the driver's timeout value is also reset. 

The IOCONTROL and IOSTATUS registers are reset to either their default value, or the user 
specified reset value. The default values are given in the "IOCONTROL and IOSTATUS 
Register Summary" section. A program may specify the reset value of the peripheral type 
register and the driver options register. This is accomplished by writing to IOCONTROL 
register 21 (PLLEL_REG_ TYPE_RESET) or 25 (PLLEL_REG_OPTIONS_RESET). These 
registers are discussed in more detail in subsequent sections. 

Upon receiving a POR (Power On Reset) signal, the driver initializes the parallel hardware, 
initializes itself, initializes all of the IOSTATUS and 10CONTROL registers, and attempts 
to reset any attached peripheral. The attached peripheral is reset by using IOCONTROL 
register 22 (PLLEL_REG_PERIPHERAL_RESET). 

Setting Driver Operating Parameters 

The behavior of the HP parallel interface driver can be modified by setting one or more of 
the options available in the IOSTATUS and IOCONTROL registers 20 through 26. See 
the section "IOSTATUS and IOCONTROL Register Summary" for all of the details. The 
10STATUS and 10CONTROL registers 20 (PLLEL_REG_PERIPHERAL_ TYPE) and 24 
(PLLEL_REG_DRIVER_OPTIONS) are described more fully in this section. 

17-18 The HP Parallel Interface 



IOSTATUS and IOCONTROl Register 20 (PllEl_REG_PERIPHERAl_ TYPE) 

This register allows the program to tell the driver what kind of peripheral is attached to the 
computer. The peripheral type can be set by writing this register using the IOCONTROL 
procedure. The peripheral types that the program uses to set the driver are: 

NOT_PRESENT (0) Program does not know peripheral type. 

Prior to the next data transfer, the driver will 
attempt to determine the peripheral type. 

No device is attached. 

The driver will not attempt to communicate 
with the device. Any attempt by the program 
to use the driver for input communication 
will result in an error. 

Output only device is attached. 

The driver will only attempt to write to the 
device. Any attempt by the program to use 
the driver for input communication will result 
In an error. 

HP bidirectional device is attached. 

The device understands HP bidirectional 
protocol, and the driver will attempt output 
and input communications with the device. 

The type of peripheral that the driver thinks is attached can be determined by reading this 
register using the IOSTATUS function. The possible returned values are: 

NOT_PRESENT (0) 

OUTPUT_ONLY (1) 

HP _BIDIRECTIONAL (2) 

USER_SPEC_NO_DEVICE (10) 

USER_SPEC_OUTPUT_ONLY (11) 

USER_SPEC_HP _BIDIRECTIONAL (12) 

No device attached 

Output only device is currently attached. 

An HP bidirectional device is attached. 

User specified no device. 

User specified output only device. 

User specified HP bidirectional device. 

When the driver is reset, it will copy the contents of IOSTATUS register 21 
(PLLEL_REG_ TYPE_RESET) to this register. Upon receiving a POR signal, the driver 
initializes the PLLEL_REG _ TYPE_RESET register to NOT_PRESENT. A program can 
set the PLLEL_REG _ TYPE_RESET by writing any legal peripheral type to it using the 
IOCONTROL procedure. 

The HP Parallel Interface 17-19 



IOSTATUS and IOCONTROL Register 24 (PLLEL_REG_DRIVER_OPTIONS) 

This register allows the program to change the driver's operating behavior. Options can 
be selected by writing to this register using the IOCONTROL procedure, and setting the 
correct bit. Options are turned off, by writing a zero (0) into the correct bit position. Because 
of this, it is always necessary to read this register using the IOSTATUS function and then 
"binary OR" in, or "binary AND" out the desired bit. To make this easy for the programmer, 
a packed variant record is provided which when written to will cause the compiler to generate 
correct code. The provided records can be accessed by importing PARALLEL_3. 

The available driver options are: 

use_nack (Bit 0) 

write_verify (Bit 2) 

Use nAck to complete output handshake. 

Not all peripherals will handshake the output transmission with 
a nAck pulse. For this reason, by default the driver handshakes 
with the Busy signal. This, however, slows down the total data 
throughput. Setting this bit will cause the driver to handshake 
with the nAck signal. 

Cause Wr / nRd to always be set low. 

It is impossible for the driver to determine if the attached 
peripheral has grounded Wr / nRd. Although the hardware will 
not be damaged by asserting this line high, it is bad practice. 
This option, allows the program to inform the driver that the 
Wr / nRd line is indeed grounded and should never be asserted. 

NOTE: If this bit is set, the driver may modify 
the PLLEL_REG_PERIPHERAL_ TYPE register. 
If this register is HP _BIDIRECTIONAL or 
USER_SPEC_HP _BIDIRECTIONAL, then the peripheral type 
will be set to OUTPUT_ONLY. 

Verify each output transfer. 

This bit affects the operation of an output FHS (Fast 
HandShake) transfer. FHS transfers occur with all of the 
GENERAL_l and GENERAL~2 operations, and it occurs 
with the transfer operations for the SERIAL_FHS and 
OVERLAP _FHS transfer options. 

When interfacing with the hardware, the driver places the data 
to be transferred out in a hardware FIFO buffer after first 
checking for error conditions. This normally concludes the 
write operation. If this bit is set, then the driver will wait for 
the nStrobe signal to transition high and the Busy signal to 
transition low before concluding the operation. 

NOTE: Setting this bit will significantly slow down data 
transfer throughput. 

17 -20 The HP Parallel Interface 



ignore_pe (Bit 3) Continue to communicate even if the PError line is asserted. 

Setting this bit is necessary when retrieving error data from a 
HP Bidirectional device which is in an error state. This bit 
should only be set during these circumstances, and then reset 
immediately upon completion. If this bit is not reset, then an 
error may not be generated at the appropriate time. 

When the driver is reset, it will copy the contents of IOSTATUS register 25 
(PLLEL_REG_OPTIONS_RESET) to this register. On receiving a POR signal, the driver 
initializes the PLLEL_REG_OPTIONS_RESET register to O. A program can set the 
PLLEL_REG_OPTIONS_RESET using the IOCONTROL procedure. 

The following example illustrates two ways to reset the write_verify bit, using the packed 
variant record or the bit manipulation routines. Using the packed variant record not only 
generates more efficient code, but it is much more readable and maintainable. 

import iodeclarations, iocomasm, general_D, parallel_3; 

const 

var 

begin 

end. 

sc = 23; {default sc, yours may be different} 

options:driver_options_type; 
w:io_word; 

{ 

Reset bit 3 using the driver_options_type record. 
} 

options.w := iostatus(sc, PLLEL_REG_DRIVER_OPTIONS); 
options.write_verify := false; 
iocontrol(sc, PLLEL_REG_DRIVER_OPTIONS, options.w); 

{ 

Reset bit 3 by using bit manipulation routines 
} 

w := iostatus(sc, PLLEL_REG_DRIVER_OPTIONS); 
w := binand(w, hex('fffffff7')); 
iocontrol(sc, PLLEL_REG_DRIVER_OPTIONS, w); 

The HP Parallel Interface 17 -21 



Using User ISRs 

User ISRs are not a necessary part of an HP parallel application, but are provided as a 
convenience. The user ISR (Interrupt Service Routine) capability allows a program to take 
action when any of the following conditions occur: 

• An interrupt has occurred for OVERLAP _INTR. 

• An error signal has changed state. 

• A status signal has changed state. 

• The hardware FIFO has become empty. 

• The hardware FIFO has become full. 

The IOSTATUS and IOCONTROL registers 30 through 32 along with the routines provided 
in the PARALLEL_3 module comprise the programmatic interface necessary to support 
user ISRs. See the sections "IOSTATUS and IOCONTROL Register Summary" and the 
"PARALLEL_3 Interface Declarations" for all the details. 

Registering a User ISR 

To register an ISR, the address of a procedure, which is of type 
PARALLEL_ USER_ISR_ TYPE, is passed to the SET _ USER_ISR procedure. The 
PARALLEL_3 module must be imported to use these features. The import text for these 
features are shown below. For completeness, the import text for the routine which unregisters 
a user ISR is provided. 

type 

PROCEDURE SET_USER_ISR(SC:TYPE_ISC; 
P:PARALLEL_USER_ISR_TYPE); 

PROCEDURE CLEAR_USER_ISR(SC:TYPE_ISC); 

17 -22 The HP Parallel Interface 



When writing a user ISR, keep in mind the following facts: 

• The driver always calls the user ISR in supervisor mode, with the SPU run level equal to 
that of the HP parallel interface interrupt level. Extreme caution should be used to not 
violate the guidelines for ISRs as set forth in the "Interrupt Processing Overview" section of 
the "System Devices" chapter of this manual. 

The user ISR should be very careful about calling the driver back to perform a data 
transaction with the peripheral. If a transfer is in progress, unpredictable results may occur. 

The user ISR should not reset the driver. Again, unpredictable results may occur. 

The user ISR is free to interact with the IOSTATUS and IOCONTROL registers greater 
than or equal to 20. Registers 10 through 14 should be used with caution, and as already 
mentioned, register 0 should not be used at all. 

• The driver is responsible for resetting the hardware interrupt condition. The user ISR 
should not supersede this responsibility. 

• The user ISR interrupting condition is set in IOSTATUS register 32 
(PLLEL_REG_USER_ISR_STATUS) when the user ISR is called. There may be 
more than one interrupting condition at a time. When control is returned to the driver, the 
driver will clear the contents of this register. 

• The last thing the driver does when handling an interrupt is call the user ISR. 

• The driver will disable the interrupting conditions before calling the user ISR. This means 
that for the current interrupting conditions the user ISR interrupt enable conditions are 
cleared before the user ISR receives control. The user ISR should re-enable its interrupt 
conditions if additional interrupts are desired. 

• If the interrupt is for an OVERLAP _INTR, the driver has already conducted the data 
transfer and the transfer buffers have been updated. If an error occurred during the 
OVERLAP _INTR transfer, the user ISR will not be called. 

The HP Parallel Interface 17-23 



Enabling User ISR Conditions 

To enable user ISR conditions, the appropriate bits in IOCONTROL 
register 31 (PLLEL_REG_USER_ISR_ENABLE) must be set. As with the 
PLLEL_REG_DRIVER_OPTIONS register it is always necessary to read IOSTATUS register 
31 (PLLEL_REG_USER_ISR_ENABLE) and then "binary OR" in, or "binary AND" out the 
desired bit. 

If a user ISR condition is enabled before a user ISR has been registered, an error will occur. 

The user ISR conditions are: 

pe_trans (Bit 0) 

select_trans (Bit 1) 

nerror_trans (Bit 2) 

busy_low (Bit 4) 

xfer_extend (Bit 5) 

fifo_empty (Bit 6) 

fifo_full (Bit 7) 

PError signal transition. 

Setting this bit will generate an interrupt upon any transition 
from the current PError signal level to the opposite signal level. 

Select signal transition. 

Setting this bit will generate an interrupt upon any transition 
from the current Select signal level to the opposite signal level. 

nError signal transition. 

Setting this bit will generate an interrupt upon any transition 
from the current nError signal level to the opposite signal level. 

nAck transition low. 

Setting this bit will generate an interrupt when the nAck signal 
transitions from a high level to a low level. 

Busy signal is asserted low. 

Setting this bit will generate an interrupt whenever the 
Busy signal is low. This is not a transition interrupt. Thus, 
immediately re-enabling this interrupt may cause a subsequent 
interrupt, even though the Busy signal has not changed. 

OVERLAP _INTR transfer extension. 

An OVERLAP _INTR transfer will generate a hardware 
interrupt with each byte transfer. Setting this bit will generate 
a user ISR interrupt when the driver has completed processing 
a byte transfer. 

FIFO is empty. 

Setting this bit will generate an interrupt whenever the 
hardware FIFO becomes empty. This is a transition interrupt. 

FIFO is full. 

Setting this bit generates an interrupt whenever the hardware 
FIFO becomes full. This is a transition interrupt. 

17-24 The HP Parallel Interface 



Determining the Cause of an Interrupt 

To determine the cause of an interrupt, upon receiving control, the user ISR must read 
IOSTATUS register 32 (PLLEL_REG_ USER_ISR_STATUS). The definition of this register is 
the same as IOSTATUS register 31 (PLLEL_REG_USER_ISR_ENABLE). 

The following example illustrates how a user ISR checks if the interrupt type is an 
OVERLAP _INTR extension and re-enables it. 

import iodeclarations, iocomasm, general_O, parallel_3; 

procedure user_isr(sc:TYPE_ISC); 
var 

begin 

end; 

{ 

} 

isr_status.w := iostatus(sc, PLLEL_REG_USER_ISR_STATUS); 
if isr_status.xfer_extend then 
begin 

end; 

isr_enable.w := iostatus(sc, PLLEL_REG_USER_ISR_ENABLE); 
isr_enable.xfer_extend := true; 
iocontrol(sc, PLLEL_REG_USER_ISR_ENABLE, isr_enable.w); 

Clearing the User ISR 

Before the program that contains the procedure being used as the user ISR terminates, the 
program must clear the user ISR from the driver. If this does not happen, then the driver 
may call a routine which no longer exists and unpredictable results may occur. 

The user ISR can be cleared in one of two ways: by using the CLEAR_ USER_ISR routine, 
or by writing any value to IOCONTROL register 30 (PLLEL_REG_HOOK_CLEAR). The 
CLEAR_ USER_ISR routine is imported from the PARALLEL_3 module. If either of these 
methods is used, all current user ISR enable conditions are cleared. 

The following sample program waits for a device to come online. This program illustrates the 
concepts of registering a user ISR, handling an interrupt, and finally unregistering the user 
ISR. 

The HP Parallel Interface 17 -25 



For completeness, IOSTATUS register 10 (PLLEL_REG_PERIPHERAL_STATUS) is used. 
See the sections "PARALLEL_3 Interface Declarations" and "IOCONTROL and IOSTATUS 
Register Summary" for the details on this register. 

$sysprog on$ 
program waitonline(input. output); 

import iodeclarations. general_O. general_i. parallel_3; 

const 

var 

mysc 23; 

device_online:boolean; 
isr_enable. isr_status:user_isr_status_type; 
dev_status:peripheral_status_type; 

procedure user_isr(sc:TYPE_ISC); 
begin 

end; 

isr_status.w := iostatus(sc. PLLEL_REG_USER_ISR_STATUS); 
if isr_status.select_trans then 
begin 

dev_status.w := iostatus(sc. PLLEL_REG_PERIPHERAL_STATUS); 
if dev_status.select_high then {device is online} 
begin 

end 
else 
begin 

end; 

device_online := true; 

isr_enable.w := iostatus(sc. PLLEL_REG_USER_ISR_ENABLE); 
isr_enable.select_trans := TRUE; 
iocontrol(sc. PLLEL_REG_USER_ISR_ENABLE. isr_enable.w); 

end; 

{ 

} 

if isr_status.select_trans were false it would not be necessary 
to reenable this interrupt as the driver only disables 
interrupts as they occur. Using the same logic. it is 
not necessary to disable this interrupt when isr_status.select_trans 
and dev_status.select_high are both true. 

17 -26 The HP Parallel Interface 



begin {main program} 
ioreset(mysc); 
dev_status.w := iostatus(mysc. PLLEL_REG_PERIPHERAL_STATUS); 
if dev_status.bl <> PLLEL_PERIPHERAL_ONLINE then 
try 

device_online := false; 
set_user_isr(mysc. user_isr); 
isr_enable.w := 0; 
isr_enable.select_trans := true; 
iocontrol(mysc. PLLEL_REG_USER_ISR_ENABLE. isr_enable.w~; 

end. 

recover 
begin 

end; 

repeat until device_online; 

clear_user_isr(mysc); 
ioreset(mysc); 

clear_user_isr(mysc); 
ioreset(mysc); 
escape(escapecode); 

writeln('Peripheral attached to select code' 
mysc:1. 
, is online. '); 

Input and Output Extensions 

As described in the section "Standard I/O Library Support," the HP parallel interface can 
be accessed for standard I/O operations via the GENERAL_O thru GENERAL_4 routines. 
This section describes extensions to the standard I/O routines that are provided with the 
PARALLEL_3 module. 

When reading information from the HP parallel interface, a byte at a time, using the 
GENERAL_l and GENERAL_2 routines, it may be necessary to determine if the device 
has indicated end of transmission by pulsing the nAck line. The NACK_SET routine, which 
identical in definition to the HPIB_l END_SET routine, is provided for this purpose. An 
example of using this routine follows: 

repeat 
readchar(mysc. c); 
write(c); 

until nack_set(mysc); 

The HP Parallel Interface 17 -27 



Manually controlling the Handshake Protocols 

If desired, a program can manipulate the host owned protocol lines to perform its own 
handshake. This is accomplished through the IOSTATUS and 10CONTROL registers 10 
through 14. See the section "IOSTATUS and IOCONTROL Register Summary" for all of the 
details. 

The HP parallel interface hardware provides programmer control of the Wr / nRd, nSelectIn, 
and nlnit signals. The hardware owns the Data, nStrobe, and Busy signals. Indirect control 
of these lines is provided through the hardware FIFO, the I/O direction bit, and the I/O 
modifier bit. 

If a program is going to take over control of the bus protocol lines, it is recommended that the 
program set the peripheral type in such a way as the driver and the program will not collide. 
For example, if the program were going to implement a non-HP protocol for inputting data, 
but was going to use the driver to output data, it would be wise to set the peripheral type to 
USER_SPEC_OUTPUT _ONLY. 

Manipulating the Wr/nRd, nSelectln, and nlnit Signals 

To manipulate the Wr /nRd, nSelectIn, and nlnit signals, the appropriate bits in 
10CONTROL register 12 (PLLEL_REG_HOST_LINE_CONTROL) must be set. As with 
other registers it is always necessary to read this register and then "binary OR" in, or "binary 
AND" out the desired bit. 

The bit definitions for the 10CONTROL PLLEL_REG_HOST _LINE_CONTROL register are: 

wr _nrd_high (Bit 0) Set Wr / nRd. 

nselectin_low (Bit 1) 

nint_low (Bit 2) 

Setting this bits asserts Wr / nRd high, and resetting this bit 
releases Wr / nRd low. 

Set nSelectIn. 

Setting this bits asserts nSelectIn low, and resetting this bit 
releases nSelectln high. 

Set nlnit. 

Setting this bits asserts nInit low, and resetting this bit 
releases nlnit high. 

17 -28 The HP Parallel Interface 



Setting the Hardware I/O Bits 

To set the hardware I/O bits, a program should write the appropriate bit in 10CONTROL 
register 13 (PLLEL_REG_IO_CONTROL). As with other registers, it is always necessary to 
read this register and then "binary OR" in, or "binary AND" out the desired bit. 

The bit definitions for the I/O register are: 

input_high (Bit 0) Input/ nOutput. 

modify_io (Bit 1) 

Setting this bit causes the hardware to transition to the input state. 
Resetting this bit causes a transition to the output state. 

When in the input state, the hardware owns the Busy line. Active 
control of the Data and nStrobe lines is given to the peripheral. How 
the hardware actually receives data is described in the following 
section "Activating I/O Protocol." 

When in the output state, the hardware owns the Data and nStrobe 
lines. Active control of the Busy line is given to the peripheral. How 
the hardware actually transmits data is described in the following 
section "Activating I/O Protocol." 

I/O Modifier. 

When this bit is set, the hardware modifies its input and output 
algorithms as follows: 

• If the Input/ nOutput bit is set such that the hardware is in the 
input state, the size of the hardware FIFO is reduced to 1 (it is 
normally 32) . 

• If the Input/ nOutput bit is reset such that the hardware is in the 
output state, the hardware will not use the peripheral's nAck pulse 
to finish the output handshake, but will use the peripheral's Busy 
signal (wait for Busy low). 

NOTE: The use_nack bit of 10CONTROL register 24 
(PLLEL_REG_DRIVER_OPTIONS) tells the driver how to set 
this bit. Not all devices support the nAck line. 

The HP Parallel Interface 17 -29 



Activating I/O protocol 

The I/O protocol is activated through the use of the IOSTATUS and IOCONTROL 
register 14 (PLLEL_REG_FIFO). This register must be used in conjunction with 
IOCONTROL register 13 (PLLEL_REG_IO_CONTROL) and IOSTATUS register 11 
(PLLEL_REG_COMM_STATUS). 

If data is to be output to the host, then the input_high bit of IOCONTROL register 13 
(PLLEL_REG_IO_CONTROL) must be reset. Conversely, if data is to be input to the host, 
then this bit must be set. 

When outputting data, a program writes the data to be transmitted to the 
PLLEL_REG_FIFO register using the IOCONTROL procedure. Before doing this, the 
program must check that the FIFO is not full by checking the FIFO-Full bit in IOSTATUS 
register 11 (PLLEL_REG_COMM_STATUS). 

When the hardware has data in its FIFO that is to be output, it exercises the following 
algorithm: 

1. Verify that the Select, PError and nError lines are in acceptable states. 

2. Wait for the Busy line to go low. 

3. Latch FIFO data on the bus. 

4. Decrement the FIFO count and cause a FIFO-Empty interrupt if necessary. 

5. Assert the nStrobe line low. 

6. Wait for the Busy line to go high. 

7. Release the nStrobe line high. 

8. Wait for the nAck pulse (or Busy low if the I/O modifier bit is set). 

When inputting data, a program reads the inbound data from the PLLEL_REG_FIFO 
register by using the IOSTATUS function. Before doing this, however, the program must 
verify that the hardware FIFO is not empty by checking the FIFO-Empty bit in IOSTATUS 
register 11 (PLLEL_REG_COMM_STATUS). 

When the hardware is in the data input state, it exercises the following algorithm: 

1. Wait for FIFO to not be full. Hold the Busy line high while FIFO is full. 

2. Set the Busy line low. 

3. Wait for the nStrobe line to go low. 

4. Set the Busy line high. 

5. Latch the data lines and put in FIFO. If FIFO becomes full, cause a FIFO-Full interrupt if 
necessary. 

6. Wait for the nStrobe line to go low. 

17 -30 The HP Parallel Interface 



PARALLEL_3 Interface Declarations 

{ 

IOCONTROL and IOSTATUS register definitions. 
} 

{-----------------------------------------------------------------} 
{ 

Registers 0 - 9 are system defined registers. 
} 

{-----------------------------------------------------------------} 
const 

const 

type 

PLLEL_REG_CARDID 
PLLEL_REG_RESET 

0; 
0; 

{ for use with PLLEL_REG_CARD_ID } 
PARALLEL_CARDID = 6; 

{ for use with: PLLEL_REG_INTDMA_STATUS } 
intdrna_status_type = packed record 

case integer of 
0: (w: 

1:(bh: 
bl: 

2: (b: 

end; 

ie: 
ir: 
intlvl: 
pad: 
de1: 
deO: 

io_word) ; 
io_byte; 
io_byte); 
io_byte; {upper byte unused} 
boolean; 
boolean; 
O .. 3; 

O .. 3; 

boolean; 
boolean); 

{-----------------------------------------------------------------} 
{ 

Register 10 - 19 are for hardware status and control. 
} 

{-----------------------------------------------------------------} 
const 

type 

PLLEL_REG_PERIPHERAL_STATUS 10; 
PLLEL_REG_COMM_STATUS 11; 
PLLEL_REG_HOST_LINE_CONTROL 12; 
PLLEL_REG_IO_CONTROL 13; 
PLLEL_REG_FIFO 14; 

{ for use with: PLLEL_REG_PERIPHERAL_STATUS } 
peripheral_status_type = packed record 

case integer of 
0: (w: io_word) ; 

io_byte; 
io_byte) ; 

1: (bh: 
bl: 

2: (b: 

pad: 
io_byte; {upper byte unused} 
O .. hex('1F'); 

nerror_low: boolean; 

The HP Parallel Interface 17-31 



const 

type 

type 

type 

end; 

select_high: boolean; 
perror_high: boolean); 

hex( '02 ') ; 

{ for use with: PLLEL_REG_COMM_STATUS } 
comm_status_type = packed record 

io_word); 
iO_byte; 
io_byte); 

case integer of 
0: (w: 
l:(bh: 

bl: 
2: (b: 

pad: 
fifofull: 
fifoempty: 

iO_byte; {upper byte unused} 
O .. 7; 
boolean; 
boolean; 

nstrobe_low: boolean; {true asserted low} 
busy_high: boolean; 
nack_low: boolean); 

end; 

{ for use with: PLLEL_REG_HOST_LINE_CONTROL } 
host_line_type = packed record 

io_word) ; 
iO_byte; 
io_byte); 

case integer of 
0: (w: 

l:(bh: 
bl: 

2: (b: 
pad: 

iO_byte; {upper byte unused} 
O .. hex ( , iF ') ; 

ninit low: boolean; 
nselectin_low:boolean; 
wr_nrd_high: boolean); 

end; 

{ for use with: PLLEL_REG_IO_CONTROL } 
io_control_type = packed record 

case integer of 
0: (w: 
l:(bh: 

bl: 
2:(b: 

end; 

pad: 
modify_io: 
input_high: 

io_word); 
iO_byte; 
iO_byte) ; 
iO_byte; {upper byte 
O .. hex ( , 3F ') ; 
boolean; 
boolean) ; 

unused} 

{-----------------------------------------------------------------} 
{ 

Register 20 - 29 are for driver status and control. 
} 

{-----------------------------------------------------------------} 
const 

PLLEL_REG_PERIPHERAL_TYPE 
PLLEL_REG_TYPE_RESET 
PLLEL_REG_PERIPHERAL_RESET 
PLLEL_REG_INTERRUPT_STATE 

17 -32 The HP Parallel Interface 

= 20; 
21; 
22; 
23; 



const 

type 

type 

type 

PLLEL_REG_DRIVER_OPTIONS = 24; 
PLLEL_REG_OPTIONS_RESET = 25; 
PLLEL_REG_DRIVER_STATE = 26; 

{ for use with: PLLEL_REG_PERIPHERAL_TYPE 
PLLEL_REG_TYPE_RESET } 

NOT_PRESENT 0; 
OUTPUT_ONLY 1 ; 
HP_BIDIRECTIONAL 2; 
USER_SPEC_NO_DEVICE 10; 
USER_SPEC_OUTPUT_ONLY 11; 
USER_SPEC_HP_BIDIRECTIONAL = 12; 

OUTPUT_SET 

INPUT_SET 

[OUTPUT_ONLY, 
HP_BIDIRECTIONAL, 
USER_SPEC_OUTPUT_ONLY, 
USER_SPEC_HP_BIDIRECTIONAL] ; 

[HP_BIDIRECTIONAL, 
USER_SPEC_HP_BIDIRECTIONAL] ; 

[NOT_PRESENT, 
USER_SPEC_NO_DEVICE, 
USER_SPEC_OUTPUT_ONLY, 
USER_SPEC_HP_BIDIRECTIONAL] ; 

{ for use with PLLEL_REG_INTERRUPT_STATE } 
driver_int_state_type = packed record 

io_byte; 
io_byte); 

case integer of 
0: (w: 
1:(bh: 

bl: 
2: (b: 

fifo_full: 
fifo_empty: 
pad: 
busy_low: 

iO_byte; {upper byte unused} 
boolean; 

end; 

boolean; 
boolean; 
boolean; 

nack_low_trans:boolean; 
nerror_trans:boolean; 
select_trans:boolean; 
pe_trans: boolean); 

{ for use with: PLLEL_REG_DRIVER_OPTIONS 
PLLEL_REG_OPTIONS_RESET } 

driver_opt ions_type = packed record 

io_word); 
iO_byte; 
io_byte); 

case integer of 
0: (w: 

1: (bh: 
bl: 

2: (b: 

pad: 
io_byte; {upper byte unused} 
O .. hex ( 'f ') ; 

end; 

ignore_pe: boolean; 
write_verify:boolean; 
wr_nrd_low: boolean; 
use_nack: boolean); 

The HP Parallel Interface 17-33 



const 

{ for use with PLLEL_REG_DRIVER_STATE } 
driver_state_type = packed record 

case integer of 
0: (w: 
l:(bh: 

bl: 
2: (b: 

io_word); 
iO_byte; 
iO_byte) ; 
io_byte; {upper byte unused} 

end; 

DISABLED_BY_USER 
INACTIVE_ERROR 
INACTIVE_WRITE 
ACTIVE~WRITE 

INACTIVE_READ 
ACTIVE_READ 

disabled: 
error: 
write: 
read: 
pad: 

boolean; 
boolean; 
boolean; 
boolean; 
0 .. 7; 

active_xfer: boolean); 

hex( '80') ; 
hex( '40') ; 
hex( '20') ; 
hex('21') ; 
hex('10') ; 
hex(' 11 ") ; 

{-----------------------------------------------------------------} 
{ 

Registers 30 - 39 are for User ISR status and control 
} 

{-----------------------------------------------------------------} 
const 

const 

type 

PLLEL_REG_HOOK STATUS 
PLLEL_REG_HOOK_CLEAR 
PLLEL_REG_USER_ISR_ENABLE 
PLLEL_REG_USER_ISR_STATUS 

30; 
30; 
31 ; 
32; 

{ for use with PLLEL_REG_HOOK_STATUS } 
USER_ISR_HOOK_INACTIVE 0; 
USER_ISR_HOOK ACTIVE 1; 

{ for use with: PLLEL_REG_USER_ISR_ENABLE 
PLLEL_REG_USER_ISR_STATUS } 

user_isr_status_type = packed record 
case integer of 

0: (w: io_word); 
io_byte; 
iO_byte); 

end; 

1: (bh: 

bl: 
2: (b: io_byte; {upper byte unused} 

boolean; 
fifo_empty: boolean; 
xfer_extend: boolean; 
busy_low: boolean; 
nack_Iow_trans:boolean; 
nerror_trans:boolean; 
select_trans:boolean; 
pe_trans: boolean); 

17 -34 The HP Parallel Interface 



{-----------------------------------------------------------------} 
{ 

Combine all of the registers 
} 

{-----------------------------------------------------------------} 
type 

p3regs_type = packed record 
1: (w: 
2: (bh: 

bl: 
3: (intdma_status: 

case integer of 
io_word); 
iO_byte; 
io_byte); 

4: (p~ripheral-status: 
5: (comm_status: 

intdma_status_type) ; 
peripheral_status_type) ; 
comm_status_type); 

6: (host_line: 
7: (io_control: 
8: (driver_int_state: 
9: (driver_options: 
10: (driver_state: 
11: (user_isr_status: 
end; 

host_line_type) ; 
io_control_type) ; 
driver_int_state_type); 
driver_options_type) ; 
driver_state_type) ; 
user_isr_status_type); 

{-----------------------------------------------------------------} 
{ 

HP Parallel interface support routines. 
} 

{-----------------------------------------------------------------} 
type 

PROCEDURE SET_USER_ISR(SC:TYPE_ISC; 
P:PARALLEL_USER_ISR_TYPE); 

PROCEDURE CLEAR_USER_ISR(SC:TYPE_ISC); 
FUNCTION NACK_SET(SC:TYPE_ISC):BOOLEAN; 

The HP Parallel Interface 17-35 



IOSTATUS and IOCONTROL Register Summary 
The IOSTATUS and IOCONTROL registers for the HP parallel interface are grouped into the 
following categories: 

• System required registers. 

• Hardware status and control registers. 

• Driver status and control registers. 

• User ISR status and control registers. 

Each category is given a block of register numbers as shown below: 

Category Registers 

System 

Hardware 

The system required registers range from 0 - 9. 

Driver 

User ISR 

The hardware status and control registers range from 10 - 19. 

The driver status and control registers range from 20 - 29. 

The user ISR status and control registers range from 30 - 39. 

Each register can be both an IOSTATUS register and an IOCONTROL register. If a register 
is defined to return a value when read, then it is an IOSTATUS register. If the information 
written to a register is defined to cause an action, then it is an IOCONTROL register. 

System Required Registers 

The following table shows the correspondence between the system required IOSTATUS 
and IOCONTROL registers and their counterparts in PARALLEL_3. If the register is not 
defined in PARALLEL_3, then using that register will generate an error. The PARALLEL_3 
definitions are provided as a convenience, and their usage is optional. 

Register IOSTATUS/IOCONTROL PARALLEL_3 

0 IOSTATUS PLLEL_REG_CARD_ID 
IOCONTROL PLLEL_REG_RESET 

1 IOSTATUS PLLEL_REG_INTDMA_STATUS 
IOCONTROL Undefined 

IOSTATUS Register 0 (PLLEL_REG_CARD_ID) 

When read, a value of 6 is always returned. 

17 -36 The HP Parallel Interface 



IOCONTROL Register 0 (PLLEL_REG_RESET) 

When any value is written to this register, the HP parallel interface hardware and driver are 
reset. All registers are reset to their default values. 

IOSTATUS Register 1 (PLLEL_REG_INTDMA_STATUS) 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

IE IR ILl ILO 0 0 DEI DEO 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

IE 1 = Interrupts to SPU enabled. 

IR 1 = Interrupt request. This bit is independent of IE. 

ILl & ILO Interrupt Levels. Add 3 to get SPU interrupt level. 

DEl 1 = DMA on Channell enabled. 

DEO 1 = DMA on Channel 0 enabled. 

Upon receiving a POR signal, interrupts are disabled (IE = 0) and both DMA channels are 
disabled. The interrupt level reflects the hardware state and is always the same. 

Hardware Status and Control Registers 

The following table shows the correspondence between the hardware IOSTATUS and 
IOCONTROL registers and their counterparts in PARALLEL_3. If the register is not 
defined in PARALLEL_3, then using that register will generate an error. The P ARALLEL_3 
definitions are provided· as a convenience, and their usage is optional. 

Register IOSTATUS /IOCONTROL PARALLEL_3 

10 IOSTATUS PLLEL_REG _PERIPHERAL_STATUS 
IOCONTROL Undefined 

11 IOSTATUS PLLEL_REG_COMM_STATUS 
IOCONTROL Undefined 

12 IOSTATUS PLLEL_REG_HOST _LINE_CONTROL 
IOCONTROL PLLEL_REG_HOST _LINE_CONTROL 

13 IOSTATUS PLLEL_REG_IO_CONTROL 
IOCONTROL PLLEL_REG_IO_CONTROL 

14 IOSTATUS PLLEL_REG _FIFO 
IOCONTROL PLLEL_REG _FIFO 

The HP Parallel Interface 17-37 



IOSTATUS Register 10 (PLLEL_REG_PERIPHERAL_STATUS) 

Bit 7 Bit 6 Bit 5 

0 0 0 

Value=128 Value=64 Value=32 

nError 

Select 

PError 

1 = Asserted low. 

1 = Asserted high. 

1 = Asserted high. 

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

0 0 nError Select PError 

Value=16 Value=8 Value=4 Value=2 Value=l 

These bus lines are owned by the peripheral. This register merely reflects the state of these 
bus lines, and thus does not have a default POR setting. If a peripheral is not attached, then 
the PError and Select lines are asserted and the nError line is released. 

IOSTATUS Register 11 (PLLEL_REG_COMM_STATUS) 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

0 0 0 FIFO FIFO nStrobe Busy nAck 
Full Empty 

Value=128 Value=64 Value=32 Value = 16 Value=8 Value=4 Value =2 Value=l 

FIFO Full 1 = Hardware FIFO is full. 

FIFO Empty 1 = Hardware FIFO is empty. 

nStrobe 1 = Asserted low. 

Busy 1 = Asserted high. 

nAck 1 = Asserted low. 

Upon receiving a POR signal the Hardware FIFO is empty, the nStrobe line should not be 
asserted, and the remaining lines are controlled by the peripheral. This register merely reflects 
the state of the peripheral owned lines, and thus these register bits do not have a default POR 
setting. If a peripheral is not attached, then the Busy and nAck lines are asserted. 

17 -38 The HP Parallel Interface 



IOSTATUS and IOCONTROL Register 12 (PLLEL_REG_HOST _LINE_CONTROL) 

Bit 7 Bit 6 Bit 5 

0 0 0 

Value=128 Value;::::: 64 Value=32 

nInit 

nSelectIn 

Wr/nRd 

1 = Asserted low. 

1 = Asserted low. 

1 = Asserted high. 

Bit 4 

0 

Value = 16 

Bit 3 Bit 2 Bit 1 Bit 0 

0 nlnit nSelectIn Wr/nRd 

Value=8 Value=4 Value=2 Value=1 

Upon receiving a POR signal, nInit is asserted low, nSelectIn is released high, and Wr/nRd is 
asserted high. 

IOSTATUS and IOCONTROL Register 13 (PLLEL_REG_IO_CONTROL) 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

0 0 0 0 0 0 I/O Input/ 
Modifier nOutput 

Value=128 Value=64 Value=32 Value = 16 Value=8 Value=4 Value = 2 Value = 1 

I/O Modifier 1 = I/O being modified 

Input/ nOutput 1 = Perform Input operations 

o = Perform Output operations 

Upon receiving a POR signal, the I/O Modifier bit and the Input/ nOutput bits are reset. 

IOSTATUS and IOCONTROL Register 14 (PLLEL_REG_FIFO) 

In order to get valid information when reading the hardware FIFO, the I/O direction must be 
input and the FIFO must not be empty (see IOSTATUS Registers 11 and 13). If either of 
these conditions are not true, reading this register will not cause an error, but unpredictable 
results may occur. 

For writing, the above rules also apply. The I/O direction must be output and the FIFO must 
not be full. If either of these conditions are not true, writing this register will not cause an 
error, but the data written will not be entered into the hardware FIFO. 

Note This register should not be used unless the program has full control of this 
select code. For example, if this register is being used while the driver is 
attempting a transfer, it is very likely the transfer will fail. 

The HP Parallel Interface 17 -39 



Driver Status and Control Registers 

The following table shows the correspondence between the driver IOSTATUS and 
IOCONTROL registers and their counterparts in PARALLEL_3. If the register is not 
defined in PARALLEL_3, then using that register will generate an error. The PARALLEL_3 
definitions are provided as a convenience, and their usage is optional. 

Register IOSTATUS/IOCONTROL PARALLEL_3 

20 IOSTATUS PLLEL_REG_PERIPHERAL_ TYPE 
IOCONTROL PLLEL_REG _PERIPHERAL_ TYPE 

21 IOSTATUS PLLEL_REG_TYPE_RESET 
IOCONTROL PLLEL_REG_TYPE_RESET 

22 IOSTATUS Undefined 
IOCONTROL PLLEL_REG_PERIPHERAL_RESET 

23 IOSTATUS PLLEL_REG_INTERRUPT _STATE 
IOCONTROL Undefined 

24 IOSTATUS PLLEL_REG_DRIVER_OPTIONS 
IOCONTROL PLLEL_REG_DRIVER_OPTIONS 

25 IOSTATUS PLLEL_REG_OPTIONS_RESET 
IOCONTROL PLLEL_REG_OPTIONS_RESET 

26 IOSTATUS PLLEL_REG _DRIVER_STATE 
IOCONTROL Undefined 

IOSTATUS Register 20 (PLLEL_REG_PERIPHERAL_ TYPE) 

o NOT _PRESENT 

1 OUTPUT_ONLY 

2 HP _BIDIRECTIONAL 

10 USER_SPEC_NO_DEVICE 

11 USER_SPEC_OUTPUT_ONLY 

12 USER_SPEC_HP _BIDIRECTIONAL 

IOCONTROL Register 20 (PLLEL_REG_PERIPHERAL_ TYPE) 

o NOT _PRESENT 

10 USER_SPEC_NO_DEVICE 

11 USER_SPEC_OUTPUT_ONLY 

12 USER_SPEC_HP _BIDIRECTIONAL 

17 -40 The HP Parallel Interface 



IOSTATUS and IOCONTROL Register 21 (PLLEL_REG_ TYPE_RESET) 

This register has the same definition as IOSTATUS and IOCONTROL Register 20 
(PLLEL_REG_PERIPHERAL_ TYPE). The value in this register is copied to register 20 
when the driver is reset. During a driver reset, this register is not modified. 

IOCONTROL Register 22 (PLLEL_REG_PERIPHERAL_RESET) 

Writing any value to this register causes the driver to attempt a hardware soft reset on the 
attached peripheral. The driver will Assert the nInit line, wait, release the nInit line, and wait 
for the Busy line to be released. 

Because this is a write only register, there is not a default setting. 

IOSTATUS Register 23 (PLLEL_REG_INTERRUPT _STATE) 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

FIFO Full FIFO Empty 0 Busy nAck nError Select PError 

Value = 128 Value=64 Value=32 Value = 16 Value =8 Value=4 Value=2 Value = 1 

This register returns the interrupt requests that are currently being made by the driver. By 
binary "OR"ing this register and IOSTATUS register 31, the interrupts being requested of the 
hardware can be determined. 

FIFO Full 1 = An interrupt is requested when the hardware FIFO transitions to full. 

FIFO Empty 1 = An interrupt is requested when the hardware FIFO transitions to empty. 

Busy 1 = An interrupt is requested when the Busy signal is low. 

nAck 1 = An interrupt is requested when the nAck signal transitions low. 

nError 1 = An interrupt is requested when the nError signal transitions. 

Select 1 = An interrupt is requested when the Select signal transitions. 

PError 1 = An interrupt is requested when the PError signal transitions. 

Upon receiving a POR signal, the driver disables all interrupt conditions, thus this register 
will return a 0 on PO R. 

The HP Parallel Interface 17 -41 



IOSTATUS and IOCONTROL Register 24 (PLLEL_REG_DRIVER_OPTIONS) 

Bit 7 Bit 6 Bit 5 Bit·4 Bit 3 Bit 2 Bit 1 Bit 0 

0 0 0 0 Ignore Write Wr/nRd Use 
PError Verify low nAck 

Value=128 Value=64 Value=32 Value = 16 Value=8 Value =4 Value=2 Value = 1 

Ignore PError 1 = Communicate with the peripheral despite PError assertion. 
o = Default. Error on communication attempt with PError asserted. 

Write Verify 1 = Verify peripheral receives data on each byte sent. 
o = Default. Do not verify. 

Wr/nRd Low 1 = Wr/nRd always low. 
o = Default. Wr / nRd high on output, low on input. 

Use nAck 1 = Use nAck to complete the output handshake. 
o = Default. Use Busy to complete the output handshake. 

IOSTATUS and IOCONTROL Register 25 (PLLEL_REG~OPTIONS_RESET) 

This register has the same definition as register 24 (PLLEL_REG_DRIVER_OPTIONS). The 
value in this register is copied to register 24 when the driver is reset. During a driver reset, 
this register is not modified. 

IOSTATUS Register 26 (PLLEL_REG_DRIVER_STATE) 

Bit 7 Bit 6 

Disabled Inactive 
by user Error 

Value = 128 Value=64 

The driver states are: 

DISABLED_BY _USER 

INACTIVE_ERROR 

INACTIVE_ WRITE 

ACTIVE_ WRITE 

IN ACTIVE_READ 

ACTIVE_READ 

Bit 5 Bit 4 

Write Read 

Value=32 Value = 16 

= hex('80'); 

= hex('40'); 

= hex('20'); 

~ hex('21'); 

= hex('lO'); 

= hex('ll'); 

Bit 3 

0 

Value=8 

Bit 2 Bit 1 Bit 0 

0 0 Active 
Xfer 

Value=4 Value=2 Value=l 

If the POR (Power On Reset) state of the peripheral type is not USER_SPEC_NO_DEVICE, 
then the POR state for this register is INACTIVE_ERROR. Otherwise, the POR state is 
DISABLED_BY _USER. 

17 -42 The HP Parallel Interface 



User ISR Status and Control Registers 

The following table shows the correspondence between the user ISR IOSTATUS and 
IOCONTROL registers and their counterparts in PARALLEL_3. If the register is not 
defined in PARALLEL_3, then using that register will generate an error. The PARALLEL_3 
definitions are provided as a convenience, and their usage is optional. 

Register IOSTATUS /IOCONTROL PARALLEL_3 

30 IOSTATUS PLLEL_REG_HOOK_STATUS 
IOCONTROL PLLEL_REG_HOOK_CLEAR 

31 IOSTATUS PLLEL_REG _ USER_ISR_ENABLE 
IOCONTROL PLLEL_REG _ USER_ISR_ENABLE 

32 IOSTATUS PLLEL_REG:... USER_ISR_STATUS 
IOCONTROL Undefined 

IOSTATUS Register 30 (PLLEL_REG_HOOK_STATUS) 

If a User ISR has been registered with the driver, this register returns a 1 
(USER_ISR_HOOK_ACTIVE). Otherwise, a 0 (USER_ISR_HOOK_INACTIVE) is 
returned. 

Upon receiving a POR signal, the User ISR hook is cleared, thus this register returns a O. 

IOCONTROL Register 30 (PLLEL_REG_HOOK_CLEAR) 

Writing any value to this register causes the user ISR to be unregistered from the driver. The 
user ISR hook is set to NIL. 

IOSTATUS and IOCONTROL Register 31 (PLLEL_REG_USER_ISR_ENABLE) 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

FIFO FIFO Overlap Busy nAck nError Select PError 
Full Empty Transfer 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

FIFO Full 1 = User ISR interrupt when the hardware FIFO transitions to full. 

FIFO Empty 1 = User ISR interrupt when the hardware FIFO transitions to empty. 

Overlap Transfer 1 = User ISR interrupt when a single byte OVERLAP _INTR transfer 
occurs. 

Busy 

nAck 

nError 

1 = User ISR interrupt when the Busy signal is low. 

1 = User ISR interrupt when the nAck signal transitions low. 

1 = User ISR interrupt when the nError signal transitions. 

The HP Parallel Interface 17-43 



Select 

PError 

1 = User ISR interrupt when the Select signal transitions. 

1 = User ISR interrupt when the PError signal transitions. 

The default setting for this register is 0, all user ISRs are disabled. 

Bit 7 

FIFO 
Full 

Value = 128 

FIFO Full 

FIFO Empty 

Bit 6 Bit 5 Bit 4: Bit 3 Bit 2 Bit 1 Bit 0 

FIFO Overlap Busy nAck nError Select PError 
Empty Transfer 

Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value = 1 

1 = User ISR interrupt occurred because the hardware FIFO transitions to 
full. 

1 = User ISR interrupt occurred because the hardware FIFO transitions to 
empty. 

Overlap Transfer 1 = User ISR interrupt occurred because a single OVERLAP _INTR byte 
transfer has occurred. 

Busy 

nAck 

nError 

Select 

PError 

1 = User ISR interrupt occurred because the Busy signal is low. 

1 = User ISR interrupt occurred because of a nAck signal transition low. 

1 = User ISR interrupt occurred because of a nError signal transition. 

1 = User ISR interrupt occurred because of a Select signal transition. 

1 = User ISR interrupt occurred because of a PError signal transition. 

Upon receiving a POR signal, this register is cleared to o. 

17 -44 The HP Parallel Interface 



IOREAD_BYTE and IOWRITE_BYTE Summary 

This section describes the HP parallel interface's IOREAD_BYTE and IOWRITE_BYTE 
registers. You should keep in mind that these registers should be used only when you know 
the exact consequences of their use, because using some of the registers improperly may result 
in improper interface behavior. If the desired option can be performed with IOSTATUS and 
rOCONTROL, you should not use IOREAD_BYTE or IOWRITE_BYTE. 

HP ParalieIIOREAD_BYTE Registers 

Register 1 Card Identification 

Register 3 Interrupt and DMA Status 

Register 5 FIFO and Peripheral Line Status 

Register 7 Host Line Status 

Register 9 FIFO and Peripheral Line Interrupt Status 

Register 11 FIFO Read 

IOREAD_BYTE Register 1 (Card Identification) 

This register always contains 6, the identification for HP parallel interfaces. 

IOREAD_BYTE Register 3 (Interrupt and DMA Status) 

Bit 7 Bit 6 Bit 5 I Bit 4 Bit 3 Bit 2 Bit 1 

Interrupts Interrupt Interrupt Level I/O being Input DMA 
are is currently 00 = 3 Modified Enabled Channell 

Enabled requested 01 = 4 Enabled 
10 = 5 
11 = 6 

Value=128 Value=64 Value=32 I Value=16 Value =8 Value=4 Value =2 

IOREAD_BYTE Register 5 (FIFO and Peripheral Line Status) 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 

FIFO FIFO nStrober Busy nAck nError Select 
Full Empty Asserted Asserted Asserted Asserted Asserted 

Low High Low Low High 

Value = 128 Value=64 Value=32 Value = 16 Value =8 Value=4 Value=2 

Bit 0 

DMA 
Channel 0 
Enabled 

Value = 1 

Bit 0 

PError 
Asserted 

High 

Value=l 

The HP Parallel Interface 17 -45 



IOREAD_BYTE Register 7 (Host Line Status) 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

0 0 0 0 0 nInit nSelectIn Wr/nRd 
Asserted Asserted Asserted 

Low Low High 

Value = 128 Value =64 Value=32 Value = 16 Value=8 Value=4 Value=2 Value = 1 

IOREAD_BYTE Register 9 (FIFO and Peripheral Line Interrupt Status) 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

FIFO FIFO 0 Busy nAck nError Select PError 
Full Empty Low Transition Transition Transition Transition 

Interrupt Interrupt Interrupt Low Interrupt Interrupt Interrupt 
Request Request Request Interrupt Request Request Request 

Request 

Value = 128 Value=64 Value=32 Value = 16 Value=8 Value=4 Value=2 Value = 1 

IOREAD_BYTE Register 11 (FIFO Read) 

Data can be read from the FIFO when Input is enabled, and the FIFO is not empty. Reading 
the FIFO when these conditions are not true will not generate an error or an interrupt, 
however, the data value read is unpredictable. 

HP Parallel IOWRITE_BYTE Registers 

Register 1 Reset Interface 

Register 3 Interrupt and DMA Enable 

Register 7 Host Line Control 

Register 9 FIFO and Peripheral Line Interrupt Enable 

Register 11 FIFO Write 

IOWRITE_BYTE Register 1 (Reset Interface) 

Writing any numeric value to this register resets the HP parallel interface. 

17 -46 The HP Parallel Interface 



IOWRITE_BYTE Register 3 (Interrupt and DMA Enable) 

Bit 7 Bit 6 J Bit 5 I Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Enable Modify Enable Enable Enable 
Interrupts Not Used I/O Input DMA DMA 

Channell Channel 0 

Value = 128 Value=64 I Value=32 I Value=16 Value=8 Value=4 Value=2 Value=l 

IOWRITE_BYTE Register 7 (Host Line Control) 

Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 Bit 2 Bit 1 Bit 0 

Assert Assert Assert 
Not Used nlnit nSelectIn Wr/nRd 

Low Low High 
Empty 

Value=128 I Value=64 I Value=32I Value=16 I Value=8 Value=4 Value=2 Value=l 

IOWRITE_BYTE Register 9 (FIFO and Peripheral Line Interrupt Enable) 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Enable Enable Enable Enable Enable Enable Enable 
Interrupt Interrupt Not Used Interrupt Interrupt Interrupt Interrupt Interrupt 
for FIFO for FIFO for Busy for nAck for nError for Select for PError 

Full Empty Low Transition Transition Transition Transition 
Low 

Value = 128 Value=64 Value=32 Value = 16 Value=8 Value = 4 Value=2 Value=l 

IOWRITE_BYTE Register 11 (FIFO Write) 

Data can be written to the FIFO when Input is disabled, and the FIFO is not full. Writing 
to the FIFO when these conditions are not true will not generate an error or an interrupt, 
however, the data written is lost. 

The HP Parallel Interface 17-47 





18 
SCSI Programmer's Interface 

This chapter tells how to write applications that access the HP 98658A and HP 98265A 
SCSI interface cards. Note that it does not discuss how to attach SCSI discs to the Pascal 
Workstation. For information on this, read the section "Adding Interfaces and Peripherals" in 
the chapter "Special Configurations" found in Volume 2 of the Pascal 3.2 Workstation System 
manual. 

Note 

Note 

To successfully use the SCSI programmer's interface, you should become 
familiar with the SCSI bus and command concepts as described in the ANSI 
Standard Small Computer System Interface (SCSI): X3.131-1986 manual. 
This can be obtained from the American National Standards Institute, 1430 
Broadway, New York, NY, 10018. 

The programmer's interface to the SCSI bus is not compatible with the 
I/O library. Thus, you can not use the procedures and functions found 
in the following modules: GENERAL_O, GENERAL_I, GENERAL_2, 
GENERAL_3, and GENERAL_4. In most cases, these routines will gen~rate 
an error, however in some cases unpredictable results may occur. 

The SCSI Bus 
The SCSI bus is supported by the Pascal Workstation when it is attached to an HP 98658A or 
HP 98265A SCSI interface card. The SCSI bus driver must also be in memory as described in 
the next section. 

The SCSI bus protocol is a physical communication scheme with commands and protocols 
that transport data between a host and peripheral. The traditional communication layers 
which are general enough to be interchangeable were not used by the SCSI communication 
protocol. For example, to communicate a command to a SCSI peripheral, the physical bus 
must first be in a command phase. 

SCSI Programmer's Interface 18-1 



It is helpful to consider SCSI operations only from the viewpoint of SCSI commands, and let 
the transportation of these commands and subsequent data be left to a driver which contains 
the SCSI communication protocol. The Pascal types, constants, procedures, and functions 
found in the SCSILIB module represent a programmer's interface at this level. 

As an example, let's suppose you want to write an application which communicates with a 
SCSI tape drive. You can write a Pascal application that uses the data structures, procedures, 
and functions found in the SCSILIB module to send a SCSI command to the tape drive 
followed by optionally sending or receiving data. 

Files Used to Communicate with the SCSI Bus 
Two files comprise the necessary tools for writing a Pascal application to communicate with 
the SCSI bus: 

SCSIDVR 

SCSILIB 

SCSIDVR is the SCSI bus driver which contains the SCSI communication protocol. This file 
must be executed prior to executing a Pascal SCSI application. When SCSIDVR is executed, 
it PLOADs itself. When SCSI discs are attached to the Pascal Workstation, SCSIDVR would 
normally be in INITLIB. 

The SCSIDVR file is found on the LIB: disc; however, for double-sided media it is found on the 
ACCESS: disc. 

SCSILIB contains the SCSILIB module which is necessary for communicating with the SCSI 
bus driver. A Pascal application that wants to communicate with a SCSI peripheral must 
IMPORT SCSILIB. In order to be imported successfully, SCSILIB must be accessible during the 
compilation and loading of a program. The easiest way to ensure accessibility at these two 
times is to put SCSILIB into the current system library file (see the section "Overview of the 
Procedure Library" in the "Overview" chapter of this manual). 

The SCSILIB file is found on the LIB: disc; however, for double-sided media it is found on the 
ACCESS: disc. 

18-2 SCSI Programmer's Interface 



Using the SCSI Programmer's Interface 
In order to use the SCSI programmer's interface, the program must use the $SYSPROG ON$ 
compiler directive. 

The SCSI bus driver handles sessions. To understand the SCSI programmer's interface, one 
must first understand what a SCSI session is. 

SCSI Session 

A SCSI session is a term used to represent the standard sequence of events that take place 
while a SCSI host communicates a single command with a SCSI target device. A session 
consists of: 

• Arbitrating for the bus 

• Selecting a target device 

• Sending a command to the device 

• Optionally sending data to or receiving data from the target device (depends on the 
command) 

• Handling SCSI messages 

• Getting status back from the target device 

• Releasing the bus. 

Note that a session occurs for each command sent to a target device. 

The SCSI bus driver handles sessions. 

It is convenient to consider SCSI operations only from the viewpoint of SCSI sessions, and let 
the transportation of a command and subsequent data be left to the SCSI bus driver. The 
layer of software which formats a command, provides the data buffers, and hands these off to 
the SCSI bus driver is considered the session layer. Upon command completion, the session 
layer would receive and interpret the session status. 

The SCSI programmer's interface represents the session layer. Programs using the SCSI 
programmer's interface are SCSI applications. 

Note that SCSI messages are handled entirely within the SCSI bus driver and cannot be 
affected by a SCSI application. 

SCSI Programmer's Interface 18-3 



The SessionBlock 

A SessionBlock is required for each session requested of the SCSI bus driver. The 
SessionBlock is a data structure which uniquely defines the: 

• Target device 

• Command 

• Data 

• Response 

• Error information 

that are required for a session. 

The SCSI application acquires memory for a SessionBlock, fills out the necessary fields, 
and requests a session from the SCSI bus driver by calling one of the procedures or functions 
within the SCSI programmer's interface. A SessionBlock can be reused. 

The types and constants exported from the SCSILIB module comprise the Session Block. 
The SCSILIB types and constants follow: 

type 
s_byte = 0 .. 255; 
s_short = 0 .. 65535; 
s_short_signed = -32768 .. 32767; 
PtrS_byte = -s_byte; 
PtrChar = -char; 
s_TYPE_ISC = O .. 31; 

type 
PtrSessionBlockType -SessionBlockType; 
ScsiDeviceType = 0 .. 7; 

InternalErrType = ( NolntErr, ScsiStackingErr, RunLevelErr, 
StateMachineErr, ScsilnteruptErr, ScsiAddressErr, 
SelectRetryErr, ScsiManXferErr, ScsiXferErr, 
XferRetryErr, ScsiEscapeErr, ScsiPhaseErr, 
ScsiCatastrophicErr, ScsiBadMsg, ScsiTimeOutErr, 
ScsiXferParmErr, ScsiMiscErr ); 

SessionStateType = ( 
SessionWaiting, 
SessionRunning, 
SessionSuspended, 
SessionComplete 
) ; 

{Session is initialized and waiting to be started.} 
{Session running (State Machine is started)} 
{Target disconnected, bus released, awaiting reselection} 
{Session terminated, either normally or with an err} 

ScsiCallBackType = Procedure(pSB:PtrSessionBlockType); 

BufferBlockType = RECORD 
BufPtr:PtrS_byte; 
BufLen:integer; 
DoDMA:Boolean; 

END; 

18-4 SCSI Programmer's Interface 



SessionBlockType = RECORD 
{Caller sets before session} 
SelectCode:s_TYPE_ISC; 
Device:ScsiDeviceType; 
LUN:s_byte; 
SUN:s_byte; 
Overlap: Boolean; 
DoNotDisconnect:Boolean; 
CmdPtr:ANYPTR; 
CmdLen:s_byte; 
BufIn:BufferBlockType; 
BufOut:BufferBlockType; 
SessionCompleteCallBack:ScsiCallBackType; 

{set by SCSI Bus Driver during session} 
SessionState:SessionStateType; 
SessionStatus:s_byte; 
InternalStatus:InternalErrType; 
ResidualCount: INTEGER; 

{Internal Use Only} 
{InternalBlock used by driver} 
InternalBlock:PACKED ARRAY [1 .. 128] of CHAR; 

END; 

PtrDeviceAddressVectorsType = -DeviceAddressVectorsType; 
DeviceAddressVectorsType = PACKED RECORD 

sc, {select code} 
ba, {bus address - Session Device} 
du, {device unit - Session LUN} 
dv {device volume - Session SUN} 

: -128 .. 127; 
END; 

SCSI Programmer's Interface 18-5 



The fields of the SessionBlock record have the following definition: 

SelectCode 

Device 

LUN 

SUN 

Overlap 

DoNotDisconnect 

CmdPtr 

CmdLen 

BufIn.BufPtr 

BufIn.BufLen 

BufIn.DoDMA 

The select code at which the SCSI bus interface card resides. 

The SCSI device number of the peripheral targeted for communication. 

The logical unit number of the peripheral targeted for communication. 

The secondary logical unit number of the peripheral targeted 
for communication. This feature is not supported by the Pascal 
Workstation SCSI bus driver; therefore, this field should be set to O. 

The SCSI bus driver is interrupt driven, and this field tells the driver if 
it should return control to the SCSI application between interrupts or 
not. 

Most of the overlap time will occur when the peripheral has 
disconnected, or a DMA transfer is in progress. 

Tells the SCSI bus driver if the peripheral should be allowed to 
disconnect from the bus or not. 

If overlap is set to TRUE, then setting this field to FALSE will increase the 
total amount of overlap time available. 

Pointer to a block of data which comprises a SCSI command. Linked 
commands are not supported. 

Length of the SCSI command. 

Pointer to the block of data which will receive data generated by the 
SCSI command during the SCSI DATA IN bus phase. 

Length of the buffer pointed to by Buf In. BufPtr. The SCSI bus driver 
will not allow a transfer of greater length than this value. 

The maximum length that can be transferred by the SCSI hardware is 
16Mbytes - 1, which is HEX ( ) OOffffff ) ) . 

Flag that tells the SCSI bus driver whether DMA should be used during 
the SCSI DATA IN bus phase. 

Odd byte DMA lengths or buffers that begin on odd boundaries can not 
be used with the DMA hardware. DMA transfer requests with these 
conditions will be treated as non DMA requests. 

To get the most out of the DMA hardware, the buffer should begin on 
a long boundary, that is it should be evenly divisible by 4. The length 
should also be evenly divisible by 4. 

NOTE: If the DMA transfer should terminate early or if the device 
disconnects on an odd boundary, then data may be lost. If data is 
going to be lost, the SCSI bus driver will abort the current session and 
generate an internal error. For these reasons, Pascal Workstation only 
uses DMA for disc read and write operations. 

18-6 SCSI Programmer's Interface 



BufOut 

SessionComplete­
CallBack 

SessionState 

SessionStatus 

InternalStatus 

ResidualCount 

Same as BufIn except that the direction of transfer is out of the 
SPU. 

When this field is non-zero and Overlap is true, the SCSI bus driver 
will call this procedure when the session has completed. 

The SCSI bus driver maintains the state of the session in this 
field. When the SessionBlock is first received, the state is set 
to SessionWai ting. After the target device has successfully 
been selected, the state is set to SessionRunning. If the target 
disconnects, then the state is set to SessionSuspended until 
such time as the target reselects the SCSI bus driver, after which 
the state is set to SessionRunning. Finally, when the Command 
Complete message is received or an error occurs, the state is set to 
SessionComplete. 

The status byte received from the target device during the SCSI 
STATUS bus phase. 

The SCSI bus driver's internal error code. 

The amount of data not transferred during the most recent session. 

During ,a session, the SCSI bus driver will leave the user provided parameters in the 
SessionBlock unchanged; allowing the caller to reuse the SessionBlock. Of course, if 
the command generates a DATA IN transfer sequence, the data blocks pointed to by the 
SessionBlock will be modified. 

The SessionBlock merely contains pointers to the command and data blocks that are 
exchanged with the target device. It is the caller's responsibility to acquire memory for the 
command and data blocks and properly format them. 

SCSI Programmer's Interface 18-7 



Requesting a SCSI Session 

The steps required of a SCSI application to request a SCSI session are: 

1. Acquire memory for a SessionBlock. 

2. Initialize the SessionBlock for the target device. 

3. Set up the SessionBlock for a specific command. 

4. Call ScsiHandleSession. 

5. React to any errors that may have arisen. 

Each of the above steps will now be discussed. An example program, ScsiTest, will be built 
up during the following discussion. This program is included on the DOC: disc. 

Acquiring memory for a Session Block 

It is the caller's responsibility to acquire enough memory for the SessionBlock. This can 
easily be accomplished by using the Pascal NEW procedure or declaring a variable of type 
SessionBlockType. The NEW procedure is explained in the HP Pascal Language Reference 
manual. 

Because all of the programmer's interface procedures and functions require a pointer to a 
SessionBlock, it is recommended that the NEW procedure be used when acquiring memory. 

A SessionBlock is about 256 bytes, so bear this in mind when declaring variables. 

The Scsi Test program below shows an example of acquiring memory for a SessionBlock 
using the NEW procedure. 

$sysprog on$ 
program ScsiTest(input. output); 

import SCSILIB; 

var 

begin 

pSB:PtrSessionBlockType; 

{ 

Function to get memory from the heap. 
} 

function GetSessionBlock:PtrSessionBlockType; 
var 

begin 

end; 

pMySB:PtrSessionBlockType; 

new(pMySB); 
GetSessionBlock := pMySB; 

pSB := GetSessionBlock; 
end. 

18-8 SCSI Programmer's Interface 



Initializing the Session Block for a Target Device 

Before talking to a target device for the first time, it is highly recommended a call be 
made to ScsiSBlni t which initializes a SessionBlock for a target device. This routine 
initializes the entire SessionBlock to NULL, sets the SelectCode, device, and LUN fields to the 
specified values, and initializes the Overlap and DoNotDisconnect fields to FALSE and TRUE 
respectively. 

Note that if the entire SessionBlock is not initialized to nulls before calling the SCSI bus 
driver, unpredictable results may occur. 

The Scsi Test program is now updated to include a procedure which initializes the 
SessionBlock. Just the changes ~re shown. 

const 
MyDeviceConst = DeviceAddressVectorsType[ 

sc:14, 
ba:O, 
du:O, 
dv:O ]; 

{ 

Procedure to initialize the SessionBlock 
} 

procedure InitScsiSB(pSB:PtrSessionBlockType); 
var 

begin 

end; 

DAV:DeviceAddressVectorsType; 

DAV := MyDeviceConst; 
ScsiSBlni t (pSB ,addr (DAV» ; 

SCSI Programmer's Interface 18-9 



Setting Up the SessionBlock for a Specific Command 

Before each session, the SessionBlock must be initialized with a pointer to the command 
block, and buffers for data. It is the caller's responsibility to acquire memory for the 
command block and data buffers and properly initialize them. This job becomes quite easy 
when using packed records and constants. 

Linked commands are not supported. 

If the command generates inbound data, then the Buf In record should be used for the data 
buffer. Conversely, if the command expects outbound data, then the BufOut record should -be 
used. If the command does not generate data, then neither record requires initialization. 

The BufLen field of the data buffer (BufIn or BufOut) provides the SCSI bus driver with 
a maximum amount of data that can be transferred in the respective direction (input or 
output). That is, the BufPtr field points to BufLen bytes of available data. It is the caller's 
responsiblity to ensure that the amount of data generated by the desired SCSI command can 
successfully fit in the provided data buffer. If the SCSI command generates more data than is 
allowed by BufLen the system will hang. 

For example, suppose the caller's SCSI command is a READ command (code 08h) that is 
directed to a disc with 512 byte logical blocks, and the transfer length field of the READ 
command has a value of 1000. This will cause the disc to generate 512000 bytes of inbound 
data. Now suppose that BufIn. BufLen has a value of 1024. This indicates that there is only 
1024 bytes of available data pointed to by BufIn. BufPtr. After 1024 bytes of data has been 
transferred in, the SCSI bus driver will not accept more data. The disc, however, will not 
terminate the session until all of the data has been transferred. Consequently, the system 
deadlocks. If this situation does occur, a possible method of recovery is to powercycle the 
SCSI target device. If the SCSI target is removable media, then removing the media may also 
recover the system. 

18-10 SCSI Programmer's Interface 



The Scsi Test program is now expanded, to set up the SessionBlock for a SCSI INQUIRE 
command. This command generates inbound data, so the Buf In record is used. DoDMA is set 
to FALSE because the inbound data length is a variable amount from device to device. Just 
the new procedure, DoInquire, is shown. 

{ 

Procedure to do an Inquire Command 
} 

procedure DoInquire(pSB:PtrSessionBlockType); 
type 

const 

inq_string = string[255]; 
inquiry_cmd_type = packed record 

op_code s_byte; 
lunit 0 .. 7; 
padO o .. 31; 
pad1 s_short; 
reqlen s_byte; 
pad2 s_byte; 

end; 

inquiry_data_type = packed record 
case integer of 
1: (device_code 
2: (device_type 

rmb 
qualifier 
iso_version 
ecma_version: 
ansi_version: 
pad1 
vendor 

3: (inqjunk 
vendlen 

end; 

s_short); 
s_byte; 
boolean; 
O .. 127; 
O .. 3; 
O .. 7; 
0 .. 7; 
s_byte; 
inq_string); 
integer; 
s_byte) ; 

inquiry_cmd_const inquiry_cmd_type[ 
op_code:hex('12'). 
lunit:O. 

var 
InqCmd:inquiry_cmd_type; 
InqData:inquiry_data_type; 

begin {Do Inquire} 
with pSBA. BufIn do 
begin 

InqCmd := inquiry_cmd_const; 
InqCmd.lunit := LUN; 
CmdPtr := addr(InqCmd); 
CmdLen := sizeof(InqCmd); 
BufPtr := addr(InqData); 
BufLen := sizeof(InqData); 
DoDMA := false; 

end; 
end; 

padO:O. 
pad1:0. 
reqlen:255. 
pad2:0]; 

SCSI Programmer's Interface 18-11 



Calling ScsiHandleSession 

The programmer's interface provides a function, ScsiHandleSession, which will properly 
manage a SCSI session. This routine: 

• Initializes the command and buffer fields of the SessionBlock with the values provided by 
the caller 

• Properly calls the SCSI bus driver 

• Handles errors when the session has completed. 

The result of the session is translated into an I/O system error code (IORESULT) and returned. 
Note that 10RESULT is not set. 

If the SCSI status byte has bit 0 of the status code set (CHECK CONDITION), then 
ScsiHandleSession automatically issues a SCSI REQUEST SENSE command. The user 
provided SessionBlock is preserved during this operation. The sense key is translated into an 
I/O system error code (IORESULT) and returned. Again, note that 10RESULT is not set. 

The REQUEST SENSE data is saved by the programmer's interface and can be retrieved. This is 
discussed in the next session, "Handling SCSI Session Errors" . 

The interface text for the ScsiHandleSession follows: 

function ScsiHandleSession(pSB:PtrSessionBlockType; 
pCmd:ANYPTR; lCmd:integer; 
pOIn:ANYPTR; lOIn: integer; OMAIn:Boolean; 
pOOut:ANYPTR; lOOut:integer; OMAOut:Boolean):integer; 

The Dolnquire procedure of the ScsiTest program is now updated to use the 
ScsiHandleSession procedure. Now, instead of updating the SessionBlock with the 
command and buffer information, this information is passed into ScsiHandleSession. 

var 
InqCmd:inquiry_cmd_type; 
InqOata:inquiry_data_type; 
ErrorCode:integer; 

begin {Oolnquire} 
InqCmd := inquiry_cmd_const; 
InqCmd.lunit := LUN; 
ErrorCode := ScsiHandleSession(pSB, 

end; 

addr(InqCmd), sizeof(InqCmd), 
addr(InqOata), sizeof(InqOata), false, 
Nil, 0, false); 

18-12 SCSI Programmer's Interface 



Handling SCSI Session Errors 

If ScsiHandleSession returns a non-zero value, then an error has occurred. The return value 
is an I/O System Error code. The exact cause of the error can be detected by examining the 
SessionBlock. Two types of errors are possible: 

• A SCSI bus driver error, indicated by the InternalStatus field . 

• A SCSI session error, indicated by the SessionStatus field. 

The InternalStatus field takes precedence over the SessionStatus field. That is, if the 
InternalStatus field is non-zero, then the SessionStatus field is invalid. A description of 
the InternalStatus field values follows: 

InternalStatus 

NolntErr 

ScsiStackingErr 

RunLevelErr 

StateMachineErr 

ScsilnterruptErr 

ScsiAddressErr 

SelectRetryErr 

ScsiManXferErr 

ScsiXferErr 

ScsiEscapeErr 

Description 

No Internal Error. 

An error occured while attempting to stack a session. This 
error commonly occurs if SessionState indicates session is 
busy or if Overlap is not TRUE. 

The current SPU run level is equal to or greater than the SCSI 
hardware interrupt level. 

The SCSI bus driver state machine has detected an error. 
This usually occurs because a SessionBlock is being used for 
multiple sessions simultaneously. May also occur if the SCSI 
hardware is bad. 

An unexpected interrupt has occured. This usually occurs 
when a target device resets the bus. 

The target device cannot be addressed. This error commonly 
occurs if there is incorrect information in the SelectCode, 
Device, LUN, or SUN fields. This error is also generated if the 
SCSI bus driver is not in memory. 

The SCSI bus driver has failed in its attempt to select the 
target device. This usually occurs because the bus is currently 
busy or the SCSI bus driver has lost arbitration. 

The SCSI bus driver has failed when attempting to 
communicate during the SCSI MESSAGE or STATUS bus 
phase. 

The SCSI bus driver has failed when attempting to 
communicate during the SCSI COMMAND, DATA IN, or 
DATA OUT bus phase. Also occurs if DMA is being used 
and target has terminated communication on an odd byte 
boundary. 

The Operating System has generated an ESCAPE while the 
SCSI bus driver was executing. 

SCSI Programmer's Interface 18-13 



InternalStatu8 

ScsiPhaseErr 

ScsiCatastrophicErr 

ScsiBadMsg 

ScsiTimeOutErr 

ScsiXferParmErr 

ScsiMiscErr 

Description 

The Target has either changed the bus to a bus phase that the 
SCSI bus driver cannot currently respond to or is not changing 
the bus phase when the SCSI bus driver expects it to. 

An error has occured that the SCSI bus driver cannot explain. 

The Target device has sent an unsupported message to the 
SCSI bus driver. 

The SCSI bus driver has timed out while waiting for a 
particular response from the target device. 

A value in the CmdPtr, CmdLen, BufIn, or BufOut field is 
not correct. This error is generated when the SCSI bus 
driver is attempting to transfer. Commonly occurs for a NIL 
pointer, a zero or negative length or a length greater then 
hex( 'OOffffff')j 

Unrecognized error state. 

If the InternalStatus field is 0 (NoIntErr), the SessionStatus field is non-zero, and bit 0 
of the status code is set, then ScsiHandleSession has automatically issued a SCSI REQUEST 
SENSE command. The data generated by this command can be retrieved by calling the 
ScsiSessionSense procedure. The interface text for this procedure follows: 

procedure ScsiSessionSense(SelectCode:s_TYPE_ISC. 
pBuf:ANYPTR; 

Var Len:integer); 

The SelectCode must be the same as in the SessionBlock given to ScsiHandleSession. 

On entry, Len indicates the size of the block of memory pointed to by pBuf. On exit, Len 
indicates the amount of data placed in the block of memory pointed to by pBuf. 

18-14 SCSI Programmer's Interface 



The Dolnquire procedure of the ScsiTest program is now updated to check for and handle 
errors. 

import IOCOMASM. SCSILIB; 

var 
InqCmd:inquiry_cmd_type; 
InqData:inquiry_data_type; 
ErrorCode:integer; 
Buf:packed array [0 .. 255] of char; 
Len: integer; 

begin {DoInquire} 
with pSB A do 
begin 

end; 

InqCmd := inquiry_cmd_const; 
InqCmd.lunit := LUN; 
ErrorCode := ScsiHandleSession(pSB. 

addr(InqCmd). sizeof(InqCmd). 
addr(InqData). sizeof(InqData). false. 
Nil. O. false); 

if ErrorCode <> 0 then 
begin 

writeln('ScsiHandleSession reports an error'); 
writeln('while doing an Inquire Command.'); 
writeln('The Error Code is: '.ErrorCode:1); 

if InternalStatus <> NoIntErr then 
begin 

writeln('SCSI bus driver error.'); 
writeln('Error is '.InternalStatus); 

end 
else if bit_set(SessionStatus. 1) then 
begin 

write('Sense Code is: '); 
Len := sizeof(Buf); 
ScsiSessionSense(SelectCode. addr(Buf). Len); 
if «Len >= 8) and 

«ord(Buf[O]) Mod Hex('80'» = hex('70'» 
) then 
writeln«ord(buf[2]) Mod hex('10'»:1) 

else 

end 
else 

writeln('Unavailable. '); 

writeln('SessionStatus is: '.SessionStatus); 
end 
else 

writeln('Inquire is successful'); 
end; 

SCSI Programmer's Interface 18-15 



Built-In SCSI Command Support 

The SCSI programmer's interface provides built-in support for several SCSI commands. The 
procedures which provide this built-in support are provided in the following list. Before 
calling one of these procedures, a SessionBlock must be obtained and initialized for the 
target SCSI device. 

Procedure SCSI Command 

ScsiCheckDev TEST UNIT 

ScsiDevInfo INQUIRE 

ScsiDiscSize READ CAPACITY, MODE SENSE 

ScsiDiscBlocks READ CAPACITY 

ScsiDiscRead EXTENDED READ 

ScsiDiscWrite EXTENDED WRITE 

ScsiDiscFormat FORMAT UNIT 

ScsiDiscPrevent PREVENT/ALLOW MEDIUM REMOVAL 

ScsiDiscAllow PREVENT/ALLOW MEDIUM REMOVAL 

The above procedures interface to the ScsiHandleSession function. The value returned from 
ScsiHandleSession is placed in the Pascal Workstation IORESULT global space. This value 
can be obtained by using the $SYSPROG$ or $UCSD$ compiler directive (see the section "The 
IORESULT Function" of the chapter "System Programming Language Extensions" in the 
HP Pascal Language Reference for more details). For information on error handling when 
IORESULT is a non-zero value, refer to the section "Handling SCSI Session Errors." 

These procedures use memory off of the stack to format the SCSI commands required by the 
ScsiHandleSession function. Note that calling these procedures with Overlap set to TRUE, 
is not supported. Doing this would cause these procedures to set an error in the IORESULT 
global space (Illegal I/O Request) and return to the SCSI application. 

For more information, refer to "Appendix A" in the "Pascal Procedure Library Reference" of 
this manual for the details on the above procedures. 

18-16 SCSI Programmer's Interface 



Overlapped Sessions 

The SCSI bus driver is interrupt driven. In between interrupts, the SCSI bus driver normally 
retains control until the next interrupt occurs. An overlapped session returns control to the 
application in between interrupts. To generate an overlapped session, set Overlap in the 
SessionBlock to TRUE. 

The ScsiHandleSession function behaves differently when Overlap is set to TRUE. After 
receiving control back from the SCSI bus driver, it will immediately return control to the 
application without doing any error checking. The Status of the session can be monitored by: 

1. Checking the SessionS tate flag. 

2. Calling the ScsiSessionComplete function. 

3. Having the SCSI bus driver call a call-back procedure upon completion. 

Setting DoNotDisconnect to FALSE will maximize the amount of overlap time available to the 
applkation. Most of the overlapped time will occur during peripheral disconnect and DMA 
transfers. 

When using overlapped sessions, it is imperative that the SessionBlock not be modified 
before the session has completed. This can cause unpredictable results, such as crashing or 
hanging the system. 

Before a session completes, it is possible to initiate a second session with the same target or 
with another target. This is referred to as stacking sessions and is discussed in more detail 
under the section "Stacking Sessions." 

An activct overlapped session can be aborted by using the ScsiSessionAbort procedure. 
Refer to the section "Aborting an Active Overlapped Session." 

When an overlapped session completes, the same error handling done by ScsiHandleSession 
can be affected by calling the ScsiCheckError function. Refer to the section "Checking for 
Errors on Overlapped Sessions." 

Overlapped sessions are not supported by the built-in SCSI command support routines. You 
should refer to the section "Built-in SCSI Command Support." 

Using the SessionState Field 

When the session completes, the SCSI bus driver sets the SessionState flag in the 
SessionBlock to SessionComplete. The SCSI application can monitor this flag as a means of 
determining. when the session has completed, for example: 

with pSB~ do 
begin 

InqCmd := inquiry_cmd_const; 
InqCmd.lunit := LUN; 
Overlap := TRUE; 
ErrorCode := ScsiHandleSession(pSB, 

addr(InqCmd), sizeof(InqCmd), 
addr(InqData), sizeof(InqData), false, 
Nil, 0, false); 

repeat until SessionState = SessionComplete; 
end; 

SCSI Programmer's Interface 18-17 



Using the ScsiSessionComplete Function 

Included in the SCSI programmer's interface is a function, ScsiSessionComplete, which 
returns TRUE if the session has completed and FALSE otherwise. Thus, instead of checking the 
SessionState flag, the more general and maintainable method of using a system provided 
routine can be used. The above example is modified to show the ScsiSessionComplete 
function usage: 

with pSB- do 
begin 

InqCmd := inquiry_cmd_const; 
InqCmd.lunit := LUN; 
Overlap := TRUE; 
ErrorCode := ScsiHandleSession(pSB. 

addr(InqCmd). sizeof(InqCmd). 
addr(InqData). sizeof(InqData). false. 
Nil. O. false); 

repeat until ScsiSessionComplete(pSB); 
end; 

Using the Call-Back Mechanism 

The SCSI bus driver also provides a call-back mechanism. When the Overlap field is set to 
TRUE, the SessionCompleteCallBack procedure variable field within the SessionBlock is 
examined to see if it is not NIL. This being the case, and the SCSI bus is free, the call-back 
procedure is called. 

Procedure variables are discussed in the section "Procedure Variables and the Standard 
Procedure CALL" of the chapter "System Programming Languages Extensions" in the HP 
Pascal Language Reference manual. 

When writing a call-back procedure, be aware that the SCSI bus driver will call this procedure 
from within an interrupt service routine (ISR). The SPU will be in supervisor mode, and the 
run level will be equal to that of the HP SCSI Interface card interrupt level. Extreme caution 
should be used not to violate the guidelines for ISRs as set forth in the "Interrupt Processing 
Overview" section of the "System Devices" chapter of this manual. 

The session is still active for the SCSI bus driver (SessionState = SessionRunning) even 
though the session has completed as far as the target device is concerned. Note that when 
starting another session from within the SessionCompleteCallBack procedure, the new 
session is a stacked session and must following the rules as outlined in the section "Stacking 
Sessions." In addition, the CPU run level must be set to a level less than the current one 
prior to starting the new session. 

18-18 SCSI Programmer's Interface 



Stacking Sessions 

When using overlapped sessions it is legal to stack sessions for the same bus address or 
another bus address. That is, it is alright to initiate another session before the current session 
has completed. In fact, there is not a limit to the number of session that can be stacked. 

When stacking sessions, there are two golden rules: 

• Each stacked session has to have its own unique SessionBlock. If you Modify the contents 
of a SessionBlock that is currently active, it can cause unpredictable results to occur, 
including crashing or hanging the system . 

• Each stacked session must be overlapped (the Overlap field in the SessionBlock must be 
TRUE). A ScsiStackingErr will occur otherwise. 

It is recommended that each SessionBlock be initialized with ScsiSBlni t before it is 
stacked. 

Whenever a session completes, the SCSI bus driver will attempt to start the next stacked 
session. Sessions are stacked according to the SessionBlock's bus address. The next stacked 
session is found by starting at this session's bus address plus one and searching until a session 
is found or all possible bus addresses have been exhausted. 

If a session is suspended (SessionState is SessionSuspended), the SCSI bus driver will not 
attempt to start the next stacked session. 

Sessions on different select codes are independent of each other. Thus, a session completing 
on one select code will have no effect on the sessions that are stacked on another select 
code. In fact, if two SCSI Interface cards within the same SPU are attached to the same 
bus, it would be impossible for a session on each select code to be running (SessionState 
is SessionRunning). When one select code has a session running and the other select code 
attempts to start a session, the session's attempt to start would fail. 

SCSI Programmer's Interface 18-19 



Aborting an Active Overlapped Session 

It is possible to abort a session when its SessionState field is in the SessionRunning state 
by calling the ScsiSessionAbort procedure. The interface text for this procedure is: 

ScsiSessionAbort(pSB:PtrSessionBlockType); 

A session which is in the SessionWai ting or SessionSuspended state cannot be 
aborted (resetting the bus will kill these sessions). Attempting to abort a session in the 
SessionWaiting or SessionSuspended state will not cause an error. You should check for 
SessionComplete to verify that ScsiSessionAbort was successful. 

When a session is aborted, the SCSI bus driver will attempt to send an ABORT message to the 
session target. If the target does not respond to the ABORT message, the SCSI bus driver will 
then physically reset the SCSI bus. 

Checking for Errors with Overlapped Sessions 

When an overlapped session has completed, the ScsiCheckError function can be called to 
determine if an error has occurred. This function is called by ScsiHandleSession, thus the 
error handling between overlapped sessions and non-overlapped sessions can remain consistent. 

As with ScsiHandleSession, the result of the session is translated into an I/O system error 
code (IORESULT) and returned. 

If the SCSI status byte has bit 0 of the status code set (CHECK CONDITION), then 
ScsiCheckError issues a SCSI REQUEST SENSE command. The user provided SessionBlock is 
preserved during this operation. The Sense Key is translated into an I/O system error code 
(IORESULT) and returned. 

The REQUEST SENSE data is saved by the programmer's interface and can be retrieved. This is 
discussed in the section, "Handling SCSI Session Errors." 

When ScsiCheckError issues the SCSI REQUEST SENSE command, it does so in 
non-overlapped mode (Overlap = FALSE). Note that ScsiCheckError cannot be called from 
within a call-back procedure. If attempted, a ScsiStackingErr will occur. 

Resetting the SCSI Bus 

The SCSI interface card at a given select code can be reset and the physical reset line of its 
SCSI bus can be pulsed by calling the ScsiReset procedure. Doing this will cause all sessions 
attached to that select code to be terminated, and all devices attached to the SCSI bus to 
be reset. Any non-permanent settings that the devices were set to, such as PREVENT MEDIUM 
REMOVAL, will be lost as a result of the bus reset. 

All terminated sessions will have an InternalStatus of ScsiCatastrophicErr. If a 
terminated session is an overlapped session and has a call-back procedure variable in the 
SessionCompleteCallBack field of the SessionBlock, then the call-back procedure will be 
called. 

18-20 SCSI Programmer's Interface 



SCSI Programmer's Interface Summary 
ScsiSBSize Provides the caller with the size of the SessionBlock. 

ScsiSBIni t Initializes a SessionBlock in preparation for a call to 
ScsiHandleSession. 

ScsiHandleSession Interfaces to the SCSI bus driver to handle a session, and upon 
session termination will translate error information into a Pascal 
Workstation IORESULT. If the session status bytes was non-zero, this 
function will execute a REQUEST SENSE command. The sense data is 
translated into a I/O system error code (IORESULT). 

ScsiSessionComplete Determines if an overlapped session has completed or not. 

ScsiCheckError Called by ScsiHandleSession to perform error checking. SCSI bus 
driver error information is translated into a Pascal Workstation 
IORESULT. If the session status byte is non-zero, this function will 
execute a REQUEST SENSE command. The sense data is translated 
into a I/O system error code (IORESULT). 

ScsiSessionSense Returns up to 255 bytes of sense data received during the last 
ScsiHandleSession invocation in which a non-zero status byte was 
received. 

ScsiSessionAbort Aborts an overlapped session which is currently running. 

ScsiReset Resets a SCSI bus interface card and the attached SCSI bus. 

ScsiCheckDev U sing the TEST UNIT command, the current state of a device is 
determined. 

ScsiDevInfo Executes an INQUIRE command and returns important information. 

ScsiDiscSize Uses the READ CAPACITY and MODE SENSE commands to determine 
disc details. 

ScsiDiscBlocks 

ScsiDiscRead 

ScsiDiscWrite 

ScsiDiscFormat 

ScsiDiscPrevent 

ScsiDiscAllow 

Uses the READ CAPACITY command to determine the logical block size 
of the disc and the number of logical blocks on the disc. 

Uses the EXTENDED READ command to read data off a SCSI disc. 

Uses the EXTENDED WRITE command to write data to a SCSI disc. 

Formats a disc using the FORMAT UNIT command. 

Uses the PREVENT/ALLOW MED IUM REMOVAL command to prevent the 
removal of media. 

Uses the PREVENT/ALLOW MEDIUM REMOVAL command to allow the 
removal of media. 

SCSI Programmer's Interface 18-21 





Procedure Library Reference 
Appendix 

A 

Introduction 
The Pascal programming language was designed as a teaching language, and as such was intended 
to be machine independent. This attribute has good and bad points. Being machine independent 
makes the language more easily tranportable, but also ensures that it is difficult, if not impossible, to 
access any innovative hardware features provided by a specific computer system. 

To allow easy access to the graphics and 1/0 features of your computer, a set of procedures and 
functions are provided with your system. This reference describes the syntax and semantics for the 
procedures and functions provided to access 1/0 and graphics. 

The small block of text labeled IMPORT, immediately below the title of each entry, lists the module 
which must be declared in an IMPORT statement in order to access the feature. Modules which are 
needed by these imported modules, if any, are shown in the Module Dependency Table at the end 
of the reference. 

A-I 



A-2 Procedure Library Summary 

ABORTJiPIB 
IMPORT: hpib_2 

iodeclarations 

This procedure ceases all HP-IB activity and attempts to place the HP-IB in a known state. If 
the controlling interface is System Controller, but not Active Controller, it is made Active 
Controller. 

Syntax 

-./ ~( interface ~) 
~ ABORT_HPIB ~ selectcode ~ 

Item 

interface 
select code 

Semantics 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 

The actual action taken depends upon whether the computer is currently active or system 
controller. The various actions taken are listed in the table below: 

System Controller Not System Controller 

Interface Select Primary Addressing Interface Select Primary Addressing 
Code Only Specified Code Only Specified 

IFC (duration ATN 
Active ;;:,100lJ.sec) MTA 

Controller REN UNL 
ATN ATN 

Error Error 

IFC (duration 
Not Active ;;:,100 JLsec)* No 
Controller REN Action 

ATN 

* The IFC message allows a non-active controller (which is the system controller) to become the active controller. 



IMPORT: seriaL3 
iodeclarations 

Procedure Library Summary A-3 

This procedure attempts to return a serial interface to a known state. Any current active 
transfers are halted. 

Syntax 

--f ~( interface ~) 
~ABORT_SERIAL~ select code ~ 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 



A-4 Procedure Library Summary 

IMPORT: general_4 
iodeclarations 

This procedure will stop any transfer that is currently active in the buffer. 

Syntax 

~BORT_TRANSFE~ buffer 
name 

Item Description/Default 

buffer name Variable of TYPE buLinFo_type. 

Semantics 

Range 
Restrictions 

See the Advanced Transfer 
Techniques chapter 

The termination of the transfer is accomplished by resetting the interface currently associated with 
the specified buffer name. This returns the interface to power on default configuration, and all 
configuration information is lost. 



Procedure Library Summary A-5 

ACTIVE_CONTROLLER 
IMPORT: hpib_l 

iodeclarations 

This BOOLEAN function returns TRUE if the specified interface is currently active controller. 

Syntax 

ACTIVE-CONTROLLER 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 



A-6 Procedure Library Summary 

ADDILTO~ISTEN 

Note 

IMPORT: hpib_l 
iodeclarations 

This function is provided for use by the internal 110 Procedure Lib­
rary drivers, only. Unexpected and possible undesirable results may 
occur if it is used. 

The foll~wing sequence of statements will address the interface at select code 7 on the computer 
to listen: 

TALK (7,2a); 
UNLISTEN (7); 
LISTEN( 7, MY_ADDRESS(7»; 



IMPORT: hpib_l 
iodeclarations 

Note 

Procedure Library Summary A-7 

This function is provided for use by the internal liD Procedure lib­
rary drivers, only. Unexpected and possible undesirable results may 
occur if it is used. 

The following sequence of statements will address the interface at select code 7 on the computer 
to talk: 

UNLISTEN (7); 
LISTEN (7t24); 
TALK (7t MY_ADDRESS(7»; 



A-8 Procedure Library Summary 

AWAIT _LOCATOR 
IMPORT: dgLlib 

This procedure waits until activation of the locator button and then reads from the enabled 
locator device. Various echo methods can be selected. 

Syntax 

AWAIT.J.OCATOR 

Item 

echo selector 

button variable name 

x coordinate variable 
name 

y coordinate variable 
name 

button variable 
name 

x cooridinate 
variable name 

Description/Default 

Expression of TYPE INTEGER 

Variable of TYPE INTEGER 

Variable of TYPE REAL 

Variable of TYPE REAL 

Procedure Heading 
PROCEDURE AWAIT_LOCATOR Echo 

I,JAR Button 
I,JAR W}< t WY 

INTEGER; 
INTEGER; 
REAL ) ; 

Semantics 

y cooridinate 
variable name 

Range 
Restrictions 

MININT to MAXINT 

AWAIT_LOCATOR waits until the locator button is activated and then returns the value of the 
selected button and the world coordinates of the locator. While the button press is awaited, the 
locator position can be tracked on the graphic display device. If an invalid button is pressed, the 
button value will be returned as 0; otherwise it will contain the value of the button pressed. On 
locators that use a keyboard for the button device (e.g. Models 226/236), the ordinal value of 
the key pressed is returned. 

The echo selector selects the type of echo used. Possible values are: 

o 
1 
2 
3 
4 
5 
6 
7 
8 

- No echo. 
- Echo on the locator device. 
- Small cursor 
- Full cross hair cursor 
- Rubber band line 
- Horizontal rubber band line 
- Vertical rubber band line 
- Snap horizontal/vertical rubber band line 
- Rubber band box 

9 and above - Device dependent echo on the locator device. 



Procedure Library Summary A-9 

Locator input can be echoed on either a graphics display device or a locator device. The meaning 
of the various echoes on various devices used as locators and displays is discussed below. 

The button value is the INTEGER value of the button used to terminate the locator input. 

The x and y position represent the world coordinate point returned from the enabled locator. 

AWAIT_LOCATOR implicitly makes the picture current before sending any commands to the 
locator device. The locator should be enabled (LOCATOR_INIT) before calling AWAIT _LOCA­
TOR. The locator is terminated by the procedure LOCA TOR_TERM. 

Range and Limit Considerations 
If the echo selector is out of range, the call to AWAIT_LOCATOR is completed using an echo 
selector of 1 and no error is reported. Echoes 2 through 8 require a graphics display to be 
enabled. If a display is not enabled, the call will be completed with echo 1 and GRAPHICSER­
ROR will return 4. 

If the point entered is outside of the current logical locator limits, the transformed point will still be 
returned in world coordinates. 

Starting Position Effects 
The location of the starting position is device dependent after this procedure with echo 0 or echo 
1. For soft-copy devices it is typically unchanged; however, for plotters the pen position (starting 
position) will remain at the last position it was moved to by the operator. This is done to reduce 
pen movement back to the current position after each AWAIT_LOCATOR invocation. 

Echo Types 
Several different types of echoing can be performed. Some echoes are performed on the locator 
device while others use the graphics display device. When the echo selector is in the range 2 thru 
8, the graphics display cdevice will be used in echoing. All of the echoes on the graphics display 
start at a point on the graphics display called the locator echo position (see SET _ECHO_POS). 
For some of these echoes the locator echo pOSition is also used as a fixed reference point. For 
example, the fixed end of the rubber band line will be at the locator echo position. The echoes 
available are: 

2. Small cursor 
Track the position of the locator on the graphics display device. The initial position of the 
cursor is at the locator<echo position. The point returned is the locator position. 

3. Full cross hair cursor 
DeSignate the position of the locator on the graphics display device with two intersecting 
lines. One line is horizontal with a length equal to the width of the logical display surface. 
The other line is vertical with a length equal to the height oOhe logical display surface. The 
initial point of intersection is at the current locator echo position. The point returned is the 
locator position. 

4. Rubber band line 
DeSignate the endpoints of a line. One end is fixed at the locator echo position; the other is 
designated by the current locator position. The locator position can be told from the locator 
echo position by the presence of a small cursor (echo 2) at end representing the locator 
echo position. The point returned is the locator position. 



A-tO Procedure Library Summary 

5. Horizontal rubber band line 
Designate a horizontal line. One endpoint of the line is fixed at the locator echo position: the 
other endpoint has the world Y -coordinate of the locator echo position and the world 
X-coordinate of the current locator position. The locator position can be distinguished from 
the locator echo position by the presence of a small cursor (echo 2) at end representing the 
locator echo position. The point returned will have the X-coordinate of the locator position 
and the Y -coordinate of the locator echo position. 

6. Vertical rubber band line 
Designate a vertical line. One endpoint of the line is fixed at the locator echo position; the 
other endpoint will have the world X-coordinate of the locator echo position and the world 
Y -coordinate of the current locator position. The locator position can be distinguished from 
the locator echo position by the presence of a small cursor (echo 2) at end representing the 
locator echo position. The point returned will have the X-coordinate of the locator echo 
position and the Y -coordinate of the locator position. 

7. Snap horizontal/vertical rubber band line 
Designate a horizontal/vertical line. One endpoint of the line is fixed at the locator echo 
position. The other endpoint will be either a horizontal (see echo 5) or vertical (see echo 6) 
rubber band line, depending on which one produces the longer line. If both lines are of equal 
length, a horizontal line will be used. The locator position can be distinguished from the 
locator echo position by the presence of a small cursor (echo 2) at end representing the 
locator echo position. The point returned is the endpoint of the echoed line. 

8. Rubber band box 
Designate a rectangle. The diagonal of the rectangle is the line from the locator echo position 
to the current locator position. The locator position can be distinguished from the locator 
echo position by the presence of a small cursor (echo 2) at end representing the locator echo 
position. The point returned will be the locator position. 

Echo selectors of 1 and greater than or equal to 9 produce a device dependent echo on the 
locator device. Most locator devices support at least one form of echoing. Possible ones include 
beeping, displaying the value entered, or blinking a light each time a point is entered. If the 
specified echo is not supported on the enabled locator device, echo 1 will be used. 

Echoes on Raster Displays 
Raster displays support all the echoes described under "Echo Types." 

Echoes on HPGL Plotters 
Hard copy plotting devices (such as the 9872 or the 7580) cannot perform all the echoes listed 
above. The closest approximation possible is used for simulating them. The actual echo per­
formed may also depend on whether the plotter is also being used as the locator. The echoes 
available on plotters are: 

2. Small cursor 

Initially the plotter's pen will be moved to the locator echo position. The pen will then 
reflect the current locator position (Le., track) until the locator operation is terminated. 

3. Full cross hair -cursor 
Simulated by ECHO #2. 

4. Rubber band line 

Simulated by ECHO #2. 



Procedure Library Summary A-II 

5. Horizontal rubber band line 
If the plotter is not the current locator device, the.plotter's pen will initially be moved to the 
current locator echo position. The pen will then reflect the X coordinate of the current 
locator position and the Y coordinate of the current locator echo position. 
If the plotter is used as the locator, this echo is simulated by echo 2 except the current 
locator X coordinate and the locator echo position Y coordinate are returned. 

6. Vertical rubber band line 
If the plotter· is not the current locator device, the plotter's pen position will initially be 
moved to the current locator echo position. The pen will then reflect the X coordinate of the 
current locator echo position and the Y coordinate of the current locator position. 
If the plotter is used as the locator, this echo is simulated by echo 2 except the locator echo 
position X coordinate and the current locator Y coordinate are returned. 

7. Snap horizontal/vertical rubber band line 
Designate a horizontal/vertical line. One endpoint of the line is fixed at the locator echo 
position. The other endpoint will be either a horizontal (see echo 5) or vertical (see echo 6) 
rubber band line, depending on which one produces the longer line. If both lines are of equal 
length, a horizontal line will be used. The locator p()sition can be distinguished from the 
locator echo position by the presence of a small cursor (echo 2) at end representing the 
locator echo position. The point returned is the endpoint of the echoed line. 

8. Rubber band box 
Simulated by echo 2. The point returned will be the locator position. 

Absolute Locators (Graphics Tablet or Plotter) 
For graphics tablets, the operator moves the stylus to the desired position and depresses it. The 
button value returned is always one. For an echo selector of 1 the tablet beeper is sounded when 
the stylus is depressed. An echo selector greater than or equal to 9 uses the same echo as an echo 
selector of 1. (Some HPGL plotters have the ability of using the physical pen as a locator. See the 
subsequent section called "HPGL Plotters as Absolute Locators" for details.) 

Relative Locators (Knob or Mouse) - LOCATOR_IN IT Selector 2 
When the knob is specified as the locator (LOCATOR-INIT with device selector of 2) the keyboard 
keys have'the following meanings: 

Arrow keys 

Knob 

Knob with shift key 
pressed 

Mouse 

Number of keys 
1~9 

Move the cursor in the direction indicated. 

Move the cursor right and left. 

Move the cursor up and down. 

Move the cursor in the direction of mouse movement (mouse left = cursor left; 
mouse forward = cursor up; etc.). 

Change the distance the cursor is moved per arrow keypress, knob rotation, or 
mouse movement. 1 provides the least movement and 9 provides the most. 

All other keys act as the locator buttons. The ordinal value of the locator button (key) struck is 
returned in BUTTON. 

For an echo selector of 1 the position of the locator is indicated by a small cross hair cursor on the 
graphics display. 



A-12 Procedure Library Summary 

The initial position of the cursor is located at the current starting position of the graphics display. 
This is the point obtained by the last invocation of await_locator, or the lower left hand corner of 
the locator limits if no point has been received since LOCA TOR_INIT was executed. For back to 
back AWAIT_LOCATOR calls this would mean the second AWAIT_LOCATOR would begin 
where the first AWAIT _LOCATOR left the cursor. Echo selectors greater than or equal to 9 
have the same effect as an echo selector of 1. 

Locator input can be echoed on either a graphics display device or a locator device. Echoes 2 thru 
8 are explained above under "Echoes on Raster Displays" and "Echoes on HPGL Plotters". For 
an echo selector of 0 or 1 the pen tracks the locator position. Echo selectors greater than or equal 
to 9 have the same effect as an echo selector of 1. 

Relative Locators (Knob or Mouse) - LOCATOR_INIT selector 202 
When LOCATOR.JNIT is performed with selector 202, the keyboard keys are initially enabled to 
terminate subsequent AWAIT _LOCATOR calls. The arrow keys do not have any special mean­
ing, and pressing them will not move the cursor, but will instead terminate AWAIT ..... LOCATOR. 
Also, number keys are not special. Mouse and knob devices work as for LOCATOR .. ..INIT with 
selector 2, but the cursor is much more responsive and cursor motions have a "crisp" feel. 

Echo selectors are the same as for the HP-HIL tablets. The mouse or knob "remembers" where 
it was from one AWAIT._.LOCATOR call to another. The cursor is initially displayed in this last 
position unless the device, was moved in the intervening time. SAMPLE .... LOCATOR makes 
sense with this driver, as DGL is "watching" the device position continuously from the time 
LOCATORJNIT is executed, until LOCATOR .... TERM occurs. The position can be changed 
outside of AWAIT ..... LOCATOR calls, which is not true using LOCATOR ... INIT with selector 2. 

Buttons on the device are defined as: 

First button 

Second button 

Third button 

128 

130 

132 

For keyboard keys, the button has the same value as the ordinal of the key would return when 
reading a character from input. 

We recommend using this new capability when you are using a mouse or knob with DGL. This 
capability is available on the HP 98203C HP-HIL keyboard knob. However, it is not supported 
on the HP 98203A and HP 98203B (non-HP-HIL keyboard) knobs. 

HPGL Plotters as Absolute Locators 
The AWAIT_LOCATOR function enables a digitizing mode in the device. For HPGL plotters the 
operator then positions the pen to the desired position with the cursor buttons or joy stick and 
then presses the enter key. The pen state (0 for 'up', and 1 for' down') is returned in the button 
parameter. 

FollOWing locator input (echo on the locator device), the pen position will remain at the last 
position it was moved to by the operator. This means that the starting position for the next 
graphics primitive will be wherever the pen was left. 



Procedure Library Summary A-13 

Locator input can be echoed on either a graphics display device or a locator device. Echoes 2 thru 
8 are explained above under "Echoes on Raster Displays" and "Echoes on HPGL Plotters". For 
an echo selector of 0 or 1 the pen tracks the locator position. Echo selectors greater than or equal 
to 9 have the same effect as an echo selector of 1. 

Error Conditions 
The graphics system must be initialized and the locator device must be enabled or the call will be 
ignored. If the echo selector is between 1 and 9 and the graphics display is not enabled, the call 
will be completed with an echo selector of 1. If any of the preceding errors are encountered, an 
ESCAPE (-27) is generated, and GRAPHICSERROR will return a non-zero value. 

HP-HIL Absolute Locator Semantics 
E c h 0 defines an echoing mechanism for feedback to the user. Echo has the same meaning as when 
applied to a HP 9111A (HP-IB) data tablet. 

BI.I t t on is an integer returned to indicate which key or "button" on the digitizer completed the 
digitize operation. Button will always be returned as 128 on HP-HIL tablets which have only a 
stylus; if the tablet has buttons on the cursor, or a keypad, the value returned will be the HP-HIL 
keycode for the button pressed: 

First button (or stylus) 128 

Second button 

Third button 

Fourth button 

130 

132 

134 

Wx and W)' are the world coordinate real values returned by the locator when the .digitizing is 
completed. A 1,..1 a i t _1 0 cat 0 r does not return to the calling program until the digitizing operation has 
been completed by the user; the completion of the digitizing is considered a "button press" and is 
device-dependent. For the HP-HIL tablet, the digitizing action is to close the switch or button on the 
stylus or "puck," while in "proximity range" of the platen. If multiple tablets are active on the 
HP-HIL, there is the potential for confusion as to whether proximity is in range or out of range; 
DGL does not reliably resolve this situation, and multiple tablets presents the possibility of digitizing 
spurious data. See the section on "out P 1I t _ esc" for information on disabling HP -HIL absolute 
locators. 



A-14 Procedure Library Summary 

BINAND 
IMPORT: iocomasm 

This INTEGER function returns the bit-by-bit logical-and of its arguments. 

Syntax 

Item 

argument 

Semantics 

Description/Default 

Expression of TYPE INTEGER. 

Range 
Restrictions 

MININT thru MAXINT 

The arguments for this function are represented as 32-bit two's complement integers. Each bit 
in an argument is logically anded with the corresponding bit in the other argument. The results 
of all the ands are used to construct the integer which is returned. 



Procedure Library Summary A-15 

BINASL 
IMPORT: iocomasm 

This INTEGER function returns a value which is equal to the argument shifted a specified 
number of bits to the left. Zeros are shifted into the low order bits of the result. 

Syntax 

---{ BINASL ~ argument ~ size of 
shift 

Item 

argument 

size of shift 

Semantics 

Description/Default 

Expression of TYPE INTEGER 

Expression of TYPE INTEGER 

Range 
Restrictions 

MININT thru MAXINT 

Recommended 
Range 

MININT thru MAXINT 0 Thru 32 

The argument for this function is represented as a 32-bit two's complement integer. Bit zero 
is the least significant bit and bit 31 is the most significant bit. 

Size of shift is taken as a positive unsigned 32-bit value, and the shift is done modulo 64 this 
value. 



A-16 Procedure Library Summary 

BINASR 
IMPORT: iocomasm 

This INTEGER function returns a value which is equal to the argument shifted a specified 
number of bits to the right. The sign bit is shifted into high order bits of the result. 

Syntax 

---< BINASR )---(I)--...f argument ~ size of 
shift 

Item 

argument 

size of shift 

Semantics 

Description/Default 

Expression of TYPE INTEGER 

Expression of TYPE INTEGER 

Range 
Restrictions 

MININT thru MAXINT 

Recommended 
Range 

MININT thru MAXINT 0 Thru 32 

The argument for this function is represented as a 32-bit two's complement integer. Bit zero 
is the least significant bit and bit 31 is the most significant bit. 

Size of shift is taken as a positive unsigned 32-bit value, and the shift is done modulo 64 this 
value. 

The sign bit is bit 31. It is 0 for positive arguments and 1 for negative arguments. 

BINASR is really a fast signed divide by 2n. 



Procedure Library Summary A-17 

BINCMP 
IMPORT: iocomasm 

This INTEGER function returns the bit-by-bit logical complement of the argument. 

Syntax 

Item 

argument 

Semantics 

Description/Default 

Expression of TYPE INTEGER. 

Range 
Restrictions 

MININT thru MAXI NT 

The argument for this function is represented as a 32-bit two' 5 complement integer. Each bit in 
the argument is logically complemented, and the resulting integer is returned. 



A-IS Procedure Library Summary 

BINEOR 
IMPORT: iocomasm 

This INTEGER function returns the bit-by-bit logical exclusive-or of the two arguments. 

Syntax 

Item 

argument 

Semantics 

Description/Default 

Expression of TYPE INTEGER. 

Range 
Restrictions 

MININT thru MAXINT 

The arguments for this function are represented as 32-bit two's complement integers. Each bit 
in an argument is exclusively-ored with the corresponding bit in the other argument. The results 
of all the exclusive-ors are used to construct the integer which is returned. 



Procedure Library Summary A-19 

BINIOR 
IMPORT: iocomasm 

This INTEGER function returns the bit-by-bit logical inclusive-or of its arguments. 

Syntax 

Item 

argument 

Semantics 

Description/Default 

Expression of TYPE INTEGER. 

Range 
Restrictions 

MININT thru MAXI NT 

The arguments for this function are represented as 32-bit two's complement integers. Each bit 
in an argument is inclusively-ored with the corresponding hit in the other argument. The results 
of all the inclusive-ors are used to construct the integer which is returned. 



A-20 Procedure Library Summary 

BINLSL 
IMPORT: iocomasm 

This INTEGER function returns a value which is equal to the argument shifted a specified 
numher of hits to the left. Zeros are shifted into the low order hits of the result. 

Syntax 

--.( BINLSL ~ argument ~ size of 
sh i ft 

Item 

argument 

size of shift 

Semantics 

Description/Default 

Expression of TYPE INTEGER 

Expression of TYPE INTEGER 

Range 
Restrictions 

MINI NT thru MAXINT 

Recommended 
Range 

MININT thru MAXINT 0 Thru 32 

The argument for this function is represented as a 32-bit two's complement integer. Bit zero 
is the least significant hit and hit 31 is the most significant hit. 

Size of shift is taken as a positive unsigned 32-hit value, and the shift is done modulo 64 this 
value. 



Procedure Library Summary A-21 

BINLSR 
IMPORT: iocomasm 

This INTEGER function returns a value which is equal to the argument shifted a specified 
number of bits to the right. Zeros are shifted into the high order bits of the result. 

Syntax 

--.( BINLSR ~ argument ~ size of 
shift 

Item 

argument 

size of shift 

Semantics 

Description/Default 

Expression of TYPE INTEGER 

Expression of TYPE INTEGER 

Range 
Restrictions 

MININT thru MAXINT 

Recommended 
Range 

MININT thru MAXINT 0 Thru 32 

The argument for this function is represented as a 32-bit two's complement integer. Bit zero 
is the least significant bit and bit 31 is the most Significant bit. 

Size of shift is taken as a positive unsigned 32-bit value, and the shift is done modulo 64 this 
value. 



A-22 Procedure Library Summary 

IMPORT: iocomasm 

This BOOLEAN function is TRUE if the specified bit position of the argument is equal to 1. 

Syntax 

Item 

argument 

bit position 

Semantics 

Description/Default 

Expression of TYPE INTEGER. 

Expression of TYPE INTEGER. 

Range Recommended 
Restrictions Range 

MININT thru 
MAXINT 

MININT thru 
MAXINT 

o thru 31 

The argument for this function is represented as a 32-bit two's complement integer. Bit 0 is the 
least-significant bit and bit 31 is the most-Significant bit. 



IMPORT: generaL4 
iodeclarations 

Procedure Library Summary A-23 

BUFFEILBUSY 

This BOOLEAN function is TRUE if there, is a transfer active on the specified buffer. 

Syntax 

Item 

buffer name 

DeSCription/Default 

variable of TYPE buLinfo_type 

Range 
Restrictions 

See the Advanced Transfer 
Techniques chapter 



A-24 Procedure Library Summary 

BUFFEILDATA 
IMPORT: generaL4 

iodeclarations 

This INTEGER function returns the number of characters available in the buffer. 

Syntax 

~BUFFERLDATA~ buffer 
name 

Item Description/Default 

buffer name Variable of TYPE buLin/o_type. 

Range 
Restrictions 

See the Advanced Transfer 
Techniques chapter 



IMPORT: generaL4 
iodeclarations 

Procedure Library Summary A-25 

BUFFEILRESET 

This procedure will set the empty and fill pointers to the empty state. 

Syntax 

~UFFERLRESET~ 

Item 

buffer name 

Semantics 

buffer 
name 

Description/Default 

Variable of TYPE buLinfo_type. 

Range 
Restrictions 

See the Advanced Transfer 
Techniques chapter 

The actual buffer data will not be modified - only the pointers to it. A buffer will only be reset if 
there are no transfers currently active on the specified buffer. 



A-26 Procedure Library Summary 

BUFFEILSPACE 
IMPORT: generaL4 

iodeclarations 
This INTEGER function returns the available space left in the buffer. 

Syntax 

~UFFER-SPACE~ buffer 
name 

Item Description/Default 

buffer name Variable of TYPE buLinfo_type. 

Semantics 

Range 
Restrictions 

See the Advanced Transfer 
Techniques chapter 

This function not only returns the current available space in the buffer, it also attempts to keep 
data at the front of the buffer. The buffer is reset if there is no data remaining in the buffer. 



IMPORT: hpib_2 
iodeclarations 

Procedure Library Summary A-27 

CLEAR 

This procedure attempts to send a form of the clear message to the specified HP-IB device(s). 

Syntax 

Item 

device selector 

Semantics 

Active 
Controller 

Not Active 
Controller 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

System Controller 

Interface Select Primary Addressing 
Code Only Specified 

ATN 

ATN 
MTA 
UNl 

DCl 
lAG 
SOC 

Error 

Range 
Restrictions 

o thru 3199 

Recommended 
Range 

See glossary 

Not System Controller 
Interface Select Primary Addressing 

Code Only Specified 

ATN 

ATN 
MTA 
UNl OCl 
lAG 
SOC 



A-28 Procedure Library Summary 

CLEAR_DISPLA Y 
IMPORT: dgl_lib 

This procedure clears the graphics display. 

Syntax 

-+-(CLEAILDISPLAr 

Procedure Heading 
PROCEDURE CLEAR_DISPLAY; 

Semantics 
The graphics system provides the capability to clear the graphics display of all output primitives at 
any time in an application program. This procedure has different meaning for different graphics 
display devices. CLEAR_DISPLAY makes the picture current. The starting position is not 
effected by this procedure. 

HPGL Plotters 
Plotters with page advance will be sent a command to advance the paper. On devices such as 
fixed page plotters, a call to CLEAR_DISPLAY simply makes the picture current. 

Raster Displays 
On CRT displays, this procedure clears the display to the background color. This means slightly 
different things on different displays: 

Monochrome 

HP 98627A 

Color bit-map 

Error conditions: 

If color table location 0 is 0 then the display is cleared to black. Otherwise, the 
display is cleared to white. 

The display is cleared to the 'non-dithered color closest to the color repre­
sented specified by color table location O. (e.g., If color table location 0 was 
Red = .5, Green = .2, Blue = 0, the display would be cleared to red.) 

The display is cleared to the color represented by color table location O. 

The graphics system must be initialized and a display must be enabled or the call will be ignored, 
an ESCAPE ( - 27) will be generated, and the GRAPHICSERROR function will return a non-zero 
value. 



IMPORT: hpib_O 
iodeclarations 

Procedure Library Summary A-29 

CLEAILHPIB 

This procedure will clear the specified HP-IB line. Not all lines are accessible at all times. 

Syntax 

Item 

interface 
select code 

hpib line 
specifier 

Semantics 

Description/Default 

. Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of enumerated 
TYPE type_hpib_line. 

Range 
Restrictions 

o thru 31 

atn_line 
dav_line 
ndac_line 
nrfd_line 
eoLline 
srq_line 
Hc_line 
ren_line 

All possible hpib_line types are not legal when using this procedure. 

Recommended 
Range 

7 thru 31 

Handshake lines (DAV, NDAC, NRFD) are never accessible, and an error is generated if an 
attempt is made to clear them. 

The interface clear line (lFC) is automatically cleared after being set, and no action occurs if an 
attempt is made to clear it through CLEAR_HPIB. 

The Service Request line (SRQ) is not accessible through CLEAR_HPIB, and should be acces­
sed through REQUEST_SERVICE. Attempting to clear the service line directly through 
CLEAR_HPIB generates an error. 

The remote enable line (REN) can be cleared only if the selected interface is currently System 
Controller. Otherwise, an error is generated. 

The attention line (A TN) can be cleared only if the selected interface is currently Active Control­
ler. Otherwise, an error is generated. 



A-30 Procedure Library Summary 

CLEAILSERIAL 
IMPORT: seriaLO 

iodeclarations 

This procedure will clear the specified line on a serial interface card. 

Syntax 

Item 

interface 
select code 

serial line 
specifier 

Semantics 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of enumerated TYPE 
type_seriaLJine. ' 

Range 
Restrictions 

o thru 31 

rts_line 
cts_line 
dcd_line 

drs_line 
rLline 
dtr_line 

Recommended 
Range 

7 thru 31 

The values of the enumerated TYPE type_seriaLline have the following definitions: 

name 

rts 
cts 
dcd 
dsr 
drs 
dtr 
ri 

RS-232 line 

ready to send 
clear to send 
data carrier detect 
data set ready 
data rate select 
data terminal ready 
ring indicator 

The access to the various lines is determined by the use of an Option 1 or Option 2 connector 
on the selected interface. 



Procedure Library Summary A-3t 

CONVERT_WTODMM 
IMPORT: dgLlib 

This procedure converts from world coordinates to millimetres on the graphics display. 

Syntax 

CONVERTjlTODMM 

world x 

world y 

Item 

metric x name 

metric y name 

Description/Default 

Expression of TYPE REAL 

Expression of TYPE REAL 

Variable of TYPE REAL 

Variable of TYPE REAL 

Procedure Heading 
PROCEDURE CONVERT _WTODMM !ADo{ t WY 

I.JAR MiTI}o{ t MiTIY 

Semantics 

REAL; 
REAL ); 

Range 
Restrictions 

This procedure returns a coordinate pair (metric X,metric Y) representing the world X and Y 
coordinates. The metric X and Y values are the number of millimetres along the X and Y axis from 
the supplied world coordinate point to the origin of the metric coordinate system on the device. 
The location of this origin is device dependent. 

For raster devices, the metric origin is the lower-left dot. For HPGL plotters, it is the lower-left 
corner of pen movement. 

Since the origin of the world coordinate system need not correspond to the origin of the physical 
graphics display, converting the point (0.0,0.0) in the world coordinate system may not result in 
the value (0.0,0.0) offset from the physical display device's origin. 

CONVERT _ WTODMM will take any world coordinate point, inside or outside the current 
Window, and convert it to a point offset from the physical display device's origin. 

Error conditions: 
The graphics system must be initialized and the graphics display must be enabled or the call will 
be ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 



A-32 Procedure Library Summary 

CONVERT _ WTOLMM 
IMPORT: dgl_lib 

This procedure converts from world coordinates to millimetres on the locator surface. 

Syntax 

CONVERT~TOLMM 

world x 

world y 

Item 

metric x name 

metric y name 

Description/Default 

expression of TYPE REAL 

expression of TYPE REAL 

variable of TYPE REAL 

variable of TYPE REAL 

Procedure Heading 
PROCEDURE CONVERT_WTOLMM W}-{ t WY 

t.JAR MfTl}-{ t MfT1Y 

Semantics 

REAL; 
REAL ); 

Range 
Restrictions 

This procedure returns a coordinate pair (metric x,metric y) representing the ,world X and Y 
coordinates. The metric x and y values are the number of millimetres along the X and Y axis from 
the supplied world coordinate point to the origin of the metric coordinate system on the device. 
The location of this origin is device dependent. 

For raster devices, the metric origin is the lower-left dot. For HPGL plotters, it is the lower-left 
corner of pen movement. 

Since the origin of the world coordinate system need not correspond to the origin of the physical 
locator device, converting the point (0.0,0.0) in the world coordinate system does not necessarily 
result in the value (0.0,0.0) offset from the physical locator device's origin. 

CONVERT _ WTOLMM will take any world coordinate point, inside or outside the current 
window, and convert it to a point offset from the physical locator origin. 

Error Conditions 
The graphics system must be initialized, the graphics device must be enabled, and the locator 
must be initialized or the call will be ignored, an ESCAPE (- 27) will be generated, and 
GRAPHICSERROR will return a non-zero value. 



Procedure Library Summary A-33 

DISPLA Y _FINIT 
IMPORT: dgLlib 

This procedure enables the output of the graphics library to be sent to a file. 

Syntax 

DISPLAY...fINIT 

Item 

file name 

device specifier 

control value 

Description/Default 

Expression of TYPE Gstring255; can be 
a STRING of any length up to 255 char­
acters. 

Expression of TYPE Gstring255; can be 
a STRING of any length up to 255 char­
acters. First sixcharcters are significant. 

Expression of TYPE INTEGER 

error variable name Variable of TYPE INTEGER 

Procedure Heading 
PROCEDURE DISPLAY_FINIT 

Semantics 

Del,Jice_NafTle: 
Control 

t.JAR Ie r r 

Range 
Restrictions 

Must be a valid 
file name 
(see "The 
File System") 

9872A, 9872B, 
9872C, 9872S, 
9872T, 7440A, 
7470A, 7475A, 
7550A, 7570, 
7570A, 7575, 
7575A, 7576, 
7576A, 7580, 
7580A, 7580B, 
7585, 7585A, 
7585B, 7586, 
7586B, 7595, 
7595A, 7596, 
and 7596A 

MININT thru 
MAXINT 

Gstrins255, 
Gstrins255, 
INTEGER, 
INTEGER ); 

Recommended 
Range 

see below 

DISPLA Y _FINIT allows output from the graphics library to be sent to a file. This file can then be 
sent a graphics display device by use of the operating system's file system (e.g. FILER, or SRM 
spooler). The contents of the file are device dependent, and MUST be sent only to devices of the 
type indicated in device name when the file was created. 

The file name specifies the name of the file to send device dependent commands to. 



A-34 Procedure Library Summary 

The device specifier tells the graphics system the type of device that the file will be sent to. Only 
some types of devices may be use this command. For example raster devices (Le. the internal 
display) may not use this command. For the currently supported devices, see the range restric­
tions under Syntax, above. 

The control value is used to control characteristics of the graphics display device and should be 
set according to the display device the file is intended for. See "Control Values," below, for the 
meaning of the control value. 

The error variable name will contain a value indicating whether the graphics display device was 
successfully initialized. 

Value Meaning 

o The graphics display device was successfully initialized. 

1 The graphics display device (indicated by device name) is not supported by the graphics 
library. 

2 Unable to open the file specified. File error is returned in ESCAPECODE and IORESUL T 
{see the Pascal Workstation System manual}. 

DISPLAY -FIN IT enables a file as the logical graphics display. The file can be of any type, al­
though the current spooling mechanisms can only handle TEXT and ASCII files. The file need not 
exist before this procedure is called. If this procedure is successful, the file will be closed with 
'LOCK'when DISPLAY_TERM is executed. 

This pl\)cedure initializes and enables the graphics display for graphics output. Before the device is 
initialized, the device status is 0, the device address is 0, and the device name is the default name. 
The default name is ' , (six ASCII blanks). 

When the device is enabled the device status is set to 1 (enabled) and the internal device specifier 
used by the graphics library is set to ~e file name provided by the user. The device name is set to 
the supplied device name. This information is available by calling INQ_ WS with operation 
selectors of 11050 and 12050. 

Initialization includes the following operations: 

• The grapnics display surface is cleared (e.g., CRT erased, plotter page advanced) if Bit 7 of 
CONTROL is not set. 

• The starting position is set to a device dependent location. 

• The logical display limits are set to the default limits for the device. 

• The aspect ratio of the virtual coordinate system is applied to the logical display limits to 
define the limits of the virtual coordinate system. 

• All primitive attributes are set to the default values. 

• The locator echo position is set to its default value. 



Procedure Library Summary A-35 

Only one graphics output device can be initialized at a time. If a graphics display device is 
currently enabled, the enabled device will be terminated (via DISPLAY_TERM) and the call will 
continue. 

A call to MOVE or INT _MOVE should be made after this call to update the starting position and in 
so doing, place the physical pen or beam at a known location on the graphics display device. 

The Control Value 
The control value is used to control characteristics of the graphics display device. Bits should be 
set according to the following bit map. All unused bits should be set to O. 

Bits 

o thru 6 

7 

8 thru 15 

0 0 

15 14 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Meaning 

Currently unused. Should be set to O. 

If this bit is set (BIT 7 = 1), it will inhibit clearing of the graphics display as part of 
the DISPLAY _FIN IT procedure. Some devices have the ability to not clear the 
graphics display, or not to perform a page advance during device initialization. 
This bit is ignored on devices that do not support the feature. 

Not used by DISPLAY _FINIT. 

HPGL Plotter Initialization 
When an HPGL device is initialized the following device dependent actions are performed, in 
addition to the general initialization process: 

• Pen velocity, force, and acceleration are set to the default for that device . 

• ASCII character set is set to 'ANSI ASCII' . 

• Paper cutter is enabled (HP 9872S / HP 9872T). 

• Advance page option is enabled (HP 9872S / HP 9872T / HP 7550A). 

• Paper is advanced one full page (HP 9872S / HP 9872T / HP 7550A) (unless DISPLAY_INIT 
CONTROL bit 7 is set). 

• The automatic pen options are set (HP 7580 / HP 7585 / HP 7586B / HP 7550A). 



A-36 Procedure Library Summary 

The default initial dimensions for the HPGL plotters supported by the graphics library are: 

Wide High Wide High Resolution 
Plotter mm mm points points Aspect points/mm 

7440A " 10900 7650 .7018 40.0 272.5 191.25 
7470 257.5 191.25 10300 7650 .7427 40.0 
7475 416 259.125 16640 10365 .6229 40.0 
7550 411.25 254.25 16450 10170 .6182 40.0 
7570A 809.5 524.25 32380 20970 .6476 40.0 
7575A 809.5 524.25 32380 20970 .6476 40.0 
7576A 1182.8 898.1 47312 35924 .7593 40.0 
7580 809.5 524.25 32380 20970 .6476 40.0 
7585 1100 891.75 44000 35670 .8107 40.0 
7586 1182.8 898.1 47312 35924 .7593 40.0 
7595A/B 1100 891.75 44000 35670 .8107 40.0 
7596A/B 1182.8 898.1 47312 35924 .7593 40.0 
7599A 1182.8 898.1 47312 35924 .7593 40.0 
9872 400 285 16000 11400 .7125 40.0 

Any device not in this list is not supported. The 7595B, 7596B and 7599A plotters are only 
supported in 7595A or 7596A emulation mode. 

The default logical display surface is set equal to the maximum physical limits of the device. The 
view-surface is always justified in the lower left corner of the current logical display surface 
(corner nearest the turret for the HP7580, HP 7585, HP 7570, HP 7595, and HP 7596 plot­
ters). The physical origin of the graphics display is at the lower left boundary of pen movement. 

Error Conditions 
If the graphics system is not initialized, the call is ignored, an ESCAPE ( - 27) is generated, and 
GRAPHICSERROR returns a non-zero value. 



Procedure Library Summary A-37 

DISPLAY_INIT 

This procedure enables a device as the logical graphics display. 

Syntax 

Item Description/Default 

device selector Expression of TYPE INTEGER 

control value Expression of TYPE INTEGER 

error variable name Variable of TYPE INTEGER 

Procedure Heading 
PROCEDURE DISPLAY_INIT Det.l_Adr 

Control 
t.IAR IErr 

Semantics 

error variable 
name 

Range 
Restrictions 

MININT to 
MAXINT 

MININT to 
MAXI NT 

INTEGERt 
INTEGERt 
INTEGER ); 

IMPORT: dgLlib 

Recommended 
Range 

DISPLAY _INIT enables a device as the logical graphics display. It initializes and enables the 
graphics display device for graphics output. 

Before the device is initialized the device status is 0, the device address is 0, and the device name is 
the default name. The default name is ' , (six ASCII blanks). 

When the device is enabled the device status is set to 1 (enabled) and the internal device specifier 
used by the graphics library is set equal to the device selector provided by the user. The device 
name is set to the device being used. This information is available by calling INQ_WS with 
operation selectors 11050 and 12050. 

The device selector specifies the physical address of the graphics output device. 

device selector = 3: Primary internal graphics CRT (L e., the display deSignated as the 
console-where the command line is displayed). 

device selector = 6: Secondary internal graphics CRT, if present (Le., any display other 
than the console that does not require a select code and/or bus 
address to access it). 

8~device selector~31: Interface card select code (HP 98627 A default = 28). 

700::=;device selector::=;3199: Composite HP-IB/device selector. 

The control value is used to control device dependent characteristics of the graphics display 
device. 



A-38 Procedure Library Summary 

The error variable name will contain a value indicating whether the graphics display device was 
successfully initialized. 

Value 

o 
2 

Meaning 

The graphics display device was successfully initialized. 

Unrecognized device specified. Unable to communicate with a device at the specified 
address, non-existent interface card or non-graphics system supported interface card. 

If an error is encountered, the call will be ignored. 

The graphics library attempts to directly identify the type of device by using its device selector in 
some way. The meanings for device address are listed above. 

At the time that the graphics library is initialized, all devices which are to be used must be 
connected, powered on, ready, and accessible via the supplied device selector. Invalid device 
selectors or unresponsive devices result in that device not being initialized· and an error being 
returned. 

Only one graphics output device maybe initialized at a time. If a graphics display device is 
currently enabled, the enabled device will be terminated (via DISPLAY_TERM) and the call will 
continue. 

A call to MOVE or INT _MOVE should be made after this call to update the starting position and in 
so doing, place the physical pen or beam at a known location on the graphics display device. 

The Control Value 
Used to control characteristics of the graphics display device. Bits should be set according to the 
folloWing bit map. All unused bits should be set to O. 

Bits 

o thru 6 
7 

8 thru 15 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Meaning 

Currently unused. Should be set to O. 
If this bit is set (BIT 7 = 1), it will inhibit clearing of the graphics display as part of 
the DISPLAY _INIT procedure. Some devices have the ability to not clear the graphics 
display, or not to perform a page advance during. device initialization. This bit is ignored 
on devices that do not support the feature. 

Bits 8 through 15 are used by some devices to control device dependent features of those 
devices. 



Procedure Library Summary A-39 

Device Dependent Values 
Bits 8, 9, and 10 of DISPLAY JNIT's CONTROL parameter determine the type of display for 
the HP 98627 A card and the default dimensions assumed by the graphics system. 

Bits 
CONTROL 1098 Description 

256 001 UssTD (512 x 390, 60 hz refresh) 
512 010 EURO sTD (512 x 390, 50 hz refresh) 
768 011 US TV (512 x 474, 15.75 Khz horizontal 

refresh, interlaced) 
1024 100 EUROTV (512 x 512,50 hz vertical refresh, 

interlaced) 
1280 101 HIRES (512 x 512, 60 hz) 
1536 110 Internal (HP) use only 

Out of range values are treated as if CONTROL = 256. 

When using a Model 237 computer, HP 98700A display, or Series 300 display that is designated 
the console, bit 8 of DISPLAY . .JNIT's CONTROL parameter determines if the entire screen will 
be used for graphics. A value of 256 (Le., bit8 = 1) turns off the echo of the typeahead buffer, 
and allocates the entire screen for graphics. The typeahead buffer echo is re-enabled by the 
DISPLAY ... TERM procedure call. If bit 8 is set and the program aborts before DISPLAY .. TERM 
is called, you must reboot to get the typeahead buffer echo back. 

General Initialization Operations 
Initialization includes the following operations: 

• The graphics display surface is cleared (e. g., CRT erased, plotter page advanced) unless Bit 7 
of the control value is set. 

• The starting position is set to a' device dependent location. (This is undefined for HPGL 
plotters. ) 

• The logical display limits are set to the default limits for the device. 

• The aspect ratio of the virtual coordinate system is applied to the logical display limits to 
define the limits of the virtual coordinate system. 

• All primitive attributes are set to the default values. 

• The locator echo position is set to its default value. 

• If the display and locator are the same physical device, the logical locator limits are set to the 
limits of the view surface. 



A-40 Procedure Library Summary 

Raster Display Initialization 
When a raster display is initialized the following device dependent actions are performed, in 
addition to the general initialization process: 

• The starting position is in the lower left corner of the display . 

• Graphics memory is cleared if bit 7 of the control word is O . 

• Initialize the color table to default values. If the device has retroactive color defini­
tion (Model 236 color computer, HP 98543A, HP 98545A, HP 98547 A, HP 98549A, 
HP 98550A, and HP 98700A) and the color table has been changed from the default 
colors, the colors of an image will change even if bit 7 is set to 1. 

• The graphics display is turned on. 

• The view surface is centered within the logical display li~its. 

• The drawing mode (see OUTPUT_ESC) is set to dominate. 

• The DISPLAY _IN IT CONTROL parameter is used as specified above. 

The folloWing table describes the internal raster display for Series 200/300 computer: 

Wide High Wide High Memory Color 
Computer mm mm points points Planes Map 
Model 216 160 120 400 300 1 no 
Model 217 230 175 512 390 1 no 
Model 220 (HP 82913A) 210 158 400 300 1 no 
Model 220 (HP 82912A) 152 114 400 300 1 no 
Model 226 120 88 400 300 1 no 
Model 236 210 160 512 390 1 no 
Model 236 Color 217 163 512 390 4 yes 
Model 237 312 234 1024 768 1 no 
98700 360 270 1024 768 4/8 yes 
98542A 210 164 512 400 1 no 
98543A 210 164 512 400 4 yes 
98544A 312 234 1024 768 1 no 
98545A 360 270 1024 768 4 yes 
98547A 360 270 1024 768 6 yes 
98548A 343 274 1280 1024 1 no 
98549A 360 270 1024 768 6 yes 
98550A 343 274 1280 1024 8 yes 
362/382 VGA 290 210 640 480 8 yes 

382 Medium Res 300 225 1024 768 8 yes 

382 High Res 340 272 1280 1024 8 yes 



Pn)('('dur<' Library Summary A-40.1 

The HP 98627 A is a 3 plane non-color mapped color interface card which connects to an external 
RGB monitor. Bits 8,9, and 10 of DISPLAY _INIT's CONTROL parameter determine the type of 
display for the HP 98627 A card and the default dimensions assumed by the graphics system. 

Bits 
CONTROL 1098 Description 

256 001 USSTD (512 x 390, 60 hz refresh) 
512 010 EURO STD (512 x 390, 50 hz refresh) 
768 011 US TV (512 x 474, 15.75 Khz horizontal 

refresh, interlaced) 
1024 100 EUROTV (512 x 512, 50 hz vertical refresh, 

interlaced) 
1280 101 HIRES (512 x 512,60 hz) 
1536 110 Internal (HP) use only 

Out of range values are treated as if CONTROL = 256. 

The physical size of the HP 98627 A display (needed by the SET_DISPLAY_LIM procedure) may 
be given to the graphics system by an escape function (OPCODE = 250). The physical limits 
assumed until the escape function is given are: 

CONTROL = 256 
512 
768 

1280 

153.3mm wide and 116.7mm high. 
153.3mm wide and 116. 7mm high. 
153.3mm wide and 142.2mm high. 

153.3mm wide and 153.3mm high. 

The default logical display surface of the graphics display device is the maximum physical limits of 
, the screen. The physical origin is the lower left corner of the display. 

The view surface is always centered within the current logical display surface. 

HPGL Plotter Initialization 
When an HPGL device is initialized the following device dependent actions are performed, in 
addition to the general initialization process: 

• Pen velocity, force, and acceleration are set to the default for that device. 

• ASCII character set is set to ' ANSI ASCII' . 
• Paper cutter is enabled (HP 9872S / HP 9872T). 

• Advance page option is enabled (HP 7550A / HP 7586B / HP 7596A / HP 9872S / HP 
9872T). 

• Paper is advanced one full page (HP 7550A / HP 7586B / HP 7596A / HP 9872S / 
HP 9872T) (unless DISPLAYJNIT CONTROL bit 7 is set). 

• The automatic pen options are set (HP 7570A / HP 7575A / HP 7576A / HP 7580A / 
HP 7585 / HP 7595A). 



A-40.2 Procedure Library Summary 



Procedure Library Summary A-41 

The default initial dimensions for the HPGL plotters$upported by the graphics library are: 

Wide High Wide High Resolution 
Plotter mm mm points points Aspect points/mm 

7440A 272.5 191.25 10900 7650 .7018 40.0 
7470 257.5 191.25 10300 7650 .7427 40.0 
7475 416 259.125 16640 10365 .6229 40.0 
7550A/B 411.25 254.25 16450 10170 .6182 40.0 
7570A 809.5 524.25 32380 20970 .6476 40.0 
7575A 809.5 524.25 32380 20970 .6476 40.0 
7576A 1182.8 898.1 47312 35924 .7593 40.0 
7580 809.5 524.25 32380 20970 .6476 40.0 
7585 1100 891.75 44000 35670 .8107 40.0 
7586 1182.8 898.1 47312 35924 .7593 40.0 
7595A/B 1100 891.75 44000 35670 .8107 40.0 
7596A/B 1182.8 )898.1 47312 35924 .7593 40.0 
7599A 1182.8 898.1 47312 35924 .7593 40.0 
9872 400 285 16000 11400 .7125 40.0 

Any device not in this list is not supported. The 7550B, 7595B, and 7599A plotters are only 
supported in 7550A, 7595A, or 7596A emulation mode. 

The maximum physical limits of the graphics display for an HPGL device not listed above are 
determined by the default settings of PI and P2. The default settings of PI and P2 are the values 
they have after an HPGL 'IN' command. Refer to the specific device manual for additional 
details. 

The default logical display surface is set equal to the area defined by PI and P2 at the time 
DISPLAY _INIT is invoked. The view surface is always justified in the lower-left corner of 
the current logical display surface (corner nearest the turret for the HP 7570A, HP 7575A, 
HP 7576A, HP 7580, HP 7585, HP 7586, HP 7595A, and HP 7596A plotters). The physical 
origin of the graphics display is at the lower-left boundary of pen movement. 

Note 

If the paper is changed in an HP 7570A, HP 7575A, HP 7576A, 
HP 7580, HP 7585, HP 7586, HP 7595A/B, HP 7596A/B, or HP 7599A 
plotter while the graphics display is initialized, it should be the same 
size of paper that was in the plotter when DISPLAY _INIT was called. 
If a different size of paper is required, the device should be terminated 
(DISPLAY _TERM) and re-initialized after the new paper has been 
placed in the plotter. 

Error Conditions 
The graphics system must be initialized or the call will be ignored, an ESCAPE ( - 27) will be 
generated, and GRAPHICSERROR will return a non-zero value. 



A-42 Procedure Library Summary 

DISPLAY_TERM 

This procedure disables the enabled graphics display device. 

Syntax 

Procedure Heading 
PROCEDURE DISPLAY_TERM; 

Semantics 

IMPORT: dgLlib 

DISPLAY_TERM terminates the device enabled as the graphics display. DISPLAY_TERM 
completes all remaining display operations and disables the logical graphics display. It makes the 
picture current and releases all resources being used by the device. The device name is set to the 
default name' , (six ASCII blanks), the device status is set to 0 (not enabled) and the device 
address is set to o. DISPLAY_TERM does not clear the graphics display_ 

The graphics display device should be disabled before the termination of the application prog­
ram. DISPLAY_TERM is the complementary routine to DISPLAY _INIT. 

Error Conditions 
The graphics system should be initialized and the display should be enabled or the call will be 
ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 



IMPORT: iocomasm 
iodeclarations 

Note 

Procedure Library Summary A-43 

D~ELEASE 

This function is provided for use by the internal I/O Procedure Lib­
rary drivers, only. Unexpected and possible undesirable results may 
occur if it is used. 

DMA channel allocation and de allocation occur automatically in the 110 library. 



A-44 Procedure Library Summary 

D~EQUEST 

Note 

IMPORT: iocomasm 
iodeclarations 

This function is provided for use by the internal 110 Procedure Lib­
rary drivers, only. Unexpected and possible undesirable results may 
occur if it is used. 

DMA channel allocation and deallocation occur automatically in the I/O library. 



IMPORT: hpib_l 
iodeclarations 

Procedure Library Summary A-45 

This BOOLEAN function indicates whether or not EOI was set on the last byte read - this is 
not a current indication of the EOI line. 

Syntax 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 



A-46 Procedure Library Summary 

GRAPHICSERROR 
IMPORT: dgLlib 

This function returns an integer error code and can be used to determine the cause of a 
graphics escape. 

Syntax 

-..( GRAPHICSERROR r 

Function Heading 
FUNCTION GRAPHICSERROR: INTEGER; 

S,emantics 
When an error occurs that uses the escape function, escape-code - 27 is used. After the escape is 
trapped and it has been determined that the graphics library is the source of the error (the escape 
code equai to - 27), GRAPHiCSERROR can be used to determine the cause of the er'ror. The 
function returns the value of the last error generated and then clears the value of the return error. 
A user who is trapping errors and wishes to keep the value of the error must save it in some 
variable. 

The following list of returned values and the error they represent can be used to interpret the 
value returned by GRAPHICSERROR. 

Value 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Meaning 

No errors since the last call to GRAPHICSERROR or since the last call to GRAPHICS_INIT. 

The graphics system is not initialized. ACTION: CAli ignored. 

The graphics display is not enabled. ACTION: Call ignored. 

The locator device is not enabled. ACTION: Call ignored. 

Echo value requires a graphic.s display to be enabled. ACTION: Call completes with echo 
value = l. 

The graphics system is already initialized. ACTION: Call ignored. 

Illegal aspect ratio specified. X-SIZE and V-SIZE must be greater than O. ACTION: Call 
ignored. 

Illegal parameters specified. ACTION: Call ignored. 

The parameters specified are outside the physical display limits. ACTION: Call ignored. 

The parameters specified are outside the limits of the window. ACTION: Call ignored. 

The logical locator and the logical display are the same physical device. The logical locator 
limits cannot be defined explicitly, they must correspond to the logical view surface limits. 
ACTION: Call ignored. 



Procedure Library Summary A-47 

11 The parameters specified are outside the current virtual coordinate system boundary. 
ACTION: Call ignored. 

13 The parameters specified are outside the physical locator limits. ACTION: Call ignored. 

14 Color table contents cannot be inquired or changed. ACTION: Call ignored. 

18 The number of points specified for a polygon or polyline operation is less than or equal to 
zero. ACTION: Call ignored. 



A-48 Procedure Library Summary 

GRAPHICS_INIT 

This procedure initializes the graphics system. 

Syntax 

Procedure Heading 
PROCEDURE GRAPHICS_INIT; 

Semantics 

IMPORT: dgLlib 

GRAPHICS_INIT initializes the graphics system. It must be the first graphics system call made by 
the application program. Any procedure call other than GRAPHICS_INIT will be ignored. 
GRAPHICS_INIT performs the following operations: 

• Get dynamic storage space for the graphics library. 

• Sets the aspect ratio to 1. 

• Sets the virtual coordinate and viewport limits to range from a to 1. a in the X and Y 
directions. 

• Sets the world coordinate limits to range from - 1. a to 1. a in the X and Y directions. 

• Sets the starting position to (0.0,0.0) in world coordinate system units. 

• Sets all attributes equal to their default values. 

GRAPHICS_INIT does not enable any logical devices. The graphics system is terminated with a 
call to GRAPHICS_TERM. Calling GRAPHICS_INIT while the graphics system is initialized will 
result in an implicit call to GRAPHICS_TERM, before the system is reinitialized. 

Note 
Space is allocated for the graphics system using the standard Pascal 
procedure, NEW. The application program should call this procedure 
before any space is allocated for the application program. If memory 
allocated at graphics_init is to be returned at graphics_term, the 
compiler option $HEAP _DISPOSE ON$ must be used. 



IMPORT: dgLlib 

This procedure terminates the graphics system. 

Syntax 

Procedure Heading 
PROCEDURE GRAPHICS_TERM; 

Semantics 

Procedure Library Summary A-49 

GRAPHICS_ TERM 

GRAPHICS_TERM terminates the graphics system. Termination includes terminating both the 
graphics display and the locator devices. GRAPHICS_TERM does not clear the graphics display. 

GRAPHICS_TERM should be called as the last graphics system call in the application program. 

GRAPHICS_TERM releases dynamic memory allocated during GRAPHICS_INIT. In order that 
this memory actually be returned the compiler option $HEAP _DISPOSE ON$ must be used. 

Error Conditions 
If the graphics system is not initialized, the call will be ignored, an ESCAPE (- 27) will be 
generated, and GRAPHICSERROR will return a non-zero value. 



A-50 Procedure Library Summary 

GTEXT 

This procedure draws characters on the graphics display. 

Syntax 

Item 

string 

Description/Default 

Expression of TYPE Gstring255. Can be a string 
of any length up to 255 characters 

Procedure Heading 
PROCEDURE GTE}<T I ~ ... _.: ._ ...I 

\ ;:)" 1" 1 II ~ G s t r· i fl g 2 5 5 ); 

Semantics 
The string contains the characters to be output. 

IMPORT: dgl_types 
dgl_lib 

Range 
Restrictions 

length < = 255 
characters 

GTEXT produces characters on the graphics display. A series of vectors representing the 
characters in the string is produced by the graphics system. 

When the text string is output, the starting position will represent the lower left-hand corner of the 
first character in STRING. Text is normally output from left to right and is printed vertically with 
no slant. 

After completion of this call, the starting position is left in a device dependent location such that 
successive calls to GTEXT will produce a continuous line of text (i.e., 
GTE}<T ( I H'); GTE}<T ( I I I ) ; is equivalent to GTE}<T ( I H I I ) ;). 

The attributes of color, line-style, line-width, text rotation. and character size apply to text 
primitives. However, the text will appear with these attributes only if the graphics device is 
capable of applying them to text. 

Characters 
The character sets provided by the graphics system are the same ones used by the CRT in alpha 
mode, namely the standard character set plus either the Roman extension character set (for all 
non-Katakana machines) or the Katakana character set (for Katakana machines). 



Procedure Library Summary A-51 

Characters are defined within a cell that has an aspect ratio of 9/15. The character cells are 
adjacent, both horizontally and vertically, as shown here. 

!--Width-l !--Width-l 

1 23456789 

1"------
Control Codes 
The following control codes are supported by GTEXT: 

Control Program Keyboard 
Character Access Access 

backspace CHR(8) CTRL-H 

linefeed CHR(10) CTRL-J 

carriage CHR(13) CTRL-M 
return 

Any other control characters are ignored. 

Action 

Move one character cell to the left along the text direction 
vector (defined by SET_CHAR_SIZE). 

Move down the height of one character cell. 

Move back the length of the text just completed. 

The current position is maintained to the resolution of the display device. A text size less-than-or­
equal-to the resolution of the display device will result in all the characters in a GTEXT call, or a 
series of GTEXT calls, being written to the same point on the device. 

The current position returned by an INQ_WS is not updated by calls to GTEXT. If you want to 
know the current position after a GTEXT, you must do a MOVE, or some other call which updates 
the current position. 

Error Conditions 
If the graphics system is not initialized or a display is not enabled, the call will be ignored, an 
ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero value. 



A-52 Procedure Library Summary 

HPIB-LINE 
IMPORT: hpib_O 

iodeclarations 

This BOOLEAN function will return the current state of the specified line. Not all lines are 
accessible at all times. 

Syntax 

Item 

interface 
select code 

hpib line 
specifier 

Semantics 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of enumerated 
TYPE type_hpib_line. 

Range 
Restrictions 

o thru 31 

atn_line 
dav_line 
ndac line 
nrfd_line 
eoLline 
srq_line 
ifc_line 
ren_line 

Recommended 
Rang~ 

7 thru 31 

The lines are only accessible when the interface is in an appropriate state. For example, REN 
can only be examined when the selected interface is not system controller. No error is generated 
when an in-accessible line is examined. 



Procedure Library Summary A-53 

INPUT_ESC 
IMPORT: dgLlib 

This procedure allows the user to obtain device dependent information from the graphics 
system. 

Syntax 

INPUT....ESC 
INTEGER 

REAL array 
name 

error variable 
name 

Item Description/Default 
Range Recommended 

operation selector Expression of TYPE INTEGER 

INTEGER array Expression of TYPE INTEGER 
size 

REAL array size Expression of TYPE INTEGER 

INTEGER array Variable of TYPE ANYVAR 
name should be array of INTEGERs 

REAL array name Variable of TYPE ANYVAR 
should be array of REAL 

error variable name Variable of TYPE INTEGER 

Procedure Heading 
PROCEDURE INPUT_ESC Opcode 

Is i z e 
Rsize 

ANYI,lAR Ilist 
ANYI .. JAR R 1 is t 
I.JAR Ierr 

Restrictions 

MININT to 
MAXINT 

MININT to 
MAXINT 

MININT to 
MAXINT 

INTEGER; 
INTEGER; 
INTEGER; 
Gint_list; 
Greal_list; 
INTEGER ) ; 

Range 

>0 

>0 



A-54 Procedure Library Summary 

Semantics 
The operation selector determines the device dependent inquiry escape function being invoked. 

The INTEGER array size is the numb~r of INTEGER parameters to be returned in the INTEGER 
array by the escape function. The correct value for this can be found in the thousand's place of the 
operation selector (see the table below). 

The REAL array size is the number of REAL parameters to be returned in the REAL array by the 
escape function. The correct value for this can be found in the hundred's place of the operation 
selector (see the table below). 

The INTEGER array is the array in which zero or more INTEGER parameters are returned by the 
escape function. 

The REAL array is the array in which zero or more REAL parameters are returned by the escape 
function. 

The error variable will contain a code indicating whether the input escape function was 
performed. 

Vaiue I Meaning 

a InqUiry escape function successfully completed. 

1 InqUiry operation (operation selector) not supported by the graphics display or locator 
device. 

2 INTEGER array size is not equal to the number of INTEGER parameters to be returned. 

3 REAL array size is not equal to the number of REAL parameters to be returned. 

4 Illegal parameters specified. 

If the error variable contains a non-zero value, the call has been ignored. 

INPUT_ESC allows application programs to access special device features on a graphics display 
device. The type of information returned from the graphics display device is determined by the 
value of operation selector. Possible inEluiry escape functions may return the status or the options 
supported by a particular graphics display device. 

Inquiry escape functions only apply to the graphics display device. INPUT_ESC implicitly makes 
the picture current before the escape function is performed. 



HPGL Plotter Operation Selectors 
The following inquiry is supported: 

Operation 
Selector Meaning 

2050 Inquire about current turret. 

Procedure Library Summary A-55 

INTEGER array [1] = -1 » Turret mounted, but its type is unknown 
INTEGER array [1] = 0 > > No turret mounted 
INTEGER array [1] = 1 > > Fiber tip pens 
INTEGER array [1] = 2 > > Roller ball pens 
INTEGER array [1] = 3 > > Capillary pens 
INTEGER array [2] = 0 > > No turret mounted or turret has no pens 
INTEGER array [2] = n > > Sum of these values: 

1: Pen in stall # 1 
2: Pen in stall #2 
4: Pen in stall #3 
8: Pen in stall #4 

16: Pen in stall #5 
32: Pen in stall #6 
64: Pen in stall #7 

128: Pen in stall #8 

For example, if INTEGER array[2] = 3, pens would only be contained in stalls 1 and 2. 

Operation selector 2050 is supported on the HP 7475, HP 7550, HP 7570A, HP 7575A, 
HP 7576A, HP 7580, HP 7585, HP 7586, HP 7595A/B, HP 7596A/B, and HP 7599A plotters. 
The HP 7595B, HP 7596B and HP 7599A plotters are only supported in 7595A or 7596A emu­
lation mode. 

The HP 7570A, HP 7575A, and HP 7576A support opcode 2050 but can 

only return the values in the following table: 

INTEGER array [1] = -1 

INTEGER array [1] = 0 

INTEGER array [2] = 0 

INTEGER array [2] = 255 

Error Conditions 

Turret mounted but type unknown 

No turret' mounted 

No turret mounted 

Assumes all pens are mounted 

If the graphics system is not initialized or a display is not enabled, the call will be ignored, an 
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value. 



A-56 Procedure Library Summary 

HP-HIL Locator Semantics 
The i npi) ~ _e~;c procedure, when called in relation to an HP-HIL device, returns information 
about the device. The ~:.: ~ -,:"" : :". i + 201 or 1;) c·:; \ ')f" "_ i n i \ 202 must have been successfully 
executed as well as some d i sp 1.:;'=1_ i n i \. 

• The maximum X and Y that can be returned, 

• The number of buttons, 

• Where it is on the HP-HIL (loop address), 

• X and Y resolution. 

For HP-HIL locator devices (Le., 1 oc·~ t or _ in it was called with a value of 201 or 202), the 
effect of the i np!J t _esc call is as follows: 

If 1:::; I ·:H" r [ i J:::; 7, and HP-HIL loop address I a r r [ 1 ] is not a locator, I art" :: i J returns with the 
device 10, unless there was no device there, in which case I .;:;[" r [ i J is zero. Both I .~n":: 2 J and 
I .:'J r r [ :3 J will be 0 when the device is not a locator. 

If 1:::; I .;:;t" r [1 J:::;7, and loop address I .;:;t" r [i ] is a locator, the following information is returned: 

'Iarr[lJ = device 10 
Iarr[2] = XMax in device units (non-zero) 
!aI'!'C3J \(:rtflX ;"" ,..1", ,;,..." " ..... ;+c- I"",,,.,.,. ..,"' ... " \ 

... u¥v .... ¥ '-'.IIL';' \'lVll-~':;lVI 

Iarr[ll] = number of buttons on device 

Rarr[1] = X points/mm 
Rarr[2] = Ypoints/mm 

If I a r r [ 1] is less than 1 or greater than 7, it is an error condition: Err = 4. 

A call to input_esc when dealing with HP-HIL input devices would take the following form*: 

input_esc(1l290, ll, 2, Iarr, Rarr, Err); 

If locator _ini t (201 .. err) or locator _ini t (2~32 .. err) is not executed prior to either of these 
calls, the system would report one of three errors: 

escapecode=-27 and 
'2. r .;:;ph i cser r or =3 

esc.::Jpecode=-27 and 
':I r .:Elph i cser r or =0 

err=1 

If no locator has been activated. 

If no display has been initialized 

If a locator other than 201 or 202 has been activated. 

This use of in put _ esc is an extension past previous implementations of DGL, which specified that 
i npu t_e s c should only talk to output devices (e.g., displays and plotters), not input deVices, such as 
locators. 

• A "9" as the tens digit in the i n put _ esc opcode indicates a locator opcode. 



IMPORT: dgLlib 
dgLinq 

Procedure Library Summary A-57 

This procedure inquires the color modeling parameters for an index into the device-dependent 
color capability table. 

Syntax 

Item 

entry selector 

first parameter name 

Description/Default 

Expression of TYPE INTEGER 

Variable of TYPE REAL 

second parameter name Variable of TYPE REAL 

third parameter name Variable of TYPE REAL 

Procedure Heading 
PROCEDURE INQ_COLOR_TABLE Index: INTEGER; 

VAR CoIF! REAL; 
VAR CoIF2 REAL; 
VAR CoIF3 REAL ) ; 

Semantics 

Range 
Restrictions 

>0 

This routine inquires the color modelling parameters for the specified location in a device­
dependent color capability table. 

The entry selector specifies the location in the color capability table. The parameters returned 
are for the specific location. The size of the color capability table is device dependent. For 
raster displays in Series 200/300 computers, 32 entries are available for 1 or 4 plane displays; 
80 entries are available for 6 plane displays; and 272 entries are available for 8 plane displays. 

The first parameter represents red intensity if the RGB model has been selected with the SET 
COLOR statement, or hue if the HSL model has been selected. 

The second parameter represents green intensity if the RGB model has been selected with the 
SET COLOR statement, or saturation if the HSL model has been selected. 

The third parameter represents blue intensity if the RGB model has been selected, or luminosity 
if the HSL model has beertselected. ' 



A-58 Procedure Library Summary 

A more detailed description of the color models and the meaning of their parameters can be 
found under the procedure definition of SET _COLOR_MODEL. 

Note 
The color table stores color specifications as RGB values. The conver­
sion from RGB to HSL is a one-to-many transformation, and the 
following arbitrary assignments may be made during the conversion: 

Error Conditions 

IF Lu'minosity = 0 
THEN Hue=O 

Saturation = 0 

IF Saturation = 0 
THEN Hue=O 

If the graphics system is not initialized, a display device is not enabled, the color table contents 
cannot be inquired, or the color table entry selector is out of range, the call is ignored, an ESCAPE 
( - 27) will be generated, and GRAPHICSERROR will return a non-zero value. 



IMPORT: dgLlib 
dgLinq 

Procedure Library Summary A-59 

This procedure inquires the polygon style attributes for an entry in the polygon style table. 

Syntax 

density 
variable name 

fill orientation 
variable name 

Item 

entry selector 

density variable 
name 

fill orientation 
variable name 

Description/Default 

Expression of lYPE INTEGER 

Variable of lYPE REAL 

Variable of lYPE REAL 

edge variable name Variable of lYPE INTEGER 

Procedure Heading 
PROCEDURE INQ_PGN_TABLE 

Semantics 

Index 
t,JAR Den 5 t}' 
t,JAR Orient 
t,JAR Ed ge 

edge variable 
name 

Range 
Restrictions 

MINI NT thru 
MAXINT 

INTEGER; 
REAL; 
REAL; 
INTEGER ); 

Recommended 
Range 

Device 
dependent 

The entry selector specifies the entry in the polygon style table the inquiry is directed at. 

The density variable will contain a value between -1 and 1. This magnitude of this value is the 
ratio of filled area to non-filled area. Zero means the polygon interior is not filled. One represents 
a fully filled polygon interior. All non-zero values specify the density of continuous lines used to fill 
the interior. Negative values are used to specify crosshatching. Calculations for fill density are 
based on the thinnest line possible on the device and on continuous line-style. If the interior 
line-style is not continuous, the actual fill density may not match that found in the polygon style 
table. 



A-60 Procedure Library Summary 

The fill orientation variable will contain a value from -90 through 90. This value represents the 
angle (in degrees) between the lines used for filling the polygon and the horizontal axis of the 
display device. The interpretation of fill orientation is device-dependent. On devices that require 
software emulation of polygon styles, the angle specified will be adhered to as closely as possible, 
within the line-drawing capabilities of the device. For hardware generated polygon styles, the 
angle specified will be adhered to as closely as is possible given the hardware simulation of the 
requested density. If crosshatching is specified, the fill orientation specifies the angle of orienta­
tion of the first set of lines in the crosshatching, and the second set of lines is always perpendicular 
to this. 

The edge variable will contain a 0 if the polygon edge is not to be displayed and a 1 if the polygon 
edge is to be displayed. If polygon edges are displayed, they adhere to the current line attributes 
of color, line-style, and line-width, in effect at the time of polygon display. 

All current devices support 16 entries in the polygon table. The polygon styles defined in the 
default tables are defined to exploit the hardware capabilities of the devices they are defined for. 

Error Conditions 
The graphics system must be initialized, a display must be enabled, and the entry selector must be 
in range or the call will be ignored, an ESCAPE (- 27) will be generated, and 
GRAPH!CSERROR will return a non-zero value. 



IMPORT: dgl_lib 
dgLinq 

Procedure Library Summary A-61 

This procedure allows the user to determine characteristics of the graphics system. 

Syntax 

Item 

operation selector 

string size 

integer array size 

REAL array size 

string variable name 

INTEGER array name 

REAL array name 

error variable name 

Procedure Heading 
PROCEDURE INQ_WS 

INTEGER 
array size 

REAL 
array size 

string 
variable name 

INTEGER 
array name 

REAL 
array name 

Description/Default 

Expression of TYPE INTEGER 

Expression of TYPE INTEGER 

Expression of TYPE INTEGER 

Expression of TYPE INTEGER 

Variable of TYPE PACKED ARRAY OF CHAR 

Variable of TYPE ARRAY OF INTEGER 

Variable of TYPE ARRAY OF REAL 

Variable of TYPE INTEGER 

Opcode 
Ssize 
Is i z e 
Rsize 

ANYt.IAR S 1 is t 
ANYt.IAR IIi s t 
ANYt.IAR R 1 is t 
t.IAR Ierr 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
Gchar_list; 
Gint_list; 
Greal_list; 
INTEGER) ; 

error 
variable name 

Range 
Restrictions 

see below 

see below 

see below 

see below 



A-62 Procedure Library Summary 

Semantics 
The operation selector is an integer from the list of operation selectors given below. It is used to 
specify the topic of the inquiry to the system. 

The string size is used to specify the maximum number of characters that are to be returned in 
the string array by the function specified by the operation selector. If there is a 1 in the 
ten-thousand's place a string value will be returned. The number of characters in the string is 
returned in the first entry in the INTEGER arrray. 

The INTEGER array size is the number of integer parameters that are returned in the integer 
array by the function specified by OPCODE. The thousand's digit of the operation selector is the 
number of elements the INTEGER array must contain. 

The REAL array size is the number of REAL parameters that are returned in the REAL array by 
the function specified by OPCODE. The hundred's digit of the operation selector is the number of 
elements the REAL array must contain. 

The string array is a PACKED ARRAY OF CHAR which will contain a string or strings that 
represents characteristics of the work station specified by the value of operation selector. The 
application program must ensure that string array is dimensioned to contain all of the values 
returned by the selected function. 

The INTEGER array will contain integer values that represent characteristics of the work station 
specified by the value of OPCODE. The application program must ensure that the integer array is 
dimensioned to contain all of the values returned by the selected function. 

The REAL array will contain REAL values that represent characteristics of the work station 
specified by the value of OPCODE. The application program must ensure that the REAL array is 
dimensioned to contain all of the values returned by the selected function. 

The error variable will return an integer indicating whether the inquiry was successfully per­
formed. 

Value 

o 
1 

2 

3 

4 

Meaning 

The inquiry was successfully performed. 

The operation selector was invalid. 

The INTEGER array size was not equal to the number INTEGER parameters requested 
by the operation selector. 

The REAL array size was not equal to the number of REAL parameters requested by 
the operation selector. 

The string array was not large enough to hold the string requested by the operation 
selector. 



Procedure Library Summary A-63 

The procedure INQ_WS returns current information about the graphics system to the application 
program. The type of information desired is specified by a unique value of OPCODE. The 
thousands digit of the operation selector specifies the number of integer values returned in the 
integer array and the hundreds digit specifies the number of REAL values returned in the REAL 
array. A 1 in theten-thousand's place indicates that a value will be returned in the string. 

One use of INQ_WS is device optimization: the use of inquiry to enhance the application's 
utilization of the output device. An example of this is using color to distinguish between lines 
when a device supports colors, and using line-styles when color is not available. Another example 
is maximizing the aspect ratio used, based on the maximum aspect ratio of the display device. 

Device dependent information returned by the procedure is undefined if the device being 
inquired from is not enabled (e.g., inquire number of colors supported, operation selector 1053, 
only returns valid information when the display is enabled). 

If the graphics system is not initialized, the call will be ignored and GRAPHICSERROR will return 
a non-zero value. 



A-64 Procedure Library Summary 

Supported Operation Selectors 
The operation selectors supported by the system and their meaning is listed below: 

Operation 
Selector Meaning 

250 Current cell size used for text. 
REAL Array[1] = . Character cell width in world coordinates 
REAL Array[2] = Character cell height in world coordinates 

251 Marker size. 
REAL Array[1] = Marker width in world coordinates 
REAL Array[2] = Marker height in world coordinates 

252 Resolution of graphics display 
REAL Array[1] = Resolution in X direction (points/mm) 
REAL Array[2] = Resolution in Y direction (points/mm) 

253 Maximum dimensions of the graphics display. 
REAL Array[1] = Maximum size in X direction (MM) 
REAL Array[2] = Maximum size in Y direction (MM) 

254 Aspect ratios 
REAL Array[1] = Current aspect ratio of the virtual coordinate system. 
REAL Array[2] = Aspect ratio of logical limits. 

255 Resolution of locator device 
REAL Array[1] = Resolution in X direction (points/mm) 
REAL Array[2] = Resolution in Y direction (points/mm) 

256 Maximum dimensions of the locator display. 
REAL Array[1] = Maximum size in X direction (MM) 
REAL Array[2] = Maximum size in Y direction (MM) 

257 Current locator echo position 
REAL array[ 1] = X world coordinate position 
REALarray[2] = Y world coordinate position 

258 Current virtual coordinate limits 
REAL array [ 1] = Maximum X virtual coordinate 
REAL array[2] = Maximum Y virtual coordinate 

259 Starting position. 
The information returned may not be valid (not updated) following a text call, an escape 
function call, changes to the viewing transformation or after initialization of the graphics 
display device. 

REAL array [ 1] = X world coordinate position 
REAL array[2] = Y world coordinate position 

450 Current window limits 
REAL array[l] = Minimum X world coordinate position 
REAL array[2] = Maximum X world coordinate position 
REAL array[3] = Minimum Y world coordinate position 
REAL array[4] = Maximum Y world coordinate position 

451 Current viewport limits 
REAL array[l] = Minimum X virtual coordinate 
REAL array[2] = Maximum X virtual coordinate 
REAL array[3] = Minimum Y virtual coordinate 
REAL array[4] = Maximum Y virtual coordinate 



Operation 
Selector 

1050 

1051 

1052 

1053 

1054 

1056 

1057 

1059 

1060 

1062 

1063 

1064 

1065 

1066 

Procedure Library Summary A-65 

Meaning 

Does graphics display device support clipping at physical limits? 
INTEGER Array [1 )1"= 0 - No 
INTEGER Array[ 1] = 1 - Yes, to the view-surface boundaries 
INTEGER Array [1 ] = 2 - Yes, but only to the physical limits 

of the display surface. 

Justification of the view surface within the logical display limits. 
INTEGER Array [1 ] = 0 - View-surface is centered within 

the logical display limits 
INTEGER Array[ 1] = 1 - View surface ts positioned in the lower 

left corner of the logical display limits. 

Can. the graphics display draw in the background color? Drawing in the background color 
can be used to 'erase' previously drawn primitives. 

INTEGER Array[l] = 0 - No 
INTEGER Array[ 1] = 1 - Yes 

The total number of non-dithered colors supported on the graphics display. The number 
returned does not include the background color. (Compare operation selectors 1053,1054, 
and 1075.) 

INTEGER Array[l] = number of distinct colors supported. 

Number of distinct non-dithered colors which can appear on the graphics display at one 
time. The number returned does not include the background color. 

INTEGER Array[ 1] = number of distinct colors which can appear 
on the display device at one time. 

Number of line-styles supported on the graphics display. 
INTEGER Array [1 ] = number of hardware line-styles supported. 

Number of line-widths supported on the graphics display. 
INTEGER Array[ 1] = number of line-widths supported. 

Number of markers supported on the graphics display. 
INTEGER Array [ 1] = # of distinct markers supported. 

Current value of color attribute. 
INTEGER Array[l] = Current value of color attribute. 

Current value of line-style attribute 
INTEGER Array [1 ] = Current value of line-style attribute. 

Current value of line-width attribute. 
INTEGER Array [ 1] = Current value. 

Current timing mode. 
INTEGER Array[ 1] = 0 - Immediate visibility 
INTEGER Array[ 1] = 1 - System buffering 

Number of entries in the polygon style table. 
INTEGER Array[ 1] = # styles. 

Current polygon interior color index. 
INTEGER Array[ 1] = Index 



A-66 Procedure Library Summary 

Operation 
Selector 

1067 

Meaning 

Current polygon style index. 
INTEGER Array[ 1] = Index 

1068 Maximum number of polygon vertices that a display device can process. 
INTEGER Array[ 1] = 0 No hardware support. 

= N (0<n<32767) Number of vertices supported. 
= 32767 The graphics display device uses all 

available memory to process polygons 
(the maximum number of vertices 
is determined by current free memory). 

1069 Does the graphics device support immediate, retroactive change of polygon style for 
polygons already displayed? 

INTEGER Array[ 1] = 0 - No. 
INTEGER Array[ 1] = 1 - Yes. 

1070 Does the graphics device support hardware (or low-level device handler) generation of 
polygons using INT _POL YGON_DD? 

INTEGER Array[ 1] = 0 - No 
INTEGER Array[l] = 1 - Yes 

1071 Does the graphics device support immediate, retroactive change for primitives already 
displayed? 

INTEGER Array[ 1] = 0 - No 
INTEGER Array[ 1] = 1 - Yes 

1072 Can the background color of the display be changed? 
INTEGER Array[ 1] = 0 - No 
INTEGER Array[ 1] = 1 - Yes 

1073 Can entries in the color table be redefined using SET _COLOR_TABLE? 
INTEGER Array[ 1] = 0 - No 
INTEGER Array[l] = 1 - Yes 

1074 Current color model in use. 
INTEGER Array[ 1] = 1 - RGB 
INTEGER Array[ 1] = 2 - HSL 

1075 Number of entries in the color capability table. The number returned does not include the 
background color. 

INTEGER Array[ 1] = # entries 

1076 Current polygon interior line-style. 
INTEGER Array[ 1] = Current interior line-style 

11050 Graphics display device association. 
String = Name of device path. (Internal device specifier.) 
INTEGER Array [1 ] = Number of characters in the device path. 

11052 Locator device association. 
String = Name of device path. (Internal device specifier.) 
INTEGER Array [ 1] = Number of characters in the device path. 



Procedure Library Summary A-67 

Operation 
Selector Meaning 

12050 Graphics display device information. 
String = Name of graphics display device. 
INTEGER Array[1] = Number of characters in the device name. 
INTEGER Array[2] = Status 

= 0 Graphics display is not enabled. 
= 1 Graphics display is enabled. 

13052 Graphics locator device information. 
String =·Name of the locator device. 
INTEGER Array[ 1] = Number of characters in the device name. 
INTEGER Array[2] = Status 

= 0 Locator device is not enabled. 
= 1 Locator device is enabled. 

INTEGER Array[3] = Number of buttons on the locator device. 

Error Conditions 
If the graphics system is not initialized, the call will be ignored, an ESCAPE (- 27) will be 
generated, and GRAPHICSERROR will return a non-zero value. 



A-68 Procedure Library Summary 

INT_LINE 
IMPORT: dgLtypes 

dgl_lib 

This procedure draws a line from the starting position to the world coordinate specified. 

Syntax 

-.( INT J.,INE)--.(D--1 

Item 

x coordinate 

y coordinate 

x 
coordinate 

y 
coordinate 

Description/Default 

Expression of TYPE Gshortint, This is subrange 
of INTEGER 

Expression of TYPE Gshortint, This is subrange 
of INTEGER 

Procedure Heading 
PROCEDURE INT_LINE Gshortint ); 

Semantics 

Range 
Restrictions 

-32 768 to 32 767 

-32768 to 32 767 

The x and y coordinate pair is the ending of the line to be drawn in the world coordinate system. 

A line is drawn from the starting position to the world coordinate specified by the x and y 
coordinates. The starting position is updated to this point at the completion of this call. 

The primitive attributes of line style (see SET_LINE_STYLE), line width (see SET _LINE_ 
WIDTH), and color (see SET_COLOR) apply to lines drawn using INT_LINE. 

This procedure is the same as the LINE procedure, with the exception that the parameters are of 
type Gshortint (- 32 768 .. 32 767). When used with some displays this procedure may perform 
about 3 times faster than the LINE procedure. For all other displays this procedure has about the 
same performance as the LINE procedure. 

The INT _LINE procedure only has increased performance when the following conditions exist: 

• The display must be a raster device. 

• The window bounds within the range - 32 768 to 32 767. 

• The window must be less then 32 767 units wide and high. 



Procedure Library Summary A-69 

INT operations are provided for efficient vector generation. Although their use can be mixed with 
other, non-integer operations, one dot roundoff errors may result with mixed use since different 
algorithms are used to implement each. 

Drawing to the starting position generates the shortest line possible. Depending on the nature of 
the current line-style, nothing may appear on the graphics display surface. See SET _LINE_ 
STYLE for a complete description of how line-style affects a particular point or vector. 



A-70 Procedure Library Summary 

INT_MOVE 
IMPORT: dgLtypes 

dgl_lib 

This procedure sets the starting position to the world coordinate position specified. 

Syntax 

-+CINTj10VE~ 

Item 

x coordinate 

y coordinate 

x 
coordinate 

y 
coordinate 

Description/Default 

Expression of TYPE Gshortint, This is subrange 
of INTEGER 

Expression of TYPE Gshortint, This is subrange 
of INTEGER 

Procedure Heading 
PROCEDURE INT_MOVE INTEGER ); 

Semantics 

Range 
Restrictions 

-32768 to 32767 

- 32 768 to 32 767 

The x and y coordinate pair define the new starting position in world coordinates. 

INT _MOVE specifies where the next graphical primitive will be output. It does this by setting the 
value of the starting position to the world coordinate system point specified by the x and y 
coordinate values and then moving the pen (or its logical equivalent) to that point. 

The starting position corresponds to the location of the physical pen or beam in all but four 
instances: after a change in the viewing transformation, after initialization of a graphical display 
device, after the output of a text string, or after the output of an escape function. A call to MOVE 
or INT _MOVE should therefore be made after anyone of the following calls to update the value 
of the starting position and in so dOing, place the physical pen or beam at a known 
location: SET -ASPECT, DISPLAY _IN IT, SET_DISPLAY_LIM, OUTPUT_ESC, TEXT, SET_ 
VIEWPORT, and SET_WINDOW. 

This procedure is the same as the MOVE procedure, with the exception that the parameters are of 
type Gshortint (- 32 768 .. 32 767). When used with the same display, this procedure can 
perform about 3 times faster than the MOVE procedure. For all other displays this procedure has 
about the same performance as the MOVE procedure. 



Procedure Library Summary A-71 

The INT _MOVE procedure only has increased performance when the following conditions exist: 

• The display must be a raster device. 

• The window bounds within the range - 32 768 to 32 767. 

• The window must be less than 32767 units wide and high. 

INT operations are provided for efficient vector generation. Although their use can be mixed with 
non-integer operations, one dot roundoff errors may result with mixed use since different 
algorithms are used to implement each. 

Error Conditions 
The graphics system must be initialized and a graphics display must be enabled or the call will be 
ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 



A-72 Procedure Library Summary 

INT _POLYGON 
IMPORT: dgLtypes 

dgl_lib 
dgLpoly 

This procedure displays a polygon::set starting and ending at the specified point adhering to the 
specified polygon style exactly as specified (i. e., device-independent results). 

Syntax 

INT...pOLYGON 

Item 

points 

x array name 

y array name 

operation selector array 
name 

Procedure Heading 

Description/Default 

Expression of TYPE INTEGER 

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER. 

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER. 

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER. 

operation selector 
array name 

Range 
Restrictions 

MININT thru MAXINT 

-32768 to 32767 

-32768 to 32767 

-32768 to 32767 

PROCEDURE INT_POLYGON Npoint INTEGER; 
Gshortint_list; 
Gsho rtint_l ist; 
Gshortint_list> ; 

ANYI.JAR }{!.1 e c 
ANYI.JAR Y!.Iec 
ANYI.JAR Opcodes 

Semantics 
Points is the number of vertices in the polygon set. 

The x and y coordinate arrays contain the world coordinate values for each vertex of the 
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the 
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the 
coordinate arrays must contain a total number of vertices that equals points. 

The operation selector array contains a series of integer operation selectors defining which 
vertices start new polygons, and defining which edges should be displayed. 

Value "Meaning 

o Don't display the line for the edge extending to this vertex from the previous vertex. 

1 Display the line for the edge extending to this vertex from the previous vertex. 

2 This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a 
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or 
the end of the arrays is encountered.) 



Procedure Library Summary A-73 

Note 
The first entry in the operation selector array must be 2, since it is the 
first vertex of a sub-polygon. 

INT _POL YGON is used to output a polygon-set, specified in world coordinates, adhering exactly 
to the polygon style attributes that are currently specified. A polygon-set is a set of polygons 
(called "sub-polygons") that are treated graphically as one polygon. This is accomplished by 
"stacking" the sub-polygons. The subpolygons in a polygon-set may intersect or overlap each 
other. 

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order 
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are 
automatically connected. 

When a polygon-set is displayed, the primitive attributes for polygons and lines define its 
appearance. In particular, the interior of the polygon-set will be filled according to the attributes 
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be 
displayed as specified in the polygon style, the edges will adhere to the current line attributes of 
color, line-style and line-width. A dot will disappear on an edged polygon if the edge is done with 
a complementing line. 

The filling of polygons also depends on how the sub-polygons "nest" within each other. An 
"even-odd" rule is used for determining which areas will be filled. Moving across the screen, 
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered 
edges will turn the fill off. The picture below will help clear up how the fills work. 

Polygon Filling 



A-74 Procedure Library Summary 

Refer to SET _PGN_ TABLE, SET _PGN_STYLE, SET _PGN_COLOR, SET _PGN_LS for a more 
detailed description of how attributes affect polygons. 

As stated above, the values in the operation selector array define how the edges of the sub­
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if 
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to 
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other 
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the 
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon 
filling. 

If it is within the capabilities of the device, filling of the sub-polygon will be done to the 
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation 
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0 and the edge will 
not be drawn. 

When INT _POL YGON is used, the current position is updated to the end of the last sub-polygon 
specified in the polygon-set. The end of the last sub-polygon is defined to be the first (implicit last) 
vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call degenerates to 
an update of the current position to the first coordinate set in the x and y point arrays (x 
coordinate array [ 1], y coordinate array [1 ]). 

It is the application program's responsibility to ensure that the arrays are all dimensioned to at 
least the number of elements specified by points and that at least that many values are contained 
in each array. 

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge 
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results 
may occur if the sub-polygon extends beyond the clipping window. 

This procedure is the same as the POLYGON procedure, with the exception that the parameters 
are of type Gshortint ( - 32 768 .. 32 767). When used with some displays this procedure may 
perform about 3 Urnes faster than the POLYGON procedure. For all other displays this procedure 
has about the same performance as the POLYGON procedure. 

The INT _POL YGON procedure only has increased performance when the following conditions 
exist: 

• The display must be a raster device. 

• The window bounds are within the range - 32 768 through 32 767. 

• The window must be less than 32 767 units wide and high. 

INT _POL YGON is provided for efficient vector generation. Although its use can be mixed with 
MOVE, LINE, POLYLINE, and POLYGON, one dot roundoff errors may result with mixed use 
since different algorithms are used to implement each. 

Error Conditions 
The graphics system must be initialized, a graphics display must be enabled, all parameters must 
be within specified limits and the number of points spe<;ified must be greater than 0 or the call will 
be ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 



IMPORT: dgLtypes 
dgLlib 
dgLpoly 

Procedure Library Summary A-75 

This procedure displays a polygon-set starting and ending at the specified point adhering to the 
specified polygon style in a device-dependent fashion. 

Syntax 

INT..,pOLYGON"'pO 

Item 

points 

x array name 

y array name 

operation selector array 
name 

Procedure Heading 

Description/Default 

Expression of TYPE INTEGER 

Array of TYPE Gshorlint. Gshorlint is a sub­
range of INTEGER. 

Array of TYPE Gshorlint. Gshorlint is a sub­
range of INTEGER. 

Array of TYPE Gshorlint. Gshorlint is a sub­
range of INTEGER. 

PROCEDURE INT_POLYGON_ DD Npoint 

Semantics 

ANYI.'AR 
ANYt.JAR 
ANYt.JAR 

}-{ l.J e c 
Yvec, 
Opc a d'e 5 

Points is the number of vertices in the polygon set. 

operation selector 
array name 

Range 
Restrictions 

MININT thru MAXI NT 

-32768 to 32767 

-32768 to 32767 

-32 768 to 32767 

INTEGER; 
Gshortint_list; 
Gshortint_list; 
Gint_list ); 

The x and y coordinate arrays contain the world coordinate values for each vertex of the 
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the 
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the 
coordinate arrays must contain a total number of vertices that equals points. 

The operation selector array contains a series of integer operation selectors defining which 
vertices start new polygons, and defining which edges should be displayed .. 

98615-90030, rev: 9/84 



A-76 Procedure Library Summary 

Value 

o 
1 

2 

Meaning 

Don't display the line forthe edge extending to this vertex from the previous vertex. 

Display the line for the edge extending to this vertex from the previous vertex. 

This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a 
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the 
end of the arrays is encountered.) 

Note 
The first entry in the operation selector array must be 2, since it is the 
first vertex of a sub-polygon. 

INT _POL YGON_DD is used to output a polygon-set, specified in world coordinates, adhering 
within the capabilities of the device to the polygon style attributes that are currently specified. A 
polygon-set is a set of polygons (called "sub-polygons") that are treated graphically as one 
polygon. The subpolygons in a polygon-set may intersect or overlap each other. 

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order 
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are 
automatically connected. 

When a polygon-set is displayed, the primitive attributes for polygons and lines define its 
appearance. In particular, the interior of the polygon-set will be filled according to the attributes 
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be 
displayed as specified in the polygon style, the edges will adhere to the current line attributes of 
color, line-style and line-width. 

The filling of polygons also depends on how the sub-polygons "nest" within each other. An 
"even-odd" rule is used for determining which areas will be filled. Moving across the screen, 
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered 
edges will turn the fill off. The picture below will help clear up how the fills work. 

Polygon Filling 



Procedure Library Summary A-77 

Refer to SET _PGN_ TABLE, SET _PGN_STYLE, SET _PGN_COLOR, SET _PGN_LS for a more 
detailed description of how attributes affect polygons. 

As stated above, the values in the operation selector array define how the edges of the sub­
polygons are displayed. The edge from the (1-1 }th vertex to the Ith vertex will only be displayed if 
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to 
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other 
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the 
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon 
filling. 

If it is within the capabilities of the device, filling of the sub-polygon will be done to the 
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation 
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0, Le., the edge will 
not be drawn. 

When INT _POL YGON_DD is used, the current position is updated to the end of the last 
sub-polygon specified in the polygon-set. The end of the last sub-polygon is defined to be the first 
{implicit last} vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call 
degenerates to an update of the current position to the first coordinate set in the x and y point 
arrays (x coordinate array[l], y coordinate array[l]). 

It is the application program's responsibility to ensure that the arrays are all dimensioned to at 
least the number of elements specified by points and that at least that many values are contained 
in each array. 

Device capabilities vary widely. Not all devices are able to draw polygon edges as requested. If a 
device is not able to draw polygon edges as requested, they will be simulated in software. The 
simulation will always adhere to the edge value in SET _PGN_STYLE and the operation selector 
in INT _POL YGON_DD, but the line-style and color of the edge will depend on the capability of 
the device to produce lines with those attributes. 

Polygon fill capabilities can vary Widely between devices. A device may have no filling capabilities 
at all, may be able to perform only solid fill, or may be able to fill polygons with different fill 
densities and at different fill line orientations. INT _POLYGON_DD tries to match the device 
capabilities to the request. If the device cannot fill the request at all, then no simulation is done 
and the polygon will not be filled. For HPGL plotters, the fill is simulated. For raster devices, if the 
density is greater than 0.5, a solid fill is used, otherwise, the fill is simulated. 

In the case where the polygon style specifies non-display of edged, this would result in no visible 
output although visible output had been specified. To provide some visible output in this case, 
INT _POL YGON_DD will outline the polygon using the color and line-style specified for the fill 
lines. However, only those edge segments specified as displayable by the operation selector array 
will be drawn. Therefore, if all edge segments are specified as non-displayed, there will still be no 
visible output. 

Regardless of the capabilities of the device, INT _POL YGON_DD sets the starting position to the 
first vertex of the las(member polygon specified in the call. If there is only one polygon specified, 
the starting position will therefore be set to the first vertex specified. 



A-78 Procedure Library Summary 

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge 
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results 
may occur if the sub-polygon extends beyond the clipping window. 

This procedure is the same as the procedure POL YGON_DEV _DEP, with the exception that the 
parameters are of type Gshortint (- 32 768 .. 32 767). When used with some displays this 
procedure may perform about 3 times faster than the POLYGON_DEV-:DEP procedure. For all 
other displays this procedure has about the same performance as the POL YGON_DEV _DEP 
procedure. 

The INT _POL YGON_DD procedure only has increased performance when the following condi­
tions exist: 

• The display is a raster device. 

• The window bounds are within the range - 32 768 through 32 767. 

• The window is less then 32 767 units wide and high. 

INT _POL YGON_DD is provided for efficient vector generation. Although its use can be mixed 
with MOVE, LINE, POLYLINE, and POL YGON_DEV "":DEP, one dot roundoff errors may result 
with mixed use since different algorithms are used to implement each. 

Error Conditions 
The graphics system must be initialized, a graphics display must be enabled, all parameters must 
be within specified limits and the number of points (Points) must be greater than 0 or the call will 
be ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 



IMPORT: dgLtypes 
dgLlib 

Procedure Library Summary A-79 

INT _POLYLINE 

This procedure draws a connected line sequence starting at the specified point. 

Syntax 

INT..,pOLYLINE 

Item 

points 

x array name 

y array name 

Description/Default 

Expression of TYPE INTEGER 

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER. 

Array of TYPE Gshortint. Gshortintis a sub­
range of INTEGER. 

Procedure Heading 
PROCEDURE INT_POLYLINE Npts 

ANYVAR XveCt Yvec 

Semantics 
Points is the number of vertices in the polygon set. 

Range 
Restrictions 

MININT thru MAXI NT 

-32 768 to 32767 

-32 768 to 32767 

INTEGER; 
Gshortint_list 

The x and y coordinate arrays contain the world coordinate values for each vertex of the 
polyline-set. The vertices must be in order. The vertices for the first sub-polyline must be at the 
beginning of these arrays, followed by the vertices for the second sub-polyline, etc. So, the 
coordinate arrays must contain a total number of vertices that equals points. 

The procedure INT _POL YLINE provides the capability to draw a series of connected lines 
starting at the specified point. A complete object can be drawn by making one call to this 
procedure. This call first sets the starting position to be the first elements in the x and y coordinate 
arrays. The line sequence begins at this point and is drawn to the second element in each array, 
then to the third and continues until points-l lines are drawn. 

This procedure is equivalent to the following sequence of calls: 

I NT _MOt.'E < }.{_ coo r din ate _ a r r a)' [ 1 ] t Y _ coo r din ate _ a r r a)' [ 1 ] ) ; 
I NT _L I NE < }.{_ coo r din ate _ a r ray [2] t Y _ coo r din ate _ a r r a)' [2] ) ; 
INT_LINE <}{_coordinate_array[3] tY_coordinate_arra)'[3]); 



A-SO Procedure Library Summary 

The starting position is set to (X_coordinate_array[Pointsl, Y _coordinate_array[Pointsl) at the 
completion of this call. 

Specifying only one element, or Points equal to 1, causes a move to be made to the world 
coordinate point specified by the first entries in the two coordinate arrays. 

It is the application program's responsibility to ensure that the arrays are all dimensioned to at 
least the number of elements specified by points and that at least that many values are contained 
in each array. 

Depending on the nature of the current Hne-style nothing may appear on the graphics display. 
See SET_LINE_STYLE for a complete description of how line-style affects a particular point or 
vector. 

The primitive attributes of color, line-style, and line-width apply to polylines. 

This procedure is the same as the POLYLINE procedure, with the exception that the parameters 
are of type Gshortint ( - 32 768 .. 32 767). When used with some displays this procedure may 
perform about 3 times faster than the POLYLINE procedure. For all other displays this procedure 
has about the same performance as the POLYLINE procedure. 

The INT _POL YLINE procedure only has increased performance when the following conditions 
exist: 

• The display must be a raster device. 

• The window bounds within the range - 32 768 to 32 767. 

• The window must be less then 32 767 units wide and high. 

INT _POL YLINE is provided for efficient vector generation. Although its use can be mixed with 
MOVE, LINE, and POLYLINE, one dot roundoff errors may result with mixed use since different 
algorithms are used to implement each. 

Error Conditions 
The graphics system must be initialized, a graphics display must be enablec;i, all parameters must 
be within specified limits and the number of points (points) must be greater than 0 or the call will 
be ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 



IMPORT: general_4 
iodeclarations 

Procedure Library Summary A-81 

IOBUFFER 

This procedure will create a buffer area of the specified number of bytes. The buffer name 
variable contains the various empty and fill pointers necessary to use the buffer space. 

Syntax 

Item 

buffer name 

buffer size 

Semantics 

Description/Default 

Variable of TYPE buLinfo_type. 

Expression of TYPE INTEGER, specifies bytes. 

Range 
Restrictions 

See the 
Advanced Transfer 
Techniques chapter 

MININT thru MAXINT 

Re-executing IOBUFFER on a buffer name will allocate new space in the system, not reclaim 
the old space, or put a transfer in the old space into a known state. 

MARK and RELEASE interact with IOBUFFER, and it is possible to lose an io buffer by 
releasing it. 

The buffer name should be in a VAR declaration at the outermost level of the program or 
module containing it. 



A-82 Procedure Library Summary 

IOCONTROL 
IMPORT: generaLO 

iodeclarations 

This procedure sends control information to the selected interface. Refer to the specific interface 
in the Status and Control Register explanation for each interface in this manual. 

Syntax 

Item 

interface 
select code 

register number 

control value 

Description/Default 
Range 

Restrictions 

Expression of TYPE type_isc. This is an o thru 31 
INTEGER subrange. 

Expression of TYPE io_word. This is an -32768 thru 
INTEGER subrange. 32767 

Expression of TYPE INTEGER. MININT thru 
MAXINT 

Note 
Unexpected and possibly undesirable side effects may result from 
attempting to use this procedure in combination with other parts of 
the 110 procedure library. Make sure you understand the full implica­
tions of using it before including it in a program. 

Recommended 
Range 

7 thru 31 

Interface 
dependent 

o thru 65 535 
(interface de-

pendent) 



IMPORT: general_3 
iodeclarations 

Procedure Library Summary A-83 

IOERROILMESSAGE 

This function returns a value of TYPE iostring (a string dimensioned to 255 characters) contain­
ing an English textual description of an error produced by the 110 procedure library. 

Syntax 

~IOERROR_MESSAGE~ 

Item 

error 
number 

Description/Default 

error number Expression of TYPE INTEGER. 

Semantics 
Example: 

PROGRAM SaMPle(Input, Output); 

BEGIN 
TRY 

RECOl.lER BEG I N 
IF Escapecode = Ioescapecode THEN 

Range Recommended 
Restrictions Range 

MININT thru 0 thru 327 
MAXI NT 

WRITELN (IOERROR_MESSAGE(Ioe_result),' on ',Ioe_isc); 
ESCAPE (Escapecode); 

END {Reco\}e r} 
END. {Main Pro~raM} 

See the Errors and Timeouts chapter for further details on the IOE-RESUL T and IOE_ISC vari­
ables. 



A-84 Procedure Library Summary 

IMPORT: iodeclarations 

Note 
This function is provided for use by the internal I/O Procedure Lib­
rary drivers, only. Unexpected and possible undesirable results may 
occur if it is used. 



Procedure Library Summary A-85 

IO~SCAPE 
IMPORT: iodeclarations 

Note 
This function is provided for use by the internal I/O Procedure Lib­
rary drivers, only. Unexpected and possible undesirable results may 
occur if it is used. 



A-86 Procedure Library Summary 

IOINITIALIZE 

This procedure resets all interfaces. 

Syntax 

-...c IOINITIALIZE r 
Semantics 
A program should be bracketed by IOINITIALIZE and IOUNINITIALIZE. 

PROGRAM userpr09 ( ...... ) ; 

BEGIN 
ioinitialize; 

iouninitialize; 
END. 

IMPORT: general_l 



IMPORT: generaLO 
iodeclarations 

Procedure Library Summary A-87 

IOREAD~YTE 

This function reads the byte contained in specified register (physical address) on the selected 
interface. The function returns a value of TYPE io_byte. This is an INTEGER subrange, O .. 255. 

Syntax 

Item 

interface 
select code 

register number 

Semantics 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of TYPE io_ word. This is an 
INTEGER subrange. 

Note 

Range 
Restrictions 

o thru 31 

-32768 thru 
32767 

Recommended 
Range 

7 thru 31 

Interface 
dependent 

These are physical address registers, not the status registers used by 
the IOSTATUS statement. See the Physical Memory Map section of the 
Technical Reference Chapter of the Pascal Workstation System. Volume I. 



A-88 Procedure Library Summary 

IMPORT: general_O 
iodeclarations 

This function reads the word contained in the specified register (physical address) on the 
selected interface. The function returns a value of TYPE io_word. This is an INTEGER sub­
range, - 32 768 .. 32 767. 

Syntax 

Item Description/Default 
Range 

Restrictions 
Recommended 

Range 

interface 
select code 

register 
number 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of TYPE io_word. This is an 
INTEGER subrange. 

a thru 31 

- 32 768 thru 
32767 

7 thru 31 

Interface 
dependent 

Semantics 

Note 

These are physical address registers, not the status registers used by 
the IOSTATUS statement. See the Physical Memory Map section of the 
Technical Reference Chapter of the Pascal Workstation System, Volume I. 



IMPORT: generaLl 
iodeclarations 

Procedure Library Summary A-89 

IORESET 

This procedure will reset the specified interface to its intial (power on) state. Any currently 
active transfers will be terminated. 

Syntax 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 



A-90 Procedure Library Summary 

IOSTATUS 
IMPORT: generaLO 

iodeclarations 

This function returns the contents of an interface status register. The value returned is of TYPE 
io_word, an integer subrange ( - 32 768 thru 32 767). 

Syntax 

Item 

interface 
select code 

register 
number 

Semantics 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of TYPE io_word. This is an 
INTEGER subrange. 

Range 
Restrictions 

o thru31 

- 32 768 thru 
32767 

Recommended 
Range 

7 thru 31 

Interface 
dependent 

The register meaning depends on the interface. Refer to the specific interface in the Status and 
Control Registers. 



IMPORT: generaLO 
iodeclarations 

Note 

Procedure Library Summary A-91 

This function is provided for use by the internal 110 Procedure Lib­
rary drivers, only. Unexpected and possible undesirable results may 
occur if it is used. 



A-92 Procedure Library Summary 

IOUNINITIALIZE 

This procedure resets all interfaces. 

Syntax 

-..cIOUNINITIALIZEr 

Semantics 

IMPORT: general_l 
iodeclarations 

A program should be bracketed by IOINITIALIZE and IOUNINITIALIZE. 

PROGRAM ttSerpr09 ( ...... ) ; 

BEGIN 
ioinitialize; 

iouninitialize; 
END. 



Procedure Library Summary A-93 

IOWRITE~YTE 
IMPORT: generaLO 

iodeclarations 

This procedure writes the supplied value (representing one byte) to the specified register 
(physical address) on the selected interface. The actual action resulting from the operation 
depends on the interface and register selected. 

Syntax 

Item Description/Default Range 
Restrictions 

Recommended 
Range 

interface 
select code 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

a thru 31 7 thru 31 

register number Expression of TYPE io_word. This is an 
INTEGER subrange. 

-32768 thru 
32767 

Interface 
dependent 

register value 

Semantics 

Expression of TYPE io_byte. This is an IN­
TEGER subrange. 

Note 

a thru 255 Interface 
dependent 

These are physical address registers, not the status registers used by 
the IOSTATUS statement. See the Physical Memory Map section of the 
Technical Reference Chapter of the Pascal Workstation System, Volume I. 

Unexpected and possibly undesirable side effects may result from attempt­
ing to use this procedure in combination with other parts of the I/O 
procedure library. Make sure you understand the full implications of using 
it before including it in a program. 



A-94 Procedure Library Summary 

IMPORT: general_O 
iodeclarations 

This procedure writes the supplied value (representing 16 bits) to the specified register on the 
selected interface. The actual action resulting from the operation depends on the interface and 
register selected. 

Syntax 

Item Description/Default Range 
Restrictions 

Recommended 
Range 

interface 
select code 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

a thru 31 7 thru 31 

register number Expression of TYPE io_word. This is an 
INTEGER subrange. 

-32768 thru 
32767 

Interface 
dependent 

register value 

Semantics 

Expression of TYPE io_word. This is an 
INTEGER subrange. 

Note 

-32768 thru 
32767 

Interface 
dependent 

These are physical address registers, not the status registers used by 
the IOSTATUS statement. See the Physical Memory Map section of the 
Technical Reference Chapter of the Pascal Workstation System, Volume I. 

Unexpected and possibly undesirable side effects may result from attempt­
ing to use this procedure in combination with other parts of the I/O 
procedure library. Make sure you understand the full implications of using 
it before including it in a program. 



IMPORT: generaL4 
iodeclarations 

Procedure Library Summary A-95 

This BOOLEAN function is TRUE if there is a transfer active on the specified interface. 

Syntax 

-..c ~( interface ~ ISCJlUSY select code 

Item 

interface select code 

Description/Default 

Expression of TYPE type_isc. 
This is an INTEGER subrange 

Range 
Restrictions 

7 thru 31 



A-96 Procedure Library Summary 

KERNELINITIALIZE 
IMPORT: general_O 

Note 
This function is provided for use by the internal 1/0 Procedure Lib­
rary drivers, only. Unexpected and possible undesirable results may 
occur if it is used. It will probably blow up your program, and will 
definitely destroy any operation you are currently performing in the 
110 Procedure Library. 



Procedure Library Summary A-97 

LINE 
IMPORT: dgLlib 

This procedure draws a line from the starting position to the world coordinate specified. 

Syntax 

Item 

x coordinate 

x coordinate 

x 
coordinate 

y 
coordinate 

Description/Default 

Expression of TYPE REAL 

Expression of TYPE REAL 

Procedure Heading 
PROCEDURE LINE ( WXt Wy REAL ); 

Semantics 

Range 
Restrictions 

A line is drawn from the starting position to the world coordinate specified by the X and Y 
coordinates. The starting position is updated to this point at the completion of this call. 

The x and y coordinate pair is the ending of the line to be drawn in the world coordinate system. 

The primitive attributes of line style, line width, and color apply to lines drawn using LINE. 
Drawing to the starting position generates the shortest line possible. Depending on the nature of 
the current line-style, nothing may appear on the graphics display surface. See SET _LINE_ 
STYLE for a complete description of how line-style affects a particular point or vector. 

Error Conditions 
The graphics system must be initialized and a display must be enabled or this call will be ignored, 
an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero value. 



A-98 Procedure Library Summary 

LISTEN 
IMPORT: hpib_2 

iodeclarations 

This procedure will send the specified listen address on the bus. The A TN line will be set true. 
The interface must be active controller. 

Syntax 

Item 

interface 
select code 

device address 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of TYPE type_hpib_address. 
This is an INTEGER subrange. 

Range 
Restrictions 

o thru 31 

o thru 31 

Recommended 
Range 

7 thru 31 

o thru 30 



IMPORT: hpib_3 
iodeclarations 

Procedure Library Summary A-99 

LISTENER 

This BOOLEAN function will return TRUE if the specified interface is currently addressed as a 
listener. 

Syntax 

Item 

interface 
select code 

Description/Default 

Expression. of TYPE type_isc. This is an 
INTEGER subrange. 

Range 
Restrictions 

a thru 31 

Recommended 
Range 

7 thru 31 



A-tOO Procedure Library Summary 

LOCAL 

This procedure places the device(s) in local mode. 

Syntax 

Item 

device selector 

Semantics 

Description/Default 

Expression of TYPE type_device. This is· 
an INTEGER subrange. 

IMPORT: hpib_2 
iodeclarations 

Range 
Restrictions 

o thru 3199 

Recommended 
Range 

See glossary 

LOCAL (701 ) places the device at address 1 on interface 7 in the Local mode. LOCAL(7) 
places all devices on interface 7 in Local mode. 

System Controller Not System Controller 

Interface Select Primary Addressing Interface Select Primary Addressing 
Code Only Specified Code Only Specified 

ATN ATN 

Active REN 
MTA 

ATN MTA 

Controller ATN 
UNL 

GTL 
UNL 

LAG LAG 
GTL GTL 

Not Active REN 
Error Error 

Controller 



IMPORT: hpib_2 
iodeclarations 

Procedure Library Summary A-tOt 

LOCAI,I,OCKOUT 

This procedure sends LLO (the local lockout message) on the bus. The interface must be active 
controller. 

Syntax 

Item 

interface 
select code 

Semantics 

Active 
Controller 

Not Active 
Controller 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

System Controller 

Interface Select Primary Addressing 
Code Only Specified 

ATN Error 
llO 

Error 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 

Not System Controller 

Interface Select Primary Addressing 
Code Only Specifiea 

ATN 
Error 

LLO 



A-I02 Procedure Library Summary 

This procedure enables the locator device for input. 

Syntax 

Item 

error variable 
name 

Description/Default 

device selector 

error variable name 

Expression of TYPE INTEGER 

Variable of TYPE INTEGER 

Procedure Heading 
PROCEDURE LOCATOR_INIT 

Semantics 

Del.l_Adr 
t.JAR Ierr 

INTEGER, 
INTEGER ); 

IMPORT: dgLlib 

Range 
Restrictions 

MININT TO MAXINT 

The device selector specifies the physical addresses of the graphics locator device. 

Device Selector Locator Device Selected 

2 Relative locator, such as know 
or mouse 

100 .. 3199 

201 

202 

HP-IB device at specified select 
code and address 

HP-HIL absolute locators 

HP-HIL relative locators 

The error variable will contain a value indicating whether the locator device was successfully 
enabled. 

Value 

o 
2 

Meaning 

The locator device was successfully initialized. 

Unrecognized device specified. Unable to communicate with a device at the speCified 
address, non-existent interface card or non-graphics system supported interface card. 

If the error variable contains a non-zero value, the call has been ignored. 

LOCATOR_IN IT enables the logical locator device for input. Enabling the locator includes 
associating the logical locator device with a physical device and initializing the device. The device 
name Cis set to the name of the physical device, the device status is set to 1 (enabled) and the 
internal device selector used by the graphics library is set equal to the device selector provided by 
the user. This information is available by calling INQ_WS with operation selectors 11052 and 
13052. 

LOCA TOR_INIT implicitly makes the picture current before attempting to initialize the device. 

LOCA TOR_INIT enables the logical locator device for input. Enabling the locator includes 
associating the logical locator device with a physical device and initializing the device. 



Procedure Library Summary A-I03 

The graphics library attempts to directly identify the type of device by using its device address in 
some way. The meanings of the device address are d~fined above. 

At the time that the graphics library is initialized, all devices which are to be used must be 
connected, powered on, ready, and accessible via the specified physical address. Invalid addres­
sed or unresponsive devices result in that device not being initialized and an error being returned. 

The locator device must be enabled before it is used for input. The locator device is disabled by 
calling LOCATOR_TERM. 

If the graphics display and the locator are not the same physical device (e.g., Model 226 display 
and HP 9111 locator), then the logical locator limits will be set to the default values for the 
particular locator used. If the graphics display and locator are the same physical device (e.g., 
Model 226 display and Model 226 knob locator), then the logical locator limits are set to the 

. current view surface limits. 

The locator echo position is set to the default value (see SET_ECHO_POS). 

Only one locator device may be enabled at a time. If a locator is currently enabled, then the 
enabled device will be terminated (via LOCATOR_TERM) and the call will continue. The locator 
device should be disabled before the termination of the application program. LOCATOR_IN IT is 
the complementary routine to LOCATOR_TERM. 

Absolute Locator Limits (HPGL Plotter, Graphics Tablet, or Touchscreen) 
When the locator device is initialized on an HPGL plotter or graphics tablet, the graphics 
display is left unaltered. HPGL and HP-HIL devices are initialized to the following defaults 
when LOCATOR .. JNIT is executed: 

Wide High Wide High Resolution 
Plotter mm mm points points Aspect points/mm 

7440A 272.5 191.25 10900 7650 .7018 40.0 
7470 257.5 191.25 10300 7650 .7427 40.0 
7475 416 259.125 16640 10365 .6229 40.0 
7550A/B 411.25 254.25 16450 10170 .6182 40.0 
7570A 809.5 524.25 32380 20970 .6476 40.0 
7575A 809.5 524.25 32380 20970 .6476 40.0 
7576A 1182.8 898.1 47312 35924 .7593 40.0 
7580 809.5 524.25 32380 20970 .6476 40.0 
7585 1100 891.75 44000 35670 .8107 40.0 
7586 1182.8 898.1 47312 35924 .7593 40.0 
7595A/B 1100 891.75 44000 35670 .8107 40.0 
7596A/B 1182.8 898.1 47312 35924 .7593 40.0 
7599A 1182.8 898.1 47312 35924 .7593 40.0 
9872 400 285 16000 11400 .7125 40.0 
35723 210.0 164.0 57 43 .7500 470.0 
46087A 297.6 216.5 11904 8660 .7275 40.0 
46088A 432.4 297.6 17296 11904 .6883 40.0 

The 7550B, 7595B, 7596A, and 7599A plotters are only supported in 7550A, 7595A, or 7596A 
emulation mode. 



A-I04 Procedure Library Summary 

The maximum physical limits of the locator for a HPGL device not listed above are determined by 
the default settings of PI and P2. The default settings of PI and P2 are the values they have after 
an HPGL 'IN' command. Refer to the specific device manual for additional details. 

The default logical display surface is set equal to the area defined by PI and P2 at the time 
LOCATOR_INIT is invoked. 

Note 

If the paper is changed in an HP 7570A, HP 7575A, HP 7576A, 
HP 7580, HP 7585, HP 7586, HP 7595A/B, HP 7596A/B, or HP 7599A 
plotter while the graphics locator is initialized, it should be the same 
size of paper that was in the plotter when LOCATOR_INIT was called. 
If a different size of paper is required, the device should be terminated 
(LOCATOR_TERM) and re-initialized after the new paper has been 
placed in the plotter. 

No locator points are returned while the pen control buttons are depressed on HPGL plotters. 

Relative Locators (Knob or Mouse) - An Example 
The knob locator is initialized on a Model 226. The graphics display is an HP 98627 A color output 
card. The resolution of the locator is a through 399 in the X dimension, and 0 through 299 in the Y 
dimension. The resolution of the display is a through 511 in the X dimension, and a through 389 in 
the Y dimension. When AWAIT_LOCATOR is used with echo 4, the locator will effectively have 
the HP 98627A resolution for the duration of the AWAIT_LOCATOR call. However, if echo 1 is 
used with AWAIT-.LOCATOR, the cursor will appear on the Model 226 and the locator has a 
resolution of a through 399 and a through 299. Note that all conversion routines and inquiries will 
use the Model 226 limits. 

The physical origin of the locator device is the lower left corner of the display. 

Error Conditions 
The graphics system must be initialized or this call will be ignored, an ESCAPE (- 27) will be 
generated, and GRAPHICSERROR will return a non-zero value. 



Procedure Library Summary A-lOS 

HP-HIL Absolute Locator Semantics 
The value of DEV _ADDR must be 201 to activate an HP-HIL absolute locator; the 2 is the 
keyboard "address" times 100 (HP-IB convention), and the 1 is a token indicating "absolute 
locator." 

IERR is an error return variable, as usual in DGL. If IERR=O, the call to LOCATOR_INIT 
successfully set up at least one absolute locator device, and operations can proceed. If IERRtfO, 
this indicates a DGL error condition, and digitizing from HP-HIL tablets does not occur. 

The call to LOCATORJNIT can be made any time after a call to GRAPHICS_INIT, and is 
intended to initialize DGL so that the locator operations can be performed with the device(s) 
specified by DEV _ADDR. 

Note that all absolute locators on the HP-HIL are activated, "lumped" together, and scaling is 
done on the greatest maximum count for each dimension. That is, if Device A has more counts 
in the X direction, and Device B has more counts in the Y direction, the scaling would take 
::<ma::-=: from Device A and 'y'ma::< from Device B. See OUTPUT _ESC for information on dealing 
with this situation. 

To get DGL support of HP-HIL tablets, you need to execute the HPHIL and DGL_ABS files 
or put them in INITLIB and reboot before accessing the tablet. Both files are found on the 
CONFIG: disc (or ACCESS: disc for double sided disc) of your Pascal Operating System. If 
either of these files has not been executed, an appropriate error is returned from the routine 
LOCATORJNIT. 

HP-HIL Relative Locator Semantics 
The value of de"l_.:tddr must be 202 to activate an HP-HIL relative locator; the 2 is the keyboard 
"address" times 100 (HP-IB convention), and the last 2 is a token indicating "relative locator." 

IERR is an error return variable, as usual in DGL. If IERR=O, the call to LOCATOR_INIT 
successfully set up at least one absolute locator device, and operations can proceed. If IERRtfO, 
this indicates a DGL error condition, and digitizing from HP-HIL tablets does not occur. 

The call to LOCATORJNIT can be made any time after a call to GRAPHICS_INIT, and is 
intended to initialize DGL so that the locator operations can be performed with the device(s) 
specified by DEV _ADDR. 

Note that all relative locators on HP-HIL are activated and "lumped" together. See OUT­
PUT _ESC for information on dealing with this situation. 

Note also that if Mouse were executed in INITLIB, all HP-HIL mouse and knob devices generated 
arrow keys when moved. LOCATORJNIT (202, ERR) terminates generation of arrow keys until 
LOCATOR_ TERM or GRAPHICS_TERM is executed. If some kind of error prevents execution 
of LOCATOR_TERM or GRAPHICS_TERM the CLR-I/O key (STOP key on 46020 keyboards) 
will restore arrow key functionality. 

Enhanced DGL support of HP-HIL mouse and knob locators also requires the files HPHIL and 
DGL_REL to have been executed or put in INITLIB before accessing the device. As stated 
above, both files are found on the CONFIG: (ACCESS: for double sided) disc of your Pascal 
Operating System. If either of these files has not been executed, an appropriate error is returned 
from the routine LOCATORJNIT. 



A-I06 Procedure Library Summary 

LOCATOR_ TERM 

This procedure disables the enabled locator device. 

Syntax 

~OCATOR_TER~ 

Procedure Heading 
PROCEDURE LOCATOR_TERM; 

Semantics 

IMPORT: dgLlib 

LOCATOR_TERM terminates and disables the enabled locator device. It transmits any termina­
tion sequence required by the device and releases all resources being used by the device. The 
device name is set to the default device name (' '), the device status is set to 0 (not enabled) and 
the device address is set to O. 

LOCATOR_TERM is the complementary routine to LOCATOR_IN IT. 

If a locator device is used, LOCATOR_TERM should be called before the application program is 
terminated. 

Error Conditions 
The graphics system must be initialized and a locator device enabled or this call will be ignored, an 
ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero value. 

HP-HIL Absolute Locator Semantics 
Turns off whatever DGL locator is presently enabled by LOCATOR . .JNIT. "Turn off" mayor 
may not do something to the hardware; it may just disconnect software linkages. HP-HIL 
locators do not even know they've been "turned off" by DGL, except that HP-HIL relative 
locators stop "keeping track" of their position. Note that if the module Mouse was installed in 
INITLIB, arrow keys stopped being generated from knobs and the mouse when LOCATOR.JNIT 
(202, ERR) was successfully executed. LOCATOR .... TERM would restore arrow key functionality 
from knob and mouse devices in this case. 



IMPORT: hpib_3 
iodeclarations 

Procedure Library Summary A-I07 

This BOOLEAN function will return TRUE if the specified interface is currently in the local 
lockout state. If the interface is currently active controller a FALSE value will be returned 
regardless of the local lockout state. 

Syntax 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 



A-lOS Procedure Library Summary 

IMPORT: dgLlib 

This procedure makes the picture current. 

Syntax 

Procedure Heading 
PROCEDURE MAKE_PIC_CURRENT; 

Semantics 
The graphics display surface can be made current at any time with a call to MAKE_PIC_ 
CURRENT. This insures that all previously generated primitives have been sent to the graphics 
display device. Due to operating system delays, all picture changes may not have been displayed 
on the graphics display upon return to the calling program. MAKE_PIC_CURRENT is most often 
used in system buffering mode (see SET_TIMING) to make sure that all output has been sent to 
the graphics display device when required. 

Before performing any non-graphics library input or output to an active graphics device, (e.g., a 
Pascal read or write), it is essential that all of the previously generated output primitives be sent to 
the device. If immediate visibility is the current timing mode, all primitives will be sent to the 
device before completion of the call to generate them, but if system buffering is used, MAKE_ 
PIC_CURRENT should be called before performing any non-graphics system 110. 

The following routines implicitly make the picture current: 

AWAIT_LOCATOR 
LOCATOR_INIT 

DISPLAY_TERM 
SAMPLE_LOCATOR 

INPUT_ESC 

A call to MAKE_PIC_CURRENT can be made at any time within an application program to insure 
that the image is fully displayed. MAKE_PIC_CURRENT does not modify the current timing 
mode. 

Error Conditions 
The graphics system must be initialized and a display must be enabled or this call will be ignored, 
an ESCAPE ( - 27) will be generated, and GRAPHICS ERROR will return a non-zero value. 



Procedure Library Summary A-I09 

MARKER 
IMPORT: dgLlib 

This procedure outputs a marker symbol at the starting position. 

Syntax 

Item Description/Default 

marker selector Expression of TYPE INTEGER 

Procedure Heading 
PROCEDURE MARKER ( MarKer_nuM INTEGER ); 

Semantics 

Range 
Restrictions 

MININTTO 
MAXINT 

Recommended 
Range 

1 thru 19 

The marker selector determines which marker will be output. There are 19 defined invariant 
marker symbols (1-19). They are defined as follows: 

1 - ' , 7 - rectangle 13 - '3' 
2 -' +' 8 - diamond 14 - '4' 
3 - ,*, 9 - rectangle with cross 15 - '5' 
4 - '0' 10 - '0' 16 - '6' 
5 - 'X' 11 - '1' 17 - '7' 
6 - triangle 12 - '2' 18 - '8' 

19 - '9' 

Marker numbers 20 and larger are device dependent. 

MARKER outputs the marker designated by the marker selector, centered about the starting 
position. The starting position is left unchanged at the completion of this call. 

If the marker selector specified is greater than the number of distinct marker symbols that are 
supported by a device, then marker number 1 ('.') will be used. INQ_ WS can be used to inquire 
the number of distinct marker symbols that are available on a particular graphics display device. 
Depending on a particular display device's capabilities, the graphics library uses either hardware 
or software to generate the marker symbols. 

The size and orientation of markers is fixed and not affected by the viewing transformation. The 
size of markers is device dependent and cannot be changed. 

Only the primitive attributes of color and highlighting apply to markers. However, the marker will 
appear with these attributes only if the device is capable of applying them to markers. 

Error Conditions 
The graphics system must be initialized and a display device enabled or the call will be ignored, an 
ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a non-zero value. 



A-IIO Procedure Library Summary 

MOVE 

This procedure sets the starting position to the world coordinate specified. 

Syntax 

Item 

x coordinate 

y coordinate 

x 
coordinate 

y 
coordinate 

Description/Default 

Expression of TYPE REAL 

Expression of TYPE REAL 

Procedure Heading 
PROCEDURE MOVE ( WXt Wy REAL ); 

Semantics 

IMPORT: dgl_lib 

Range 
Restrictions 

MOVE specifies where the next graphical primitive will be output. It does this by setting the value 
of the starting position to the world coordinate system point specified by the X, Y coordinate 
values and then moving the physical beam or pen to that point. 

The x and y coordinate pair is the new starting position in world coordinates. 

The starting position corresponds to the location of the physical pen or beam in all but four 
instances: after a change in the viewing transformation, after initialization of a graphical display 
device, after the output of a text string, or after the output of a graphical escape function. A call to 
MOVE or INT _MOVE should therefore be made after anyone of the following calls to update the 
value of the starting position and in so dOing, place the physical pen or beam at a known 
location: SET -ASPECT, DISPLAY _INIT, SET_DISPLAY_LIM, OUTPUT_ESC, TEXT, SET_ 
VIEWPORT, and SET_WINDOW. 

Error Conditions 
The graphics system must be enabled and a display device enabled or this call will be ignored, an 
ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero value. 



IMPORT: hpib_l 
iodeclarations 

Procedure Library Summary A-Ill 

MY~DDRESS 

This function returns an INTEGER subrange (TYPE type_hpib_addr) representing the HP-IB 
address of the specified HP-IB interface. 

Syntax 

~ ~( interface MY..ADDRESS select code 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 



A-112 Procedure Library Summary 

OUTPUT_ESC 
IMPORT: dgLlib 

This procedure performs a device dependent escape function to access special features of a 
graphics display device. 

Syntax 

OUTPUT...,ESC 

Item 

operation selector 

INTEGER array 
size 

REAL array size 

INTEGER array 
name 

REAL array name 

error variable name 

INTEGER 
array size 

INTEGER 
array name 

REAL 
array name 

Description/Default 

Expression of TYPE INTEGER 

Expression of TYPE INTEGER 

Expression of TYPE INTEGER 

Any valid variable. 
Should be INTEGER array 

Any valid variable. 
Should be REAL array 

Variable of TYPE INTEGER 

REAL 
array size 

Range 
Restrictions 

MININT to 
MAXINT 

MININT to 
MAXINT 

MININTto 
MAXINT 

Procedure Heading 
PROCEDURE OUTPUT_ESC Opcode 

Semantics 

Isize 
Rsize 

ANYVAR Ilist 
ANYVAR Rlist 

I.JAR Ierr 

INTEGER; 
INTEGER; 
INTEGER; 
Gint_list; 
Greal_list; 
INTEGER ) ; 

Recommended 
Range 

>0 

>0 

The operation selector determines the device dependent output escape function to be per­
formed. The codes supported for a given device are described in the device handlers section of 
this document. 

The INTEGER array size is the number of INTEGER parameters contained in the INTEGER 
array. The thousand's digit of the operation selector is the number of INTEGER parameters that 
the graphics system expects. 



Procedure Library Summary A-113 

The REAL array size is the number of REAL parameters contained in the REAL array by the 
escape function. The hundred's digit of the operation selector is the number of REAL parameters 
that the graphics system expects. 

The INTEGER array is the array in which zero or more INTEGER parameters are contained. 

The REAL array is the array in which zero or more REAL parameters are contained. 

The error variable will contain a value indicating whether the escape function was performed. 

Value 

o 
1 

2 

3 

4 

Meaning 

Output escape function successfully sent to the device. 

Operation not supported by the graphics display device. 

The INTEGER array size is not equal to the number of required INTEGER parameters. 

The REAL array size is not equal to the number of required REAL parameters. 

Illegal parameters specified. 

If the error variable contains a non-zero value, the call has been ignored. 

OUTPUT_ESC allows application programs to access special device features on a graphics 
display device. The desired escape function is specified by a unique value for opcode. 

The type of information passed to the graphics display device is determined by the value of 
opcode. The graphics library does not check OUTPUT_ESC parameters which will be sent 
directly to the display device. This can lead to device dependent results if out of range values are 
sent. 

Output escape functions only apply to the graphics display device. 

The starting position may be altered by a call to OUTPUT_ESC. 

Error Conditions 
The graphics system must be initialized and a display device must be enabled or this call will be 
ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 

For HPGL plotters, it is recommended that you read the operator's or programmer's manual 
for the peripheral before programming HPGL OUTPUT ..... ESC values. 



A-114 Procedure Library Summary 

HP-HIL Locator ~emantics 
The output_esc procedure, when called in relation to Hp-HIL input devices, allows you to specify 
which HP-HIL devices on the loop are to be active. 

For HP-HIL locator devices (Le., LOCATORJNIT was called with a value of 201 or 202), the 
effect of the OUTPUT _ESC call is as follows. 

o~ I a r r [ 1 ] ~ 127 HP-HIL addresses 1-7, corresponding to bits 0-6, are enabled (bit value of 
1) or disabled (bit value of 0) as potential locators. If the device at address 
(bit) + 1 is not a locator, the value of the bit is irrelevant-the device is not 
activated. 

I a r rC 1 ]<0 

Iarr[l]>127 

Once active devices are selected, locator scaling is performed to the largest 
active device, in the case of LOCATORJNIT 201. For LOCATORJNIT 
202 this is not relevant. If no devices are active at this point, an error is 
generated (esc.:;;pecode=-27) because scaling could not take place. 

Error condition: Err = 4; "Illegal parameters specified. " 

Works with Iarr[1] lIIod 128. 

A call to out.put._esc when dealing with HP-HIL devices would take the following fonn*: 

out.put._esc(1090, 1, 0, Iarr, Rarr, Err); 

For HP-HIL relative locators only, the opcode 1091 is also useful. After performing a loca­
tor _init(202, err), the keyboard is "active" for terminating the awaitJocator procedure. Arrow 
keys, as well as any other keys will act as the "button", and return their values (as the ordinals 
of their character values) while digitizing the current . location. 

If you wish keyboard keys not to terminate 3waitJocator, use outpuLesc(1091 , 1, 0, larr, Rarr, 
Err), with a value of 0 for larr[l]. This tells DGL to accept only mouse buttons to terminate 
awaiLlocator. Beware: the HP-HIL "knob" and the 98203C keyboard knob have no buttons; 
there is no way to terminate awaitJocator using these devices after the above outpuLesc has 
been performed. 

If LOCATORJNIT (201,ERR) or LOCATORJNIT (202,ERR) was not executed prior to either 
of these calls, the system would report one of three errors: 

escapecode=-27 and 
.;:I rap hie s err 0 r =3 

esc.:;:pecode=-27 and 
'3 r .:;; phi c s err 0 r =0 

err=l 

If no locator has been activated . 

If no display has been initialized 

If a locator other than 201 or 202 has been activated. 

This use of 0 u t put _ esc is an extension of functionality of previous implementations of 0 u t put _ esc, 
which specified that output_esc should only talk to output devices (e.g., displays and plotters), not 
input devices, such as locators. 

• A "9" as the tens digit in the in put _. S C opcode indicates a locator opcode. 



Procedure Library Summary A-lIS 

Raster Device Escape Operations 
Operation 
Selector 

52 

Function 

Dump graphics of the currently active display device if it is the console or a bit-mapped display. 
Graphics will be dumped to the graphics printer (PRINTER:); if color, all planes are ORed. 

For the 98542A and 98543A low-resolution bit-mapped displays, the computer dumps the 
image on the CRT using 1024 x 800 dots on the printer, giving a large, coarse-grained 
representation. Each screen graphics DGL "paired" pixel is represented by a 2 x 2 square 
of dots on the printer. This is the same result as is produced by pressing the DUMP 
ALPHA or DUMP GRAPHICS keys. 
For the 98544A, 98545A, 98547 A, 98548A, 98549A, 98550A, 98700A high-resolution 
bit-mapped displays, and the 362/382 internal bit-mapped displays, the image is dumped 
bit-for-bit; the image on the printer comes out with each screen pixel represented by one 
printer dot. 

53 Await vertical blanking. This escape function will not exit until the CRT is performing vertical 
blanking. 

54 

250 

10501 

1051 1 

1052 

The following example shows how to use this function when changing the color table to 
reduce flicker. 

OUTPUT_ESC (53t Ot Ot dUfTliT1Yt dttfTlfTl}'t error); 

SET_COL OR_TABLE ( Ot rt ~t b ); 
The color table is not changed until the crt is blank (during a refresh cycle). 
Otherwise changing the color map in the middle of a scan would create a screen 
that was half the old color, and half the new color for one frame (1160 sec). To the 
eye this would look like a flicker. 

For the 98542A and 98544A low-resolution bit-mapped displays, only the even-numbered 
frame-buffer pixels in a row are dumped. Graphics images are not degraded, however, 
because of the paired pixels which are used for graphics but not used for alpha. Alpha 
characters do not use pixel pairs but individual pixels. Thus, they lose internal detail when 
dumped with this operation selector, as half the pixel columns in the character cell are not 
printed. However, they are usually still readable. 
For the 98544A, 98545A, 98547A, 98548A, 98549A, 98550A, and 98700A high-resolution 
hit-mapped displays, and the 362/382 internal hit-mapped displays, the image is dumped as 
with operation selector 52. . 
For non-bit-mapped displays, operation selector 54 is ignored. 

Specify device limits. 
REAL Array [1] = Points (dots) per mm in X direction 
REAL Array [2] = Points (dots) per mm in Y direction 

Turn on or off the graphics display. 
INTEGER array [1] = a ~ turn display off. 
INTEGER array [1] < > a ~ turn display on. 

Turn on or off the alpha display. 
INTEGER array [1] = a ~ turn display off. 
INTEGER array [1] < > a ~ turn display on. 

Set special drawing modes. Using this escape function will redefine the meaning of 
the set color attribute. For details on how a given drawing mode affects a color see 
"Drawing Modes" in SET_COLOR. This drawing mode does nQt apply to device 
dependent polygons. Out of range values default to dominate drawing mode. 

INTEGER array[ 1] = a ~ Dominate drawing mode. 
= 1 ~ Non-dominate drawing mode. 
= . 2 ~ Erase drawing mode. 
= 3 ~ Complement drawing mode. 

------------------------
1 This operation is not available for the Model 237, HP 98542, HP 98545, HP 98547, HP 98549, and HP 98700. 



A-116 Procedure Library Summary 

Operation 
Selector Function 

1053 Dump graphics (from the specified color planes) to the graphics printer (PRINTER:). Also dumps 
graphic;s on a Model 237 if it is the currently active display. 

1054 

10050 

INTEGER array [1] = Color plane selection code. 

BIT 0 = 1 ~ Select plane 1. 
(Blue on HP 98627 A) 

BIT 1 = 1 ~ Select plane 2. 
(Green on HP 98627A) 

BIT 2 = 1 ~ Select plane 3. 
(Red on HP 98627A) 

BIT 3 = 1 ~ Select plane 4. 

Clear selected graphics planes. 

INTEGER Array [1] = 0 - Clear all planes 
INTEGER Array [1] < > 0 - Color plane selection code. 

BIT 0 = 1 Clear plane 0 (Blue on HP 98627 A) 
BIT 1 = 1 Clear plane 1 (Green on HP 98627 A) 
BIT 2 = 1 Clear plane 2 (Red on HP 98627 A) 
BIT 3 = 1 Clear plane 3 
BIT 4 = 1 Clear plane 4 
BIT 5 = 1 Clear plane 5 
BIT 6 = 1 Clear plane 6 
BIT 7 = 1 Clear plane 7 

Set all color table locations for color raster graphics displays. This escape function allows 
the user to change all locations in the hardware color map with one procedure. The 
software maintained color table will be updated by this call. This escape function is the 
same as calling SET ..... COLOR .... TABLE with indexes 0 - n. 

REAL Array [1] = Parm 1 
REAL Array [2] = Parm2 
REAL Array [3] = Parm3 

REAL Array [4] = ParmI 
REAL Array [5] = Parm2 
REAL Array [6] = Parm3 

Index 0 

Index 1 

Model Planes Colors 
236C 4 0 ... 15 

98543A 4 0 ... 15 
98545A 4 0 ... 15 
98547A 6 0 ... 63 
98549A 6 0 ... 63 
98550A 8 0 ... 225 
98700A 8 o ... 225 

362/382 8 0 ... 255 

ParmI, Parm2, and Parm3 are defined to be the same as used with SET_COLOR_ 
TABLE. 

The size of the INTEGER array must equal 0 and the size of the REAL array is three 
times the number of colors. 



Procedure Library Summary A-117 

The following tables show which escape codes are supported on which Series 200/300 raster 
displQYs: 

Operation 236 
Selector 216 217 220 226 236 Color 237 98627A 

52 yes yes yes yes yes yes yes yes 
53 no no no no no yes no no 

250 yes yes yes yes yes yes yes yes 
1050 yes yes yes yes yes yes no yes 
1051 yes yes yes yes yes yes no no 
1052 yes yes yes yes yes yes yes yes 
1053 no no no no no yes yes yes 
1054 yes no no yes yes yes no yes 

10050 no no no no no yes no no 

Operation 
Selector 98542A 98543A 98544A 98545A 98547A 98548A 98549A 98550A 98700A 

52 yes yes yes yes yes yes yes yes yes 
53 yes yes yes yes yes yes yes yes yes 
54 yes yes yes yes yes yes yes yes yes 

250 yes yes yes yes yes yes yes yes yes 
1050 no no no no no no no no no 
1051 no no no no no no no no no 
1052 yes yes yes yes yes yes yes yes yes 
1053 no no no no no no no no no 
1054 yes yes yes yes yes yes yes yes yes 

10050 no yes no yes yes no yes yes yes 

Operation 362/382 
Selector 

52 yes 

53 yes 

54 yes 
250 yes 

1050 no 

1051 no 

1052 yes 

1053 no 

1054 yes 

10050 yes 



A-lIS Procedure Library Summary 

HPGL Plotter Escape Operations 
Operation 
Selector 

1052* 

Function 

Enable cutter. Provides means to control the Plotter paper cutters. Paper is cut after it is 
advanced. 

INTEGER array [1] = 0 Cutter is disabled. 
INTEGER array [1] < > 0 Cutter is enabled. 

1052 Set automatic pen. This instruction provides a means for utilizing the smart pen options of 
the plotter. Initially, all automatic pen options are enabled. 

INTEGER array [1]: BIT 0 = 1 
Lift pen if it has been down for 60 seconds. 

BIT 1 = 1 
Put pen away if it has been motionless for 20 seconds. 
BIT 2 = 1 
Do not select a pen until a command which makes a mark. This causes the pen to remain 

in the turret for the longest possible time. 

1053 Advance the paper either one half or a full page. 

INTEGER array [1],,= 0 > > Advance page half 
INTEGER array [1] <> 0 > > Advance page full 

2050 Select pen velocity. This instruction allows the user to modify the plotter's pen speed. Pen 
speed may be set from 1 to the maximum for the given device. 

INTEGER array [1] = Pen speed (INTEGER from 1 to device max). 
INTEGER array [2] = Pen number (INTEGER from 1 to 8; other integers 

select all pens) 

2051 Select pen force. The force may be set from 10 to 66 gram-weights. 

INTEGER array [1] = Pen force (INTEGER from 1 to 8). 
1: 10 gram-weights 
2: 18 gram-weights 
3: 26 gram-weights 
4: 34 gram-weights 
5: 42 gram-weights 
6: 50 gram-weights 
7: 58 gram-weights 
8: 66 gram-weights 

INTEGER array [2] = Pen number (INTEGER 1 to 8: other integers 
select all pens) 

2052 Select pen acceleration. The acceleration may be set from 1 to 4 G's. 

INTEGER array [1] Pen acceleration (INTEGER from 1 to 4). 
INTEGER array [2] = Pen number (INTEGER 1 to 8: other integers select all pens) 



Procedure Library Summary A-119 

Operation * 
Selector 9872 7470 7475 7550 7575A 7576A 7580 7585 7586 

1052 * SIT no no no no no no no no 
1052 no no yes yes yes yes yes yes yes 
1053 SIT no no yes yes yes no no yes 
2050 yes yes yes yes yes yes yes yes yes 
2051 no no yes yes no no yes yes yes 
2052 no no yes yes no no yes yes yes 

Operation* 
Selector 7440A 7570A 7595A/B 7596A/B 7599A 

1052* no no no no no 

1052 no yes yes yes yes 

1053 no no no yes yes 

2050 yes yes yes yes yes 

2051 no yes yes yes yes 

2052 no yes yes yes yes 

. The 7595B, 7596B and 7599A plotters are only supported in 7595A or 7596A emulation mode. 

• Note that some plotters may accept these opcodes, but perform no action with them (they are NOPs). This is done for compatibility 
purposes. 



A-120 Procedure Library Summary 

IMPORT: hpib_2 
iodeclarations 

This procedure passes active control from the specified interface to another device on the bus. 

Syntax 

~ ~( device ~) 
~ASS_CONTRO~ selector ~ 

Item 

device selector 

Semantics 

Active 
Controller 

Not Active 
Controller 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

System Controller 

Interface Select Primary Addressing 
Code Only Specified 

ATN ATN 
TCT UNL 
ATN TAG 

TCT 
ATN 

Error 

Range 
Restrictions 

a thru 3199 

Recommended 
Range 

See glossary 

Net System Controller 

Interface Select Primary Addressing 
Code Only Specified 

ATN ATN 
TCT UNL 
ATN TAG 

TCT 
ATN 



IMPORT: dgLtypes 
dgLlib 
dgLpoly 

Procedure Library Summary A-121 

POLYGON 

This procedure displays a polygon-set starting and ending at the specified point adhering to the 
specified polygon style exactly as speCified (Le., device-independent results). 

Syntax 

operation selector 
array name 

Item Description/Default 

paints Expression of TYPE INTEGER 

x array name Array of TYPE REAL. 

y array name Array of TYPE REAL. 

operation selector array -Array of TYPE Gshortint. Gshortint is a sub-
name range of INTEGER. 

Procedure Heading 
PROCEDURE POLYGON Npoint 

ANYI.IAR }-(I.l e c 
ANYI.IAR Yv e c 
ANYI.IAR Opcodes 

Semantics 

INTEGER; 
Greal_list; 
Greal_list; 
Gshortint_list) ; 

Points is the number of vertices in the polygon set. 

Range 
Restrictions 

MININT thru MAXINT 

- 32 768 to 32 767 

The x and y coordinate arrays contain the world coordinate values for each vertex of the 
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the 
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the 
coordinate arrays must contain a total number of vertices that equals points. 

The operation selector array contains a series of integer operation selectors defining which 
vertices start new polygons, and defining which edges should be displayed. 



A-122 Procedure Library Summary 

Value 

o 
1 

2 

Meaning 

Don't display the line for the edge extending to this vertex from the previous vertex. 

Display the line for the edge extending to this vertex from the previous vertex. 

This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a 
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the 
end of the arrays is encountered.) 

Note 
The first entry in the operation selector array must be 2, since it is the 
first vertex of a sub-polygon. 

POLYGON is used to output a polygon-set, specified in world coordinates, adhering exactly to 
the polygon style attributes that are currently specified. A polygon-set is a set of polygons (called 
"sub-polygons") that are treated graphically as one polygon. This is accomplished by "stacking" 
the sub-polygons. The sub polygons in a polygon-set may intersect or overlap each other. 

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order 
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are 
automatically connected. 

When a polygon-set is displayed, the primitive attributes for polygons and lines define its 
appearance. In particular, the interior of the polygon-set will be filled according to the attributes 
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be 
displayed as specified in the polygon style, the edges will adhere to the current line attributes of 
color, line-style and line-width. A dot will disappear on an edged polygon if the edge is done with 
a complementing line. 

The filling of polygons also depends on how the sub-polygons "nest" within each other. An 
"even-odd" rule is used for determining which areas will be filled. Moving across the screen, 
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered 
edges will turn the fill off. The picture below will help clear up how the fills work. 

Polygon Filling 



Procedure Library Summary A-123 

Refer to SET _PGN_ TABLE, SET _PGN_STYLE, SET _PGN_COLOR, SET _PGN_LS for a more 
detailed description of how attributes affect polygons. 

As stated above, the values in the operation selector array define how the edges of the sub­
polygons are displayed. The edge from the (I-1)th vertex to the Ith vertex will only be displayed if 
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to 
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other 
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the 
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon 
filling. 

If it is within the capabilities of the device, filling of the sub-polygon will be done to the 
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation 
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0 and the edge will 
not be drawn. 

When POLYGON is used, the current position is updated to the end of the last sub-"polygon 
specified in the polygon-set. The end of the last sub-polygon is defined to be the first (implicit last) 
vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call degenerates to 
an update of the current position to the first coordinate set in the x and y point arrays (x 
coordinate array[1], y coordinate array[1]). 

It is the application program's responsibility to ensure that the arrays are all dimensioned to at 
least the number of elements speCified by points and thatat least that many values are contained 
in each array. ~ 

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge 
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results 
may occur if the sub-polygon extends beyond the clipping window. 

Error Conditions 
The graphics system must be initialized, a graphics display must be enabled, all parameters must 
be within speCified limits and the number of points specified must be greater than 0 or the call will 
be ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 



A-124 Procedure Library Summary 

IMPORT: dgLtypes 
dgLlib 
dgLpoly 

This procedure displays a polygon-set starting and ending at the specified point adhering to the 
specified polygon style in a device dependent fashion. 

Syntax 

POLYGON-DEV-DEP 

Item 

points 

x array name 

y array name 

operation selector array 
name 

Procedure Heading 

Description/Default 

Expression of TYPE INTEGER 

Array of TYPE REAL. 

Array of TYPE REAL. 

Array of TYPE Gshortint. Gshortint is a sub­
range of INTEGER. 

operation selector 
array name 

Range 
Restrictions 

MININT thru MAXINT 

-32768 to 32 767 

PROCEDURE POLYGON_DEV_DEP 
ANY!.'AR 
ANY!.'AR 
ANY!.'AR 

Npoint 
}{ \.1 e c 
}{ \) e c 
Opcodes 

INTEGER; 
Greal_list; 
Greal_list; 
Gshortint_list> ; 

Semantics 
Points is the number of vertices in the polygon set. 

The x and y coordinate arrays contain the world coordinate values for each vertex of the 
polygon-set. The vertices must be in order. The vertices for the first sub-polygon must be at the 
beginning of these arrays, followed by the vertices for the second sub-polygon, etc. So, the 
coordinate arrays must contain· a total number of vertices that equals points. 

The operation selector array contains a series of integer operation selectors defining whith 
vertices start new polygons, and defining which edges should be displayed. 



Value 

o 

1 

2 

Procedure Library Summary A-125 

Meaning 

Don't display the line for the edge extending to this vertex from the previous vertex. 

Display the line for the edge extending to this vertex from the previous vertex. 

This vertex is the first vertex of a sub-polygon. Succeeding vertices are part of a 
sub-polygon until a new start-of-polygon operation selector (2) is encountered. (Or the 
end of the arrays is encountered.) 

Note 
The first entry in the operation selector array must be 2, since it is the 
first vertex of a sub-polygon. 

POL YGON-DEV-DEP is used to output a polygon-set, specified in world coordinates, adhering 
(within the capabilities of the device) to the polygon style attributes that are currently specified. A 
polygon-set is a set of polygons (called "sub-polygons") that are treated graphically as one poly­
gon. The subpolygons in a polygon-set may intersect or overlap each other. 

The edge of a sub-polygon is defined as the line sequence that connects its vertices in the order 
specified. If the last vertex specified for a sub-polygon is not the same as the first, they are 
automatically conneCted. 

When a polygon-set is displayed, the primitive attributes for polygons and lines define its 
appearance. In particular, the interior of the polygon-set will be filled according to the attributes' 
of polygon style, polygon interior color and polygon interior line-style. If the edges are to be 
displayed as specified in the polygon style, the edges will adhere to the current line attributes of 
color, line-style and line-width. 

The filling of polygons also depends on how the sub-polygons "nest" within each other. An 
"even-odd" rule is used for determining which areas will be filled. Moving across the screen, 
count the edges of the polygon. Odd-numbered edges will turn the fill on and even-numbered 
edges will turn the fill off. The picture below will help clear up how the fills work. 

Polygon Filling 



A-126 Procedure Library Summary 

Refer to SET _PGN_ TABLE, SET _PGN_STYLE, SET _PGN_COLOR, SET _PGN_LS for a more 
detailed description of how attributes affect polygons. 

As stated above, the values in the operation selector array define how the edges of the sub­
polygons are displayed. The edge from the (I-l)th vertex to the Ith vertex will only be displayed if 
the Ith entry in the operation selector array equals 1. To display the edge from the last vertex to 
the first vertex of a sub-polygon, the first vertex must be explicitly respecified after all the other 
vertices of the sub-polygon, with an operation selector equal to 1. Otherwise the edge from the 
last vertex to the first will not be drawn. It will, however, automatically be connected for polygon 
filling. 

If it is within the capabilities of the device, filling of the sub-polygon will be done to the 
sub-polygon edges regardless of whether the edges are displayed. If an entry in the operation 
selector array does not equal 0, 1, or 2, it will be treated as if it were equal to 0, i.e., the edge will 
not be drawn. 

When POL YGON_DEV _DEP is used, the current position is updated to the end of the last 
sub-polygon specified in the polygon-set. The end of the last sub-polygon is defined to be the first 
(implicit last) vertex of the subpolygon. So, if there is only one vertex in a polygon-set this call 
degenerates to an update of the current position to the first coordinate set in the x and y point 
arrays (x coordinate array[l], y coordinate array [1 n. 

It is the application program's responsibility to ensure that the arrays are all dimensioned to at 
least the number of elements specified by points and that at least that many values are contained 
in each array. 

Device capabilities vary widely. Not all devices are able to draw polygon edges as requested. If a 
device is not able to draw polygon edges as requested, they will be simulated in software. The 
simulation will always adhere to the edge value in SET _PGN_STYLE and the operation selector 
in POL YGON_DEV _DEP, but the line-style and color of the edge will depend on the capability of 
the device to produce lines with those attributes. 

Polygon fill capabilities can vary widely between devices. A device may have no filling capabilities 
at all, may be able to perform only solid fill, or may be able to fill polygons with different fill 
densities and at different fill line orientations. POL YGON_DEV _DEP tries to match the device 
capabilities to the request. If the device cannot fill the request at all, then no simulation is done 
and the polygon will not be filled. For HPGL plotters, the fill is simulated. For raster devices, if the 
density is greater than 0.5, a solid fill is used, otherwise, the fill is simulated. 

In the case where the. polygon style specifies non-display of edged, this would result in no visible 
output although visible output had been specified. To provide some visible output in this case, 
POL YGON_DEV_DEP will outline the polygon using the color and line-style speCified for the fill 
lines. However, -only those edge segments specified as displayable by the operation selector array 
will be drawn. Therefore, if all edge segments are specified as non-displayed, there will still be no 
visible output. 

Regardless of th~ capabilities of the device, PQL YGON_DEV,---DEP sets the. starting position to 
the first vertex of the last member polygon specified in the call. If there is only one polygon 
specified, the starting position will therefore be set to the first vertex specified. 



Procedure Library Summary A-127 

Polygons are defined to be closed surfaces. When a sub-polygon extends beyond a clipping edge 
the closed nature of the sub-polygon is destroyed. As with other primitives, unpredictable results 
may occur if the sub-polygon extends beyond the clipping window. 

Error Conditions 
The graphics system must be initialized, a graphics display must be enabled, all parameters must 
be within specified limits and the number of points (Points) must be greater than 0 or the call will 
be ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 



A-128 Procedure Library Summary 

POLYLINE 
IMPORT: dgLlib 

This procedure draws a connected line sequence starting at the specified point. 

Syntax 

Item 

points 

x array name 

y array name 

Procedure Heading 
PROCEDURE POL YL I NE 

Semantics 

Description/Default 

Expression of TYPE INTEGER 

Array of TYPE REAL. 

Array of TYPE REAL. 

Npts 
ANYVAR Xvect Yvec 

: INTEGER; 
Greal_list 

Points is the number of vertices in the polygon set. 

Range 
Restrictions 

MININT thru MAXINT 

The x and y coordinate arrays contain the world coordinate values for each vertex of the 
polyline-set. The vertices must be in order. The vertices for the first sub-polyline must be at the 
beginning of these arrays, followed by the vertices for the second sub-polyline, etc. So, the 
coordinate arrays must contain a total number of vertices that equals points. 

The procedure POLYLINE provides the capability to draw a series of connected lines starting at 
the specified point. A complete object can be drawn by making one call to this procedure. This 
call first sets the starting position to be the first elements in the x and y coordinate arrays. The line 
sequence begins at this point and is drawn to the second element in each array, then to the third 
and continues until pOints-l lines are drawn. 

This procedure is equivalent to the following sequence of calls: 

MOVE <X_coordinate_array[ll tY_coordinate_array[ll); 
LINE (}{_coordinate_arra}/[2l tY_coordinate_arra}/[2l); 
LINE (}{_coordinate_arra}/[3l tY_coordinate_arra}/[3l); 

The starting position is set to (X_coordinate_array[Points], Y _coordinate_array[Points1) at the 
completion of this call. 



Procedure Library Summary A-129 

Specifying only one element, or Points equal to 1, causes a move to be made to the world 
coordinate point specified by the first entries in the two coordinate arrays. 

It is the application program's responsibility to ensure that the arrays are all dimensioned to at 
least the number of elements specified by points and that at least that many values are contained 
in each array. 

Depending on the nature of the current line-style nothing may appear on the graphics display. 
See SET_LINE_STYLE for a complete description of how line-style effects a particular point or 
vector. 

The primitive attributes of color, line-style, and line-width apply to polylines. 

Error Conditions 
The graphics system must be initialized, a graphics display must be enabled, all parameters must 
be within specified limits and the number of points (points) must be greater than 0 or the call will 
be ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 



A-130 Procedure Library Summary 

PPOLL 
IMPORT: hpib_3 

iodeclarations 

This function will perform an HP-IB parallel poll. This involves setting the ATN and EOI bus 
lines on the specified interface and then read the data bus lines after waiting 25usec. The ATN 
and EOI lines are then returned to the clear state. 

Syntax 

Item 

interface 
select code 

Semantics 

Active 
Controller 

Not Active 
Controller 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

System Controller 

Interface Select Primary Addressing 
Code Only Specified 

ATN & EOI 
(duration;;a:2S .... s) 

Read byte 
Error 

EOI 
Restore A TN to 
previous state 

Error 

Note 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 

Not System Controller 

Interface Select Primary Addressing 
Code Only Specified 

ATN & EOI 
(duration;;a:2S .... s) 

Read byte 
Error 

EOI 
Restore A TN to 
previous state 

Use of PPOLL may interfere with the Pascal Operating System, especially 
if an external disc is being used on the same bus. Be very careful. 



IMPORT: hpib_2 
iodeclarations 

Procedure Library Summary A-131 

PPOLL_CONFIGURE 

This procedure programs the logical sense and data bus lines, a devices parallel poll response. 

Syntax 

PPOLLCONFIGURE 

Item Description/Default 
Range Recommended 

Restrictions Range 

device selector Expression of TYPE type_device. This is a thru 3199 See glossary 
an INTEGER subrange. 

mask Expression of TYPE INTEGER. MININT thru a thru 15 
MAXINT 

Semantics 
This procedure assumes that the device's response is bus-programmable. The computer must 
be active controller to execute this statement. 

System Controller Not System Controller 

Interface Select Primary Addressing Interface Select Primary Addressing 
Code Only Specified Code Only Specified 

ATN ATN 
MTA MTA 

Active 
Error 

UNL 
Error 

UNL 
Controller LAG LAG 

PPC PPC 
PPE PPE 

Not Active Error 
Controller 

The mask is coded. The three least significant bits determine the data bus line for the response. 
The fourth bit determines the logical sense of the response. 

Note 

Use of PPOLL,CONFIGURE may interfere with the Pascal Operating Sys­
tem, especially if an external disc is being used on the same bus. Be very 
careful. 



A-132 Procedure Library Summary 

PPOLL_UNCONFIGURE 
IMPORT: hpib_2 

iodeclarations 

This procedure will cause the specified device(s) to disable the parallel poll response. 

Syntax 

~ ~( device ~) 
~PPOLLUNCONFIGURE~ selector ~ 

Item 

device selector 

Semnantics 

Active 
Controller 

Not Active 
Controller 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

System Controller 

Interface Select Primary Addressing 
Code Only Specified 

ATN 
MTA 

ATN UNL 
PPU LAG 

PPC 
PPD 

Error 

Note 

Range 
Restrictions 

o thru 3199 

Recommended 
Range 

See glossary 

Not System Controller 

Interface Select Primary Addressing 
Code Only Specified 

ATN 
MTA 

ATN UNL 
PPU LAG 

PPC 
PPD 

Use of PPOLL. ... UNCONFIGURE may interfere with the Pascal Operating 
System, especially if an external disc is being used on the same bus. Be 
very careful. 



IMPORT: rnd 
sysglobals 

Procedure Library Summary A-133 

RAND 

This SHORTINT function returns a random number greater than or equal to zero and less than 
the specified SHORTINT range. 

Syntax 

Item 

seed 

range 

Semantics 

Description/Default 

Variable of type INTEGER 

SHORTINT 

Range 
Restrictions 

1 thru MAXI NT - 1 

1 thru 215 -1 

Given a seed and a range, the random number generator function returns a random number 
greater than or equal to zero and less than the range. It also randomizes the seed INTEGER. 



A-134 Procedure Library Summary 

RANDOM 
IMPORT: rnd 

This procedure takes a seed INTEGER, randomizes it and returns the new random number in the 
seed variable. 

Syntax 

Item 

seed 

Semantics 

Description/Default 

Variable of type INTEGER 

Range 
Restrictions 

1 thru MAXINT - 1 

When the following program is run, the RANDOM procedure returns all 231 
- 1 INTEGERS 

before repeating a value. 

proSraM test(output); 

i frlPO rt RND; 

var seed: INTEGER; 
dooMsday: BOOLEAN; 

begin 
seed := 1234; 
dooMsday := false; 

repeat 
RANDOM(seed) ; 
1"lrite(seed) ; 

until dOofrISda}'; 

end. 



IMPORT: generaL4 
iodeclarations 

Procedure Library Summary A-135 

READBUFFER 

This procedure will read a single byte from the buffer space and update the empty pointer in 
the buf_info record. An error will occur when a read is attempted beyond the end of valid data. 

Syntax 

Item 

buffer name 

destination 
character 

Description/Default 

Variable of TYPE buLinfo_type. 

Variable of TYPE CHAR. 

Range 
Restrictions 

Seethe 
Advanced Transfer 
Techniques chapter 



A-136 Procedure Library Summary 

READBUFFEILSTRING 
IMPORT: general_4 

iodeclarations 

This procedure will read the specified number of characters from the buffer and put them into 
the string variable. The empty pointer is updated. If the string is not big enough or if there is 
insufficient data in the buffer there will be an error. 

Syntax 

READBUFFER_STRING 

Item 

buffer name 

destination 
string 

character count 

Description/Default 

Variable of TYPE buLinfo_type. 

Variable of TYPE STRING. 

Expression of TYPE INTEGER. 

Range 
Restrictions 

See the 
Advanced Transfer 
Techniques chapter 

MININT thru 
MAXINT 

Recommended 
Range 

o thru 255 



IMPORT: generaLl 
iodeclarations 

Procedure Library Summary A-137 

READ CHAR 

This procedure will read a single byte from the specified interface. 

Syn~ax 

Item 

interface 
select code 

destinatio'n 
character 

Semantics 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange .. 

Variable of TYPE CHAR. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 

If no character is ready the routine will wait until the character comes in or until a timeou­
( if any was set up). 

An HPIB interface must be addressed as a listener before performing a READCHAR, or an 
error will be generated. To avoid this, use the following sequence: 

TALK .:: 7., 24).: 

Ut'~L I STEt·~':: 7) .: 
L I STEt·~ ( 7., t'l'r' _ADDF:ES::; (7) ) .: 

READCHAF: (7., Ch.~r ·~c t. er s).: 



A-138 Procedure Library Summary 

READWORD 
IMPORT: generaLl 

iodeclarations 

This procedure will read 2 bytes from interfaces that are byte-oriented. The GPIO card and any 
other word-oriented interface will read a single 16 bit quantity. 

Syntax 

Item 

interface 
select code 

destination 
variable 

Semantics 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Variable of TYPE INTEGER. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 

An interface less than 16-bits wide will be read into the most-significant-byte first, then into the 
lease-significant-byte. 

An HP-IB interface must be addressed as a listener before performing a READWORD, or an 
error will be generated. To avoid this, use the following sequence: 

TALK (7, 24).: 

UNLISTEN(7) .: 

LISTEN( 7, MY ADDRESS(7»; 

~:EADl'WfW (7.. Ch.:H" .:it: t er:::) .: 



Procedure Library Summary A-139 

READNUMBER 
IMPORT: general-.2 

iodeclarations 

This procedure will read a free-field number from the specified device. 

Syntax 

Item 

device selector 

destination 
variable 

Semantics 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

Variable of TYPE REAL. 

Range 
Restrictions 

o thru 3199 

Recommended 
Range 

See glossary 

The routine will skip over non-numeric characters until a valid number is entered. Numeric charac­
ters will be entered until a non-numeric character is read from the interface, or until 256 characters 
have been read. No further characters are read. 

Note 
Note that spaces are not considered to be "non-numeric" characters, 
and therefore will not terminate numbers. Erroneous results may occur 
if you try to use them to terminate or delimit numbers, because these 
procedures do not report receiving erroneously formatted numbers. 



A-140 Procedure Library Summary 

READNUMBERLN 
IMPORT: general-2 

iodeclarations 

This procedure will read in a free-field number from the specified device, and then terminate upon 
receiving a line feed. 

Syntax 

READNUMBERLN 

Item 

device selector 

destination 
variable 

Semantics 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

Variable of TYPE REAL. 

Range 
Restrictions 

a thru 3199 

Recommended 
Range 

See glossary 

The routine will skip over non-numeric characters until a valid number is entered. Characters will be 
entered until a non-numeric character is read from the interface. If a line feed is the next character, 
no more characters are read; otherwise, characters are read until a line feed is encountered. 



IMPORT: generaL2 
iodeclarations 

This procedure will read in characters to the specified string. 

Syntax 

Item 

device selector 

destination string 

Semantics 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

Variable of TYPE STRING. 

Procedure Library Summary A-141 

READSTRING 

Range 
Restrictions 

o thru 3199 

Recommended 
Range 

See glossary 

This procedure will read characters into the specified string until one of the following conditions 
occur: 

• a carriage return & line feed are read 

• a line feed is read 

• the string is filled up 

The line feed or carriage return/line feed are not put into the string. 



A-142 Procedure Library Summary 

READSTRING_UNTIL 
IMPORT: general--2 

iodeclarations 

This procedure will read characters from the selected device into the specified string until the 
prescribed terminator is encountered. 

Syntax 

READSTRING_UNTIL 

Item 

termination 
character 

device selector 

destination 
string 

Semantics 

Description/Default 

Expression of TYPE CHAR. 

Expression f TYPE type_device. This is an 
INTEGER subrange. 

Variable of TYPE STRING. 

Range 
Restrictions 

o thru 3199 

Recommended 
Range 

See glossary 

This procedure will read characters into the string until one of the following conditions occurs: 

• termination character is received 

• the string is filled 

The termination character is placed into the string. 



IMPORT: general--2 
iodeclarations 

Procedure Library Summary A-143 

READ UNTIL 

This procedure will read characters until the match character occurs. All characters read in will 
be thrown away. 

Syntax 

Item 

termination 
character 

device selector 

Description/Default 

Expression of TYPE CHAR. 

Expression of TYPE type_device. This 
is an INTEGER subrange. 

Range 
Restrictions 

a thru 3199 

Recommended 
Range 

See glossary 



A-144 Procedure Library Summary 

REMOTE 
IMPORT: hpib_2 

iodeclarations 

This procedure sends the messages to place the bus device(s) into the remote state. 

Syntax 

Item 

device selector 

Semantics 

Active 
Controller 

Not Active 
Controller 

Description/Default 

Expression of TYPE type_device. This 
is an INTEGER subrange. 

System Controller 

Interface Select Primary Addressing 
Code Only Specified 

REN 
ATN 

REN MTA 
ATN UNL 

LAG 

REN Error 

Range 
Restrictions 

o thru 3199 

Recommended 
Range 

See glossary 

Not System Controller 

Interface Select I Primary Addressing 
,Code Only Specified 

Error 

Error 



IMPORT: hpib_3 
iodeclarations 

Procedure Library Summary A-145 

REMOTED 

This BOOLEAN function indicates if the REN line is being asserted. The interface should be 
non-system controller. 

Syntax 

Item 

device selector 

Description/Default 

Expression of TYPE type_device. This 
is an INTEGER subrange. 

Range 
Restrictions 

o thru 3199 

Recommended 
Range 

See glossary 



A-146 Procedure Library Summary 

REQUESTED 
IMPORT: hpib_3 

iodec1arations 

This BOOLEAN function returns TRUE if any device is currently asserting the SRQ line. The 
interface must be active controller. 

Syntax 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange l 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 



IMPORT: hpib_3 
iodeclarations 

Procedure Library Summary A-147 

REQUEST_SERVICE 

This procedure will set up the spoil response byte in the specified interface. If bit 6 is set, SRQ 
will be set. The interface must not be active controller. 

Syntax 

REQUESLSERVICE 

Item Description/Default 
Range Recommended 

Restrictions Range 

interface Expression of TYPE type_isc. This is an o thru 31 7 thru 31 
select code INTEGER subrange. 

response value Expression of TYPE INTEGER. MININT thru o thru 255 
MAXINT 



A-148 Procedure Library Summary 

SAMPLE_LOCATOR 

This procedure samples the current locator device 

Syntax 

SAMPLE.J.,OCATOR x coordinate 
name 

Item Description/Default 

echo selector 

x coordinate name 

y coordinate name 

Expression of TYPE INTEGER 

Variable of TYPE REAL 

Variable of TYPE REAL 

Procedure Heading 
PROCEDURE SAMPLE_LOCATOR INTEGER; 

IMPORT: dgl_lib 

y coordinate 
name 

Range 
Restrictions 

MININT to MAXI NT 

Echo 
t.IAR Wx t W}' REAL ) ; 

Semantics 
The echo selector determines the level of input echoing. Possible values are: 

o -No echo. 
~ 1 - Echo on the locator device. 

The x and y coordinates are the values of the coordinates, expressed in world coordinate units, 
returned from the enabled locator device. 

SAMPLE_LOCATOR returns the current world coordinate value of the locator without waiting 
for any user intervention. Typically, the locator is sampled in applications involving the con­
tinuous input of data points that are very close together. 

If the point sampled is outside of the current logical locator limits, the transformed point will still 
be returned. 

The number of echoes supported by a locator device and the correlation between the echo value 
and the type of echoing performed is device dependent. Most locator devices support at least one 
form of echoing. Possible echoes are beeping, displaying the point sampled, etc. See the locator 
descriptions below to find the locators supported by the various devices. If the echo value is larger 
than the number of echoes supported by the enabled locator device, then echo 1 will be used. 

Locator echoing can only be performed on the locator device. The locator echo position is not 
used in conjunction with any echoes performed while sampling a locator. 



Procedure Library Summary A-149 

SAMPLE_LOCATOR implicitly makes the picture current before sampling the locator. 

Relative Locators (Knob or Mouse) - LOCATOR_INIT Selector 2 
The keyboard beeper is sounded when the locator is sampled if an echo is selected (echo 
selector~l). The sample locator function returns the last AWAIT_LOCATOR result or 0.0,0.0 if 
AWAIT_LOCATOR has not been invoked since LOCATOR_IN IT. 

Absolute Locators (HPGL Plotter or Graphics Tablet) 
The SAMPLE_.LOCATOR function returns the current locator position without waiting for an 
operator response (pen position on plotters). On an HP 9111A Graphics Tablet, the beeper is 
sounded when the stylus is depressed. For echo selectors greater than or equal to 9, the same 
echo as echo selector 1 is used. 

Error Conditions 
The graphics system must be initialized and a locator device enabled or this call will be ignored, an 
ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero value. 

HP-HIL Absolute Locator Semantics 
The value of ECHO defines an echoing mechanism for feedback to the user. Echo has the 
same meaning as when applied to a HP 9111A (HP-IB) Graphics Tablet. 

Wx and Wy are the world coordinate real values returned by the locator when SAMPLE .... .LOCA­
TOR is called. SAMPLE ... .LOCATOR does not wait for a button to be pressed before returning 
to the calling program; it merely gets the XY coordinate pair as fast as it can, and returns. 

HP-HIL Relative Locator Semantics - LOCATOR_INIT Selector 202 
The value of ECHO defines an echoing mechanism for feedback to the user. Echo has the 
same meaning as when applied to an HP-HIL absolute locator. 

Wx and Wy are the world coordinate real values returned by the locator when SAMPLE ... .LOCA­
TOR is called. SAMPLE .. .LOCATOR does not wait for a button to be pressed before returning 
to the calling program; it merely gets the XY coordinate pair as fast as it can. 

Unlike the situation encountered when using LOCATOR .. ...INIT with a selector of 2, DGL returns 
a useful value for SAMPLE ..... LOCATOR in this case. This is because DGL is "looking at" the 
locator continuously from execution of LOCATORJNIT, and "sees" motions of the locator 
device any time after that. 





SCSICHECKERROR 
IMPORT: scsilib 

This INTEGER function translates the InternalStatus or sense code into an I/O system error 
code value (IORESULT) and returns the value. It interfaces with the SCSI bus driver to get the 
sense code if SessionStatus indicates that sense is waiting. 

Syntax 

Item 

session block 
pointer 

Semantics 

SCSICHECKERROR 

Description 

Expression of TYPE PtrSessionBlockType 

Range 

See the SCSI Programmer's In­
terface chapter 

The ScsiCheckError procedure is provided for SCSI application's that are calling 
ScsiHandleSession and have Overlap in the SessionBlock set to TRUE. 

Procedure Library Summary A-149.01 



SCSICHECKDEV 
IMPORT: scsilib 

This procedure formats the SCSI TEST UNIT command and passes it to the procedure ScsiHan­
dleSession. 

Syntax 

Item 

session block 
pointer 

Semantics 

Description 

Expression of TYPE PtrSessionBlockType 

Range 

See the SCSI Programmer's In­
terface chapter 

The memory for the command block comes off of the stack. The Pascal Workstation IORESULT 
global space is set with the return value of ScsiHandleSession. 

A-149.02 Procedure Library Summary 



SCSIDEVINFO 
IMPORT: scsilib 

sysglobals 

This procedure formats a SCSI INQUIRE command and passes it to ScsiHandleSession. 

Syntax 

-.( SCSIDEVINFO ) 

Item 

session block 
pointer 

device type 

ANSI version 

removable flag 

vendor string 

Semantics 

Description 

Expression of TYPE PtrSessionBlockType 

Range 

See the SCSI Programmer's In­
terface chapter 

Variable of TYPE INTEGER, 
SCSI device type code 

which receives the Specific to the device 

Variable of TYPE INTEGER, which receives the Specific to the device 
code indicating the ANSI version supported by 
this device 

Variable of TYPE BOOLEAN, which is set TRUE if TRUE or FALSE 
the device is removable, FALSE otherwise 

Variable of TYPE STRING255. This string re- Specific to the device 
ceives a concatenation of the vendor and product 
names. 

The memory for the command block comes off of the stack. The Pascal Workstation IORESULT 
global space is set with the return value of ScsiHandleSession. If ScsiHandleSession is successful, 
the inquire data is parsed for the information required by the parameter list. 

Procedure Library Summary A-149.03 



SCSIDISCALLOW 
IMPORT: scsilib 

This procedure formats a SCSI PREVENT/ALLOW MEDIUM REMOVAL command for a direct access 
device, sets the ALLOW parameter, and passes it to ScsiHandleSession. 

Syntax 

Item 

session block 
pointer 

Semantics 

SCSIDISCALLOW 

Description 

Expression of TYPE PtrSessionBlockType 

Range 

See the SCSI Programmer's In­
terface chapter 

The memory for the command block comes off of the stack. The Pascal Workstation IORESULT 

global space is set with the return value of ScsiHandleSession. 

A-149.04 Procedure Library Summary 



SCSIDISCBLOCKS 
IMPORT: scsilib 

This procedure formats a SCSI READ CAPACITY command and passes it to ScsiHandleSession. 

Syntax 

--( SCSI DISC BLOCKS ) 

Item Description 

number of 
bytes per block 

Range 

session block Expression of TYPE PtrSessionBlockType See the SCSI Programmer's In­
terface chapter pointer 

number of bytes per Variable of TYPE INTEGER 
block 

total number of Variable of TYPE INTEGER 
blocks 

Semantics 

Specific to the device 

Specific to the device 

The memory for the command block comes off of the stack. The Pascal Workstation IORESULT 

global space is set with the return value of ScsiHandleSession. If ScsiHandleSession is successful, 
then the returned information is parsed for the values required by the parameter list. 

Procedure Library Summary A ... 149.05 



SCSIDISCFORMAT 
IMPORT: scsilib 

This procedure formats a SCSI FORMAT UNIT command for a direct access device and passes it 
to ScsiHandleSession. 

Syntax 

Item 

session block 
pointer 

interleave factor 

Semantics 

-+C SCSIDISCFORMAT ) 

Description 

Expression of TYPE PtrSessionBlockType 

Expression of TYPE S_SHORT 

Range 

See the SCSI Programmer's In­
terface chapter 

Specific to the device 

The memory for the command block comes off of the stack. The Pascal Workstation IORESULT 
global space is set with the return value of ScsiHandleSession. 

The SCSI application provides the interleave factor that should be used by the disc while 
formatting. In most cases, the interleave factor should be O. 

A-149.06 Procedure Library Summary 



SCSIDISCPREVENT 
IMPORT: scsilib 

This procedure formats a SCSI PREVENT/ALLOW MEDIUM REMOVAL command for a direct access 
device, sets the PREVENT parameter, and passes it to ScsiHandleSession. 

Syntax 

Item 

session block 
pointer 

Semantics 

SCSIDISCPREVENT 

Description 

Expression of TYPE PtrSessionBlockType 

Range 

See the SCSI Programmer's In­
terface chapter 

The memory for the command block comes off of the stack. The Pascal Workstation IORESULT 

global space is set with the return value of ScsiHandleSession. 

Procedure Library Summary A-149.07 



SCSIDISCREAD 
IMPORT: scsilib 

This procedure formats a SCSI EXTENDED READ command .for a direct access device and passes it 
to ScsiHandleSession. 

Syntax 

Item Description 

number of 
bytes per block 

session block Expression of TYPE PtrSessionBlockType 
pointer 

starting block Expression of TYPE INTEGER 

number of blocks Expression of TYPE INTEGER 

number of bytes per Expression of TYPE INTEGER 
block 

buffer Expression of TYPE ANYPTR 

Semantics 

Range 

See the SCSI Programmer's In­
terface chapter 

Specific to the device 

Specific to the device 

Specific to the device 

The memory for the command block comes off of the stack. The Pascal Workstation IORESUL T 

global space is set with the return value of ScsiHandleSession. 

The SCSI application must provide the block number on the disc from which the read should 
begin, the number of blocks that should be read, the number of bytes on a disc block, and a 
buffer in which the disc data should be stored. The number of bytes on a disc block can be 
determined from the ScsiDiscBlock or ScsiDiscSize procedures. 

During the read, DMA will be used. 

A-149.08 Procedure Library Summary 



SCSIDISCSIZE 
IMPORT: scsilib 

This procedure determines the information required by the parameter list. It uses the SCSI 
READ CAPACITY and MODE SENSE commands to do this. 

Syntax 

SCSIDISCSIZE 

Item Description 

number of bytes 
per block 

number of tracks 
per cylinder 

number of blocks 
per track 

Range 

session block Expression of TYPE PtrSessionBlockType See the SCSI Programmer's In­
terface chapter pointer 

number of bytes per Variable of TYPE INTEGER 
block 

number of blocks Variable of TYPE INTEGER 
per track 

number of tracks Variable of TYPE INTEGER 

per cylinder 

number of cylinders Variable of TYPE INTEGER 

Semantics 

Specific to the device 

Specific to the device 

Specific to the device 

Specific to the device 

If the information required by the parameter list is not available (some devices do not report 
this information), then a heuristic is used to make a best guess. However, when these four 
parameters are multiplied together, they will always equal or be slightly less than the total 
number of bytes on the disc. 

ScsiHandleSession is used for interfacing to the SCSI bus driver, and the memory for the 
command blocks comes off of the stack. The Pascal Workstation IORESULT global space is set to 
reflect if the peripheral in question is communicating. 

Procedure Library Summary A-149.09 



SCSIDISCWRITE 
IMPORT: scsilib 

This procedure formats a SCSI EXTENDED WRITE command for a direct access device and passes 
it to ScsiHandleSession. 

Syntax 

SCSIDISCWRITE 

Item Description 

number of 
bytes per, block 

session block Expression of TYPE PtrSessionBlockType 
pointer 

starting block Expression of TYPE INTEGER 

number of blocks Expression of TYPE INTEGER 

number of bytes per Expression of TYPE INTEGER 
block 

buffer Expression of TYPE ANYPTR 

Semantics 

Range 

See the SCSI Programmer's In­
terface chapter 

Specific to the device 

Specific to the device 

Specific to the device 

The memory for the command block comes off of the stack. The Pascal Workstation IORESULT 

global space is set with the return value of ScsiHandleSession. 

The SCSI application must provide the block number on the disc from which the write should 
begin, the number of blocks that should be written, the number of bytes on a disc block, and 
a data buffer that contains the data to be written to the disk. The number of bytes on a disc 
block can be determined from the ScsiDiscBlock or ScsiDiscSize procedures. 

During the write, DMA will be used. 

A-149.10 Procedure Library Summary 



SCSIHANDLESESSION 
IMPORT: scsilib 

This INTEGER function fills out the SessionBlock with the command and data pointers, 
interfaces to the SCSI bus driver to execute the session, and examines and responds to the 
InternalStatus and SessionStatus values. 

Syntax 

SCSIHANDLESESSION 

Item 

session block 
pointer 

Description 

Expression of TYPE PtrSessionBlockType 

Range 

See the SCSI Programmer's In­
terface chapter 

command pointer Expression of TYPE ANYPTR. Pointer to a SCSI 
command block. 

command length Expression of TYPE INTEGER. Length of the SCSI Depends on command 
command block. 

data in pointer 

data in length 

DMA in flag 

data out pointer 

data out length 

DMA out flag 

Expression of TYPE ANYPTR. Pointer to a SCSI 
data block that receives data during the SCSI 
DATA IN bus phase. 

Expression of TYPE INTEGER. Length of the SCSI 0 .. 16777215 
data in block. 

Expression of TYPE BOOLEAN. Tells the SCSI bus TRUE or FALSE 
driver if DMA should be used during the SCSI 
DATA IN bus phase. 

Expression of TYPE ANYPTR. Pointer to a SCSI 
data block which contains data to be transmitted 
during the SCSI DATA OUT bus phase. 

Expression of TYPE INTEGER. Length of the SCSI 0 .. 16777215 
data out block. 

Expression of TYPE BOOLEAN. Tells the SCSI bus TRUE or FALSE 
driver if DMA should be used during the SCSI 
DATA OUT bus phase. 

Procedure Library Summary A-149.11 



Semantics 
The DMA in and out flags should be used with caution. Consult the "SCSI Programmer's 
Interface" chapter before signaling the SCSI bus driver to use DMA during a SCSI DATA IN/OUT 
bus phase. Improper use of these flags may result in system errors. 

After the SCSI bus driver returns, a check is made on the Overlap flag in the SessionBlock. If 
it is true the ScsiHandleSession immediately returns with a O. Otherwise, if the SessionStatus 
indicates sense is waiting, then the ScsiHandleSession procedure interfaces with the SCSI 
bus driver to get the sense code. The ScsiHandleSession procedure also translates the 
InternalStatus or sense code into a I/O system error code value (IORESULT) and returns it. 

A-149.12 Procedure Library Summary 



SCSISBINIT 
IMPORT: scsilib 

This procedure initializes SessionBlock using the contents of the 
DAV (DeviceAddressVectorsType) function. 

Syntax 

-+C SCSISBINIT )~ bIO~~s~~rnter ro--1 DAV pointer ~ 

Item 

session block 
pointer 

DAV pointer 

Description 

Expression of TYPE PtrSessionBlockType 

Expression of 
TYPE PtrDeviceAddressVectorsType 

Range 

See the SCSI Programmer's In­
terface chapter 

See the SCSI Programmer's In­
terface chapter 

Procedure Library Summary A-149.13 



SCSISBSIZE 
IMPORT: scsilib 

This procedure sets the variable parameter size to the size in bytes of a SessionBlock. 

Syntax 

Item Description Range 

size Variable of type INTEGER o to 256 

A-149.14 Procedure Library Summary 



SCSI RESET 
IMPORT: scsilib 

This procedure resets the SCSI interface card and pulses the reset line on the SCSI bus attached 
to the given select code. 

Syntax 

Item Description Range 

select code Expression of TYPE s_ TYPE_ISC o to 31 

Semantics 
Note that pulsing the reset line on the SCSI bus will cause all attached devices to reset. Any 
non-permanent settings, such as PREVENT .MEDIUM REMOVAL will be lost. 

Procedure Library Summary A-149.15 



SCSISESSIONABORT 
IMPORT: scsilib 

This procedure aborts the session referenced by the session block pointer. 

Syntax 

Item 

session block 
pointer 

Semantics 

SCSISESSIONABORT 

Description 

Expression of TYPE PtrSessionBlockType 

Range 

See the SCSI Programmer's In­
terface chapter 

The ScsiSessionAbort procedure is provided for SCSI application's that are calling ScsiHandle­
Session and have Overlap in the SessionBlock set to TRUE. 

The session must be running (SessionState = SessionRunning). An ABORT message is attempted 
and if not successful, the SCSI bus is physically reset. The SessionState flag must be checked 
to verify that ScsiSessionAbort was successful (it should be Session Complete). 

A-149.16 Procedure Library Summary 



SCSISESSIONCOMPLETE 
IMPORT: scsilib 

This BOOLEAN function returns TRUE if the session referenced by the session block pointer has 
completed, FALSE is returned otherwise. 

Syntax 

Item 

session block 
pointer 

Semantics 

SCSISESSIONCOMPLETE 

Description 

Expression of TYPE PtrSessionBlockType 

Range 

See the SCSI Programmer's In­
terface chapter 

The ScsiSessionComplete procedure is provided for SCSI application's that are calling ScsiHan­
dleSession and have Overlap in the SessionBlock set to TRUE. 

Procedure Library Summary A-149.17 



SCSISESSIONSENSE 
IMPORT: scsilib 

this procedure retrieves the data generated by ScsiHandleSession for the most recent REQUEST 

SENSE command on the given select code. 

Syntax 

-+C SCSISESSIONSENSE ) 

Item Description 

select code Expression of type s_TYPE_ISC 

data buffer pointer Expression of TYPE ANYPTR 

length Variable of type INTEGER 

Semantics 

Range 

o to 31 

0 .. 255 

Upon entering the ScsiSessionSense procedure, length indicates the number of valid bytes 
pointed to by the data buffer pointer. Upon exiting this procedure, length indicates the actual 
number of bytes placed in the memory block pointed to by the data buffer pointer. 

A-149.18 Procedure Library Summary 





A-ISO Procedure Library Summary 

SECONDARY 
IMPORT: hpib_2 

iodeclarations 

This procedure will send a secondary command byte over the bus. The interface must be active 
controller. 

Syntax 

Item 

interface 
select code 

secondary value 

interface 
select code 

secondary 
value 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of TYPE type_hpib_addr. This 
is an INTEGER subrange. 

Range 
Restrictions 

a thru 31 

a thru 31 

Recommended 
Range 

7 thru 31 



IMPORT seriaL3 
iodeclaratiohs 

Procedure Library Summary A-lSI 

SEND-BREAK 

This procedure will send a break to the selected serial interface. (A break is an extended mark 
period followed by an extended space period. ) 

Syntax 

-.( ~( interface SEND_BREAK select code 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 



A-152 Procedure Library Summary 

IMPORT: hpib_l 
iodeclarations 

This procedure sends a single byte over the HP-IB interface with attention true. The computer 
needs to be active controller when this happens. 

Syntax 

Item Description/Default 
Range 

Restrictions 
Recommended 

Range 

interface 
select code 

command 
character 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of TYPE CHAR. 

o thru 31 7 thru 31 

Semantics 

Note 

Use of SEND _ .. COMMAND may interfere with the Pascal Operating Sys­
tem, especially if an external disc is being used on the same bus. Be very 
careful. 



IMPORT: seriaLO 
iodeclarations 

Procedure Library Summary A-153 

This BOOLEAN function returns TRUE if the specified line on the serial interface is asserted. 

Syntax 

Item 

interface 
select code 

serial line 
specifier 

Semantics 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of enumerated TYPE 
type_seriaLline. 

Range 
Restrictions 

o thru 31 

rts_line 
cts_line 
dcd_line 
dsr_line 
drs_line 
rLline 
dtr_line 

Recommended 
Range 

7 thru 31 

The values of the enumerated TYPE type_seriaLline have the following definitions: 

name RS-232 line 

rts request to send 
cts clear to send 
dcd data carrier detect 
dsr data set ready 
drs data rate select 
dtr data terminal ready 
ri ring indicator 

The access to the various lines is determined by the connector used on the selected interface. 



A-154 Procedure Library Summary 

SET_ASPECT 
IMPORT: dgLlib 

This procedure redefines the aspect ratio of the virtual coordinate system. 

Syntax 

Item 

x size 

y size 

Procedure Heading 

Description/Default 

Expression of TYPE REAL 

Expression of TYPE REAL 

PROCEDURE SET_ASPECT ( X_sizet V_size REAL ); 

Semantics 

Range 
Restrictions 

>0 

>0 

The x size is the width of the virtual coordinate system in dimensionless units. The size must be 
greater than zero. 

The y size is the height of the virtual coordinate system in dimensionless units. The size must be 
greater than zero. 

SET -ASPECT sets the aspect ratio of the virtual coordinate system, and hence the view surface, 
to be y size divided by x size. A ratio ofl defines a square virtual coordinate system, a ratio greater 
than 1 specifies it to be higher than it is wide; and a ratio less than 1 specifies it to be wider than it is 
high. Since x size and y size are used to form a ratio, they may be expressed in any units as long as 
they are the same units. 

The range of coordinates for the virtual coordinate system is calculated based on the value of the 
aspect ratio. The coordinates of the longer axis are always set to range from 0.0 to 1.0 and those 
of the shorter axis from 0 to a value that achieves the specified aspect ratio. SET -ASPECT 
defines the limits of the virtual coordinate system. 

ASPECT RATIO (AR) 

AR < 1 
AR = 1 
AR> 1 

X LIMITS 

0.0, 1.0 
0.0, 1.0 
0.0, 1.0 I AR 

Y LIMITS 

0.0,1.0 * AR 
0.0, 1.0 
0.0, 1.0 



Procedure Library Summary A-ISS 

When a call to SET ~SPECT is made, the graphics system sets the viewport equal to the limits of 
the virtual coordinate system. This routine can therefore be used to access the entire logical 
display surface. A program could display an image on the entire Model 226 graphics display, 
which has an aspect ratio of 399/299, in the following manner: 

SET ~SPECT ( 399, 299 ); 

To set the aspect ratio to the entire display in a device independent manor, INQ_WS may be used 
as follows: 

CONST 

D UfTlfTl}' 
Err 0 r 

INTEGER; 
INTEGER; 

Ratio_list: ARRAY[1 •• 2J OF REAL; 

BEGIN {PROCEDURE Set_Max_aspect} 
INQ_WS (Get_aspect to to t2 tDUfTHT}}' tDUfTHTl), t Rat i 0_1 i st t E r ro r) ; 
IF Error=O THEN 

SET_ASPECT(1.0tRatio_list[2J) ; 
END; {PROCEDURE Set_Max_aspect} 

The initial value of the aspect ratio is 1, setting the virtual coordinate system to be a square. This 
square is mapped to the largest inscribed square on any display surface, so that the viewable area 
is maximized. As a result, the initial virtual coordinate system limits range from 0.0 to 1.0 in both 
the X and Y directions. A program can access the largest inscribed rectangle on any display 
surface by modifying the value of the aspect ratio. The exact placement of the rectangle on the 
display surface is device dependent, but it is centered on CRT's and justified in the lower left hand 
corner of plotters. 

The starting position is not altered by this call. Since this call redefines the viewing transformation, 
the starting position may no longer represent the last world coordinate position. A call to MOVE 
or INT _MOVE should therefore be made after this call to update the starting position. 

If the logical locator is associated with the same physical device as the graphics display, then a call 
to SET -.ASPECT will set the logical locator limits equal to the new limits of the virtual coordinate 
system. 

Since the window is not affected by the SET ~SPECT procedure, distortion may result in the 
window to viewport mapping if the window does not have the same aspect ratio as the virtual 
coordinate system (see SET_WINDOW). 

The locator echo position is set to the default value by this procedure. 

Error Conditions 
The graphics system must be initialized and both X and Y size must be greater than zero or this call 
will be ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a 
non-zero value. 



A-156 Procedure Library Summary 

SET--'JAUD-.RATE 
IMPORT: seriaL3 

iodeclarations 

This procedure will set the serial interface to the specified baud rate. 

Syntax 

Item 

interface 
select code 

baud rate 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of TYPE REAL. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 

50 thru 19200 
(for 98628) 



IMPORT: seriaL3 
iodeclarations 

Procedure Library Summary A-157 

This procedure specifies the character length for serial communications, in bits. The valid range 
of values is 5 .. 8. 

Syntax 

Item Description/Default Range Recommended 
Restrictions Range 

interface Expression of TYPE type_isc. This is an o thru 31 7 thru 31 
select code INTEGER subrange. 

character Expression of TYPE INTEGER. MININT thru 5 thru 8 
length MAXINT 



A-ISS Procedure Library Summary 

This procedure sets the character size attribute for graphical text. 

Syntax 

-+-(SELCHAR_SIZ~ width ~ height ~ 

width 

height 

Item 

Procedure Heading 

Description/Default 

Expression of TYPE REAL 

Expression of TYPE REAL 

PROCEDURE SET_CHAR_SIZE ( Width, Hei~ht 

Semantics 

REAL ); 

IMPORT: dgLlib 

Range 
Restrictions 

The width is the requested graphics character cell width in world coordinate units. (width < > 
0.0) 

The height is the requested graphics character cell height in world coordinate units. (height < > 
0.0) 

SET _CHAR_SIZE sets the character size for subsequently output graphics text. The absolute 
value of width and height are used to specify the world coordinate size of a character cell. 
Therefore, the actual physical size of a character output is determined by applying the current 
viewing transformations to the world coordinate units specification. 

The default character size (set by GRAPHICS_IN IT and DISPLAY _INIT) is dependent upon the 
physical device associated with the graphical display device. The size is determined as follows: 

• Height : = .05 x (height of the world coordinate system) 

• Width : = .035 x (width of the world coordinate system) 

If a change is made to the viewing transformation (by SET_WINDOW, SET_VIEWPORT, 
SET_DISPLAY_LIM, or SET ~SPECT), the value of the character size attribute will not be 
changed, but the actual size of the characters generated may be modified. 

Error Conditions 
The graphics system must be initialized, a display must be enabled, and width and height must 
both be non-zero or this call will be ignored, an ESCAPE (- 27) will be generated, and 
GRAPHICSERROR will return a non-zero value. 



Procedure Library Summary A-159 

IMPORT: dgl_lib 

This procedure sets the color attribute for output primitives except for polygon interior fill. 

Syntax 

Item Description/Default 

color selector Expression of TYPE INTEGER 

Procedure Heading 
PROCEDURE SET_COLOR ( Color 

Semantics 

INTEGER ); 

SET_COLOR sets the color attribute for the following primitives: 

Lines 
Markers 
Polylines 
Polygon Edges 
Text 

Range 
Restrictions 

At device initialization a default color table is created by the graphics system. The size and 
contents of the table are device dependent. At least .one entry exists for all devices. A call to 
INQ_WS with OPCODE equal to 1053 will return the number of colors available on a given 
graphics device. Some devices allow the color table to be modified with SET_TABLE. 

The color selector is an index into the color table. The contents of the color table are then used to 
specify the color when primitives are drawn. On some devices (HPGL plotters), the color selector 
maps directly to a pen number for the device. On the color mapped machines, the entries in 
the color table can be modified with SET COLOR TABLE. 

The default value of the color attribute is 1. If the value of the color selector is not supported on 
the graphics display, the color attribute will be set to 1. 

A color selector of 0 has special effects depending on the graphics display used. For raster 
deVices, a color selector of 0 means to draw in the background color. For most plotters, it puts the 
pen away. 



A-160 Procedure Library Summary 

If the device is not capable of reproducing a color in the color table, the closest color which the 
device is capable of reproducing is used instead. On some devices, this may depend on the 
primitive being displayed. For example, the HP98627 A color output interface card is capable of a 
large selection of polygon fill colors, but only 8 line colors. Thus, the fill color could match the 
selected color much more closely than the line color used to outline the polygon. 

Default Raster Color Map 
The following table shows the default (initial) color table for the black and white displays 
(computer models 216, 220,226,236,237, HP 98542A, HP 98544A, and HP 98548A): 

Index # Hue Saturation Luminosity 

a a a a 
1 a a 1.0000 
2 a a 0.9375 
3 a a 0.8750 
4 a a 0.8125 
5 a a 0.7500 
6 a a 0.6875 
7 a a 0.6250 
8 a a 0.5625 
9 a a 0.5000 

10 a a 0.4375 
11 a a 0.3750 
12 a a 0.3125 
13 a a 0.2500 
14 a a 0.1875 
15 a a 0.1250 
16 a a 0.0625 

Colors 1 7 though 31 are set to white. 

The following table shows the default (initial) color table for the color displays (computer 
model 236C, HP 98627, HP 98543A, HP 98545A, HP 98547A, HP 98549A, HP 98550A, HP 
98700A, and 362/382 internal bit-mapped displays). 

Index # Color name Red Green Blue 

a Black 0.000000 0.000000 0.000000 
1 White 1.000000 1.000000 1.000000 
2 Red 1.000000 0.000000 0.000000 
3 Yellow 1.000000 1.000000 0.000000 
4 Green 0.000000 1.000000 0.000000 
5 Cyan 0.000000 1.000000 1.000000 
6 Blue 0.000000 0.000000 1.000000 
7 Magenta 1.000000 0.000000 1.000000 
8 Black 0.000000 0.000000 0.000000 
9 Olive green 0.800000 0.733333 0.200000 

10 Aqua 0.200000 0.400000 0.466667 
11 Royal blue 0.533333 0.400000 0.666667 
12 Violet 0.800000 0.266667 0.400000 
13 Brick red 1.000000 0.400000 0.200000 
14 Burnt orange 1.000000 0.466667 0.000000 
15 Grey brown 0.866667 0.533333 0.266667 

Colors 9 though 15 are a graphic designers idea of colors for business graphics. Color table 
entries not shown above are set to white. 



Procedure Library Summary A-161 

Raster Drawing Modes 
For raster devices (e.g., Model 236 display) the effect of the color selectors depends on the 
current drawing mode (drawing mode is set using the OUTPUT __ ESC function). The color 
selectors and their effects are listed below: 

Plotters 

Mode 

DOMINATE 
(Default mode) 

NON-DOMINATE 

ERASE 

COMPLEMENT 

Color 
Selector 
=0 
Background 
(erase, set 
bits to 0) 

Background 
(erase, set 
bits to 0) 

Background 
(erase, set 
bits to 0) 

Background 
(erase, set 
bits to 0) 

Color 
Selector 
>=1 

Draw 
(set bits to 1, 
overwrite current pattern) 

Draw 
(set bits to 1 
Inclusive OR 
with current pattern) 

Background 
(erase, set 
bits to 0) 

Complement 
(Invert bits in 
selected planes) 

A Color Selector of 0 selects no pens (the current pen is put away). The supported range of Color 
Selectors for each supported plotter is: 

• 9872A - 0 through 4 

• 9872B - 0 through 4 

• 9872C/S/T - 0 through 8 

• 7550A&B /7570A/7575A/7576A/7580A/7585A/7586B /7595A&B /7596A&B /7599A - 0 
through 8 

• 7470A - 0 through 2 

Error Conditions 
The graphics system must be initialized and a display must be enabled or this call will be ignored, 
an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero value. 



A-162 Procedure Library Summary 

IMPORT: dgLlib 

This procedure chooses the color model for interpreting parameters in the color table. 

Syntax 

Item Description/Default 

model selector Expression of TYPE INTEGER 

Procedure Heading 
PROCEDURE SET_COLOR_MODEL ( MODEL : integer ); 

Semantics 

Range 
Restrictions 

MININT thru 
MAXINT 

Recommended 
Range 

lor 2 

The model selector determines the color model which will be used to interpret the values passed 
to the color table with SET _COLOR_TABLE or read from it with INQ_COLOR_ TABLE. 

Value Meaning 

1 RGB (Red-Green-Blue) color cube. 
2 HSL (Hue-Saturation-Luminosity) color cylinder. 

The RGB physical model is a color cube with the primary additive colors (red, green, and blue) as 
its axes. With this model, a call to SET _COLOR_TABLE specifies a point within the color cube 
that has a red intensity value (X-coordinate), a green intensity value ( Y -coordinate) and a blue 
intensity value (Z-coordinate). Each value ranges from zero (no intensity) to one. 

ParmI (RED) 

1.0 
1.0 
1.0 
0.0 
0.0 
0.0 
1.0 
0.0 

Effects of RGB color parameters 

Parm 2 (GREEN) 

1.0 
0.0 
1.0 
1.0 
1.0 
0.0 
0.0 
0.0 

Parm 3 (BLUE) 

1.0 
0.0 
0.0 
0.0 
1.0 
1.0 
1.0 
0.0 

Resultant color 

White 
Red 
Yellow 
Green 
Cyan 
Blue 
Magenta 
Black 



Procedure Library Summary A-163 

The HSL perceptual model is a color cylinder in which: 

• The angle about the axis of the cylinder, in fractions of a circle is the hue (red is at 0, green is 
at 1/3 and blue is at 2/3). 

• The radius is the saturation. Along the center axis of the cylinder, (saturation equal zero) the 
colors range from white through grey to black. Along the outside of the cylinder (saturation 
equal one) the colors are saturated with no apparent whiteness. 

• The height along the center axis is the luminosity (the intensity or brightness per unit area). 
Black is at the bottom of the cylinder (luminosity equal zero) and the brightest colors are at 
the top of the cylinder (luminosity equal one) with white at the center top. 

Hue (angle), saturation (radius)' and luminosity (height) all range from zero to one. Using this 
model, a call to SET _COLOR_TABLE specifies a point within the color cylinder that has a hue 
value, a saturation value, and a luminosity value. 

Effects of HSL color parameters 

Parm 1 (Hue) Parm 2 (Sat) Parm 3 (Lum) Resultant color 

Don't Care 0.0 1.0 White 
0.0 or 1 1.0 1.0 Red 

116 1.0 1.0 Yellow 
2/6 1.0 1.0 Green 
3/6 1.0 1.0 Cyan 
4/6 1.0 1.0 Blue 
5/6 1.0 1.0 Magenta 

Don't Care Don't Care 0.0 Black 

When a call to SET _COLOR_MODEL switches color models, parameter values in subsequent 
calls to SET _COLOR_TABLE then refer to the new model. Switching models does not affect 
color definitions that were previously made using another model. Note that when the value of a 
color table entry is inquired (lNQ_COLOR_ TABLE), it is returned in the current model, which 
may not be the model in which it was originally specified. 

Not all color specifications can be displayed on every graphics device, since the devices which the 
graphics library supports differ in their capabilities. If color specification is not available on a 
device, the graphics system will request. the closest available color. 

Error Conditions 
The graphics system must be initialized and the color selector must evaluate to 0 or 1 or this call 
will be ignored, an ESCAPE (- 27) will be generated, and GRAPHICSERROR will return a 
non-zero value. 



A-164 Procedure Library Summary 

SET_COLOR_TABLE 
IMPORT: dgLlib 

This procedure redefines the color description of the specified entry in the color table. This color 
definition is used when the color index is selected via SET_COLOR. 

Syntax 

Item 

entry selector 

first parameter 

second parameter 

third parameter 

Procedure Heading 

Description/Default 

Expression of TYPE INTEGER 

Expression of TYPE REAL 

Expression of TYPE REAL 

Expression of TYPE REAL 

PROCEDURE SET_COLOR_TABLE Index 
Colpl 
Colp2 
Colp3 

Semantics 

INTEGER; 
REAL; 
REAL; 
REAL 

Range 
Restrictions 

) ; 

MININT to 
MAXINT 

o thru 1 

o thru 1 

o thru 1 

Recommended 
Range 

device 
dependent (see 

below) 

SET _COLOR_TABLE is ignored by some devices (such as pen plotters) which do not allow their 
color table to be changed. The procedure INQ_WS (opcode 1073) tells whether the color table 
can be changed. 

The entry selector specified the location in the color capability table that is to be redefined. 
For raster displays in Series 200/300 computers, and HP 98542A, HP 98543A, HP 98544A, 
HP 98545A, HP 98548A, and HP 98700A (4-plane) displays, 32 entries are available. For HP 
98547 A and HP 98549A displays, 80 entries are available. For HP 98700A 8-plane displays, 
HP 98550A displays, and 362/382 internal bit-mapped displays, 272 entries are available. 

The first parameter represents red intensity if the RGB model has been selected with the SET 
COLOR statement, or hue if the HSL model has been selected. 

The second parameter represents green intensity if the RGB model has been selected with the 
SET COLOR statement, or saturation if the HSL model has been selected. 

The third parameter represents blue intensity if the RGB model has been selected, or luminosity 
if the HSL model has been selected. 



Procedure Library Summary A-165 

A more detailed description of the color models and the meaning of their parameters can be 
found under the procedure definition of SET _COLOR_MODEL. 

The effect of redefinition of the color table on previously output primitives is device dependent. 
On most deVices, changing the color table will only affect future primitives. However, on 
the Model 236C, HP 98543A., HP 98545A, HP 98547 A, HP 98549A, HP 98550A, and 
HP 98700A, changing a color table entry with a color selector not in the last 16 entries will 
immediately change the color of primitives previously drawn with that entry. The procedure 
INQ_ WS (opcode 1071) tells whether retroactive color change is supported. 

Monochromatic Displays 
Changing an entry in the table will not affect the current display. However, future changes to 
the display will use the new contents of the table. Device-dependent polygons use the color 
table entry when performing dithering. 

The color that lines are drawn with (black or white) is determined from the perceived intensity of 
the color table entry. This is calculated as follows: 

if (red * 0.3 + green * 0.59 + blue * 0.11) > 0.1 
then 

color: = white 
else 

color: = black; 

The HP 98627 A Display 
Changing an entry in the table will not affect the current display; however, future changes to the 
display will use the new contents of the table. Device dependent polygons use the color table 
entry when performing dithering. 

The color that lines are drawn with (one of the 8 non-dithered colors) is determined from the 
closest HSL value to the requested value. 

Model 236C, HP 98543A, HP 98545A, 4-Plane HP 98700A 
The first 16 locations (0 .. 15) of the color table map directly to the hardware color map. Changing 
one of these color table locations will immediately change the display (assuming the color has 
been used). 

The next 16 locations (16 .. 31) will not affect the current display; however, future changes to the 
display will use the new contents of the color table. 

Device dependent polygons drawn with color table locations O .. 15 will be drawn in a solid color 
without using dithering. When drawn with color table location above 15 dithering will be used. 

HP 98547A and HP 98549A 
The first 64 locations (0 ... 63) of the color table map directly to the hardware color map. 
Changing one of these color table locations will immediately change the display (assuming the 
color has been used). 

The next 16 locations (64 ... 79) will not affect the current display. However, future changes to 
the display will use the new contents of the color table. 



A-166 Procedure Library Summary 

Device dependent polygons drawn with color table locations O ... 63 will be drawn in a solid 
color without using dithering. When drawn with color table locations above 63, dithering will 
be used. 

8-Plane HP 98700A, HP 98550A and 362/382 Internal Bit-Mapped Displays 

The first 256 locations (0 ... 255) of the color table map directly to the hardware color map. 
Changing one of these color table locations will immediately change the display (assuming the 
color has been used). 

The next 16 locations (256 ... 271) will not affect the current display. However, future changes 
to the display will use the new contents of the color table. 

Device dependent polygons drawn with color table locations O ... 255 will be drawn in a solid 
color without using dithering. When drawn with color table locations above 255, dithering will 
be used. 

Note 

Since dithering on color mapped displays use the current color map values (i.e., 
first area of. color table) changing the first color table locations will effect the 
dithering pattern used. This leads to two major effects. First, changing the 
first locations after a polygon was generated using dithering will change the dither 
pattern such that its average color no longer matches the color that was generated 
with. Second, since the dither pattern is based on the first colors, the first colors 
can be set to produce a dither pattern with minimum color changes between pixels 
within the pattern. The following example produces a continuous shaded polygon 
across the crt: 

$RANGE OFF$ 
PROGRAM T; 

}-(I.leC tYl.leC 
Ovec 
C 

BEGIN 

INTEGER; 
ARRAY [1 •• 2] OF REAL; 
ARRAY [1 •• 2] OF Gshortint; 
REAL; 

GRAPHICS_INIT; 
DISPLAY_INIT(3tOti) ; 
SET_ASPECT(511 t389); 
SET _WINDOW(O t511 to t389); 

FOR I :.= 0 to 15 DO 
SET_COLOR_TABLE( I tI/15 tI/15 tI/15); {set UP color ITlap } 

SET_PGN_COLOR 
SET_PGN_STYLE 

1 G ); 
1 G ); 



Procedure Library Summary A-167 

Yl)ec[lJ := 100; Yl,Iec[2J := 15(1; Ol)ec[lJ := Z;"Ol,lec[ZJ := 0; 
FOR I : = 0 to 511 DO 
BEGIN 

Xl,Iec[lJ := I; Xl,Iec[2J := I; 
C : 1-1/511; 
SET_COLOR_TABLE(lG,C,C,C); { set poly~on color} 
POLYGON_DEV_DEP(Z,Xvec,YvectOvec) ; 

END; 
END. 

The color that lines are drawn with (one of the non-dithered colors) is determined from the 
closest HSL value to the requested value. 

Dithered Polygon Fills 
All the raster displays use a technique called dithering for filling device dependent polygons. The 
polygon is divided into 4 pixel by 4 pixel' dither cells'. The colors that are placed in each pixel 
location inside the dither cells average to the current polygon color. The eye will average the 
pixels, and see the intended color. 

The 98627 A has 3 memory planes thus, providing 8 non-dithered colors (white, red, green, blue, 
cyan, magenta, and black). Using dithering 4913 polygon colors may be generated. To obtain a 
polygon color of half-tone yellow (R = 0.5 G = 0.5 B = O.O) the dither cell would contain 8 black 
pixels and 8 yellow pixels. 

On black and white displays, the largest r,g,b value of the current_polygon color is used to 
determine the dither pattern. 

On the color mapped displays, the current values of the color map are used to determine the 
dither cell pixel colors. This leads to a very very large number of colors that these can produce 
when performing device dependent polygon fill. 

The Background Color 
Color index 0 represents the background color. The ability to redefine this index is device­
dependent. Many devices do not allow the redefinition of their background color. Whether a 
display device has the ability to redefine the background color can be inquired via a call to 
INQ.WS with opcode = 1072. All raster displays in the Series 200/300 computers are capable 
of redefining the background color. 

Error Conditions 
The graphics system must be initialized and a display device must be enabled or this call will be 
ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 



A-168 Procedure Library Summary 

SET_DISPLAY_LIM 

This procedure redefines the logical display limits of the graphics display. 

Syntax 

SET.J)ISPLAYJ.IM 

Item 

minimum x value 

maximum x value 

minimum y value 

maximum y value 

error variable name 

Description/Default 

Expression of TYPE REAL 

Expression of TYPE REAL 

Expression of TYPE REAL 

Expression of TYPE REAL 

Variable of TYPE INTEGER 

Procedure Heading 
PROCEDURE SET_DISPLAY_LIM }-{Irli n t }-{Irlax t 

YMint YMax REALt 
VAR Ierr : INTEGER); 

Semantics 

IMPORT: dgLlib 

Range 
Restrictions 

The minimum x value is the distance in millimetres that the left side of the logical display limits is 
offset from the left side of the physical display limits. 

The maximum x value is the distance in millimetres that the right side of the logical display limits 
is offset from the left side of the physical display limits. 

The minimum y value is the distance in millimetres that the bottom of the logical display limits is 
offset from the bottom of the physical display limits. 

The maximum y value is the distance in millimetres that the top of the logical display limits is 
offset from the bottom of the physical display limits. 

The error variable will contain an integer indicating whether the limits were successfully set. 

Value 

o 
1 

2 

Meaning 

The display limits were successfully set. 

The minimum x value was greater than or equal to the maximum x value and/or the 
minimum y value was greater than the maximum y value. 

The parameters specified were outside the physical display limits. 



Procedure Library Summary A·169 

If the error variable is non-zero, the call was ignored. 

SET _DISPLAY _LIM allows an application program to specify the region of the display 
surface where the image will be displayed. The limits of this region are defined as the logical 
display limits. Upon initialization, the graphics system sets these limits equal to some portion 
of the specified physical device. This routine allows a programmer to set the plotting surface 
of a very large plotter equal to the size of an 8 1/2 x 11 inch paper, for example. 

The pairs (minimum x value, minimum y value) and (maximum x value, maximum y value) 
define the corner points of the new logical display limits in terms of millimeters offset from 
the origin of the physical display. The exact position of the physical display origin is device 
dependent. The specifics of various devices are covered later in this entry. 

This procedure causes a new virtual coordinate system to be defined. SET _DISPLAY_LIM 
calculates the new limits of the virtual coordinate system as a function of the current aspect 
ratio and the new limits of the logical display. This does not affect the limits of the viewport. 
Since it changes the size of the area onto which the viewport is mapped, it may scale the size 
of the image displayed. It will not distort the image; it can only make it smaller or larger. 

SET _DISPLAY _LIM should only be called while the graphics display is enabled. 

Neither the value of the starting position nor the location of the physical pen or beam is 
altered by this routine. Since this routine may redefine the viewing transformation, the 
starting position may be mapped to a different coordinate on the display surface. A call to 
MOVE or INT _MOVE should therefore be made after this call to update the value of the 
starting position and in so doing, place the physical pen or beam at a known location. 

If the logical display and logical locator are associated with the same physical device, a call to 
SET _DISPLAY _LIM will set the logical locator limits equal to the new limits of the virtual 
coordinate system. A call to SET _DISPLAY_LIM also sets the locator echo position to its 
default value, the center of the world coordinate system. 

Display Limits of Raster Devices 
The CRTs for the Series 200 and Series 300 computers have the following limits: 

Computer Wide High Wide High Aspect Resolution 
mm mm points points points/mm 

Model 216 160 120 400 300 .75 2.5 

Model 217 230 175 512 390 .7617 2.226 

Model 220 (HP 82913A) 210 158 400 300 .75 2.632 

Model 220 (HP 82912A) 152 114 400 300 .75 2.632 

Model 226 120 88 400 300 .75 3.333 

Model 236 210 160 512 390 .7617 2.438 

Model 236 Color 217 163 512 390 .7617 2.39 

Model 237 312 234 1024 768 .75 3.282 

HP 98542A 210 164 512 400 .7813 2.433 

HP 98543A 210 164 512 400 .7813 2.433 

HP 98544A 312 234 1024 768 .75 3.282 

HP 98545A 360 270 1024 768 .75 2.844 

HP 98547A 360 270 1024 768 .75 2.844 

HP 98548A 343 274 1280 1024 .7988 3.729 

HP 98549A 360 270 1024 768 .75 2.844 

HP 98550A 343 274 1280 1024 .7988 3.729 

HP 98700A 360 270 1024 768 .75 2.844 

362/382 VGA 290 210 640 480 .75 2.207 

382 Medium Res 300 225 1024 768 .75 3.413 

382 High Res 340 272 1280 1024 .7988 3.765 



A-170 Procedure Library Summary 

The physical size of the HP 98627 A display (needed by the SET_DISPLAY_LIM procedure) may 
be given to the graphics system by an escape function (OPCODE = 250). The physical limits 
assumed until the escape function is given are: 

CONTROL = 256 153.3mm wide and 116.7mm high. 
512 153.3mm wide and 116.7mm high. 
768 153.3mm wide and 142.2mm high. 

1024 153.3mm wide and 153.3mm high. 
1280 153.3mm wide and 153.3mm high. 

The default logical display surface of the graphics display device is the maximum physical limits of 
the screen. The physical origin is the lower left corner of the display. 

The view surface is always centered within the current logical display surface. The origin of a 
raster display is the lower-left dot. 

HPGL Plotter Display Limits 

Wide High Wide High Resolution 
Plotter mm mm points points Aspect points/mm 
7440A 272.5 191.25 10900 7650 .7018 40.0 
7470 257.5 191.25 10300 7650 .7427 40.0 
7475 416 259.125 16640 10365 .6229 40.0 
7550A/B 411.25 254.25 16450 10170 .6182 40.0 
7570A 809.5 524.25 32380 20970 .6476 40.0 
7575A 809.5 524.25 32380 20970 .6476 40.0 
7576A 1182.8 898.1 47312 35924 .7593 40.0 
7580 809.5 524.25 32380 20970 .6476 40.0 
7585 1100 891.75 44000 35670 .8107 40.0 
7586 1182.8 898.1 47312 35924 .7593 40.0 
7595A/B 1100 891.75 44000 35670 .8107 40.0 
7596A/B 1182.8 898.1 47312 35924 .7593 40.0 
9872 400 285 16000 11400 .7125 40.0 
35723 210.0 164.0 57 43 .7500 470.0 
46087A 297.6 216.5 11904 8660 .7275 40.0 
46088A 432.4 297.6 17296 11904 .6883 40.0 

The maximum physical limits of the graphics display for a HPGL device not listed above are 
determined by the default settings of PI and P2. The default settings of PI and P2 are the values 
they have after an HPGL 'IN' command. Refer to the specific device manual for additional 
details. 

The default logical display surface is set equal to the area defined by PI and P2 at the time 
DISPLAY _INIT is invoked. The view-surface is always justified in the lower left corner of the 
current logical display surface (corner nearest the turret for the HP 7580 and HP 7585 plotters). 
The physical origin of the graphics display is at the lower left boundary of pen movement. 



Procedure Library Summary A-170.1 

Note 

If the paper is changed in an HP 7570A, HP 7575A, HP 7576A, 
HP 7580, HP 7585, HP 7586, HP 7595A/B, HP 7596A/B, or HP 7599A 
plotter while the graphics locator is initialized, it should be the same 
size of paper that was in the plotter when DISPLAY _INIT was called. 
If a different size of paper is required, the device should be terminated 
(DISPLAY _TERM) and re-initialized after the new paper has been 
placed in the plotter. 

Error Conditions 
The graphics system must be initialized and a display device enabled or this call will be ignored, 
an ESCAPE ( - 27) will be generated, and GRAPHICS ERROR will return a non-zero value. 



A-170.2 Procedure Library Summary 



Procedure Library Summary A-171 

This procedure defines the locator echo position on the graphics display. 

Syntax 

SET...,ECHOYOS 

Item 

x coordinate 

y coordinate 

Procedure Heading 

x 
coordinate 

y 
coordinate 

Description/Default 

Expression of TYPE REAL 

Expression of TYPE REAL 

PROCEDURE SET_ECHO_POS ( WXt Wy REAL ); 

Semantics 
The x and y coordinate pair is the new echo position in world coordinates. 

IMPORT: dgLlib 

Range 
Restrictions 

When echoing on the display device, SET _ECHO_POS allows a programmer to define the 
position of the locator echo position. This is a point in the world coordinate system that represents 
the initial position of the locator. It is used with certain locator echoes on the graphics display. For 
example, it is used as the anchor point when a rubber band echo is performed. With this echo, the 
graphics cursor is initially turned on at the locator echo position. From that time on, the cursor 
reflects the position of the locator and a line extends from the locator echo position to the locator 
as it moves around the graphics display. To be used in echoing, the point must be displayable. 
Therefore, if the point specified is outside of the limits of the window the call is ignored. 

The locator echo position will only be used when AWAIT_LOCATOR is called with echo types 2 
through 8, e.g., type 4 is a rubber band line echo. The locator echo position is only used when the 
locator 'echo is being sent to the graphics display device, and is not used when sampling the 
locator. 

SET _ECHO_POS should only be called while the graphics display and locator are initialized. If 
the point passed to SET _ECHO_POS is outside the current window limits, then the call to 
SET _ECHO_POS is ignored and no error is given. 

The default locator echo position is the center of the limits of the window. When the locator is 
initialized, the locator echo position is set to the default value. When a call is made which affects 
the viewing transformations for the graphics display surface or the logical locator limits, the 
locator echo position is set to the default value. The calls which cause this are SET -ASPECT, 
DISPLA Y _IN IT, SET_DISPLAY_LIM, LOCATOR_IN IT, SET _LOCATOR_LIM, SET _ WIN­
DOW, and SET_VIEWPORT. 



A-172 Procedure Library Summary 

Once the locator echo position is set, it retains this value until the next call to SET _ECHO_POS or 
until a call is made which resets it to the default value. 

Error Conditions 
The graphics system must be initialized, and a display device and a locator device must be 
enabled, or this call will be ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSER­
ROR will return a non-zero value. 



IMPORT: hpib_O 
iodeclarations 

Procedure Library Summary A-173 

SETJlPIB 

This procedure will set the specified HP-IB control line. Not all HP-IB lines are accessible at 
all times. 

Syntax 

Item 

interface 
select code 

hpib line 
specifier 

Semantics 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of enumerated TYPE 
type_hpib_line. 

Range 
Restrictions 

a thru 31 

atn_line 
dav_line 
ndac_line 
nrfd_line 
eoLline 
srq_line 
ifc_line 
ren_line 

Recommended 
Range 

7 thru 31 

Not all possible hpib .... line types are legal when using this procedure. Handshake lines (DAV, 
NDAC, NRFD) are never accessible, and an error is generated if an attempt is made to set 
them. 

The Service Request line (SRQ) is not accessible and should be set with REQUEST_SERVICE. 

Setting the Interface Clear line (lFC) and the Remote Enable line (REN) requires the system to 
be system controller. 

Setting the Attention line (A TN) requires the interface to be active controller. 



A-174 Procedure Library Summary 

This procedure sets the line style attribute. 

Syntax 

~SET~INE-STYLE~ 

Item 

line style 
selector 

Description/Default 

line style selector Expression of TYPE INTEGER 

Procedure Heading 
PROCEDURE SET_LINE_STYLE (Line_Style 

Semantics 

Range 
Restrictions 

MININT thru 
MAXINT 

INTEGER) ; 

IMPORT: dgLlib 

Recommended 
Range 

Device 
Dependent 

The line style selector is the line style to be used for lines, polylines, polygon edges, and text. 

Markers are not affected by line-style. Polygon interior line-style is selected with SET _PGN_LS. 

SET_LINE_STYLE sets the line style attribute for lines and text. The mapping between the value 
of the line style attribute and the line style selected is device dependent. If a line style attribute is 
requested that the device cannot perform exactly as requested, line style 1 will be performed. 

There are three types of line-styles: start adjusted, continuous, and vector adjusted: 

Start adjusted line-styles always start the cycle at the beginning of the vector. Thus if the current 
line-style starts with a pattern, each vector drawn will start with that pattern. Likewise, if the 
current line-style starts with a space and then a dot, each vector will be drawn starting with a space 
and then a dot. In this case if the vectors are short, they might not appear at all. 

Continuous line styles are generated such that the pattern will be started with the first vector 
drawn. Subsequent vectors will be continuations of the pattern. Thus, it may take several vectors 
to complete one cycle of the pattern. This type of line-style is useful for drawing smooth curves, 
but does not necessarily deSignate either endpoint of a vector. A side effect of this type of 
line-style is if a vector is small enough it might be composed only of the space between points or 
dashes in the line-style. In that case, the vector may not appear on the graphics display at all. 



Procedure Library Summary A-175 

Vector adjusted line-styles treat each vector individually. Individual treatment guarantees that a 
solid component of the dash pattern will be generated at both ends of the vector. Thus, the 
endpoints of each vector will be clearly identifiable. This type of line-style is good for drawing 
rectangles. The integrity of the line-style will degenerate with very small vectors. Since some 
component of the dash pattern must appear at both ends of the vector, the entire vector for a 
short vector will often be drawn as solid. 

The following figure illustrates how one pattern would be displayed using each one of the 
different line-style types: 

jl fTIl I ir[[5111 
ffr; ... ~ 
II" rr°=jl°ll I·· ··1 Ilili~1 . L!::.::!J . 

lillo 00 o)J . ~ . ~. 
~.-.~ . __ . 

• 
START ADJUSTED CONTINUOUS VECTOR ADJUSTED 

LlNESTYLE USED 

It should be apparent from the above discussion that drawing to the starting position will generate 
a point (the shortest possible line) only if the line-style is such that the pen is down (or the beam is 
on) at the start of that vector. Likewise, whole vectors may not appear on the graphics display 
surface if the line-style is such that the vector is smaller than the blank space in the line-style. The 
device handlers section of this document details the line-styles available for each device. 

Note 

When using continuous line styles, complement and erase drawing modes 
(available on some raster displays e.g., Model 226) may not completely 
remove lines previously drawn. This happens since the line style pattern 
may not be in sync with the first line when the second line is drawn. By 
setting the line style to solid when using complement and erase draw­
ing modes the application program can insure that the line is completely 
removed. 



A-176 Procedure Library Summary 

Raster Line Styles 
Eight pre-defined line-styles are supported on the graphics display. All of the line-styles may be 
classified as being "continuous": 

Plotter Line Styles 

8 ....................................................................................................................................... . 
7································· . 
6 - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. - .. 
5-·_·--------------------------_·_-
4 _._._._._._.-._.-._._._._.-._._._. 

3-----------------
2-----------------
1 

Raster Line Styles 

The following table describes the line styles available on the supported plotters. 

Device 
Number of continuous 

line-styles 
Number of vector adjusted 

line-style.s 

9872 
7580 
7585 
7470 
Other 

7· 

7 
7 
7 
7 
7 

6 -..:.---------------------------------------
5 ---------------------------
4 -'-'-'-'-'-'-'-'-'-'-'-'-'-
3--------------
2--------------
1 

HP 9872 and 7470 Line Styles 
(all are continuous) 

o 
6 
6 
o 
o 

CONTINUOUS 



13 
1 2 ----------------------------------------
11 ---------------------------
10 -'-'-'-'-'-'-'-'-'-'-'-'-'-

9 --------------
8--------------
7 
6 -------------------------------------
5 -------------------------4 _._._._._._._._._._._._.-

3-------------
2-------------
1 

Procedure Library Summary A-177 

CONTINUOUS 

~ ... ~ 

II
' . !r':;l' 1'1 I·· ··1 .IL . .JI. 

• ~'I t..=.::J~ I'. I I L-._.--J I I 
t..= '-'::J 

VECTOR ADJUSTED 

HP 7570, HP 7575A, HP 7576A, HP 7580, HP 7585, HP 7586, HP 7595, HP 7596, HP 7599 

If the line style specified is not supported by the graphics display, the call is completed with 
LINE_STYLE = 1 and no error is reported. 

Error Conditions 

The graphics system must be enabled and a display device must be enabled or this call will be 
ignored and GRAPHICSERROR will return a non-zero value. 



A-178 Procedure Library Summary 

This procedure redefines the logical locator limits of the graphics locator. 

Syntax 

SETJ,.OCATOAJ,.IM 

Item 

minimum x value 

maximum x value 

maximum y value 

minimum y value 

error variable name 

Description/Default 

Expression of TYPE REAL 

Expression of TYPE REAL 

Expression of TYPE REAL 

Expression of TYPE REAL 

Variable of TYPE INTEGER 

Procedure Heading 
PROCEDURE SET_LOCATOR_LIM }-{rrli n t }{rrlax t 

YMint YMax REALt 
1.IAR Ie r r INTEGER) ; 

Semantics 

IMPORT: dgLlib 

Range 
Restrictions 

The minimum x value is the distance in millimetres that the left side of the logical locator limits is 
offset from the left side of the physical locator limits. 

The maximum x value is the distance in millimetres that the right side of the logical locator limits 
is offset from the left side of the physical locator limits. 

The minimum y value is the distance in millimetres that the bottom of the logical locator limits is 
offset from the bottom of the physical locator limits. 

The maximum y value is the distance in millimetres that the top of the logical locator limits is 
offset from the bottom of the physical locator limits. 

The error variable will contain an integer indicating whether the limits were successfully set. 



Value 

a 
1 

2 

3 

Procedure Library Summary A-179 

Meaning 

The display limits were successfully set. 

The minimum x value was greater than or equal to the maximum x value and/or the 
minimum y value was greater than the maximum y value. 

The parameters specified were outside the physical display limits. 

Attempt to explicitly define locator limits on a device which is both the logical locator 
and the logical display. The logical display limits are used when a device is shared for 
both purposes, and they cannot be redefined with this call. 

If the error variable is non-zero, the call was ignored. 

SET _LOCATOR_LIM allows an application program to specify the portion of the physical 
locator device that should be used to perform locator functions. When the logical locator device is 
enabled (via LOCATOR_INIT) the logical device limits are set to a device dependent portion of 
the physical locator device. With a call to this routine the user can set the logical locator limits by 
specifying a new area within the physical locator limits. 

The pairs (minimum x value, minimum y value) and (maximum x value, maximum y value) 
define the corner points of the new logical locator limits in terms of millimetres offset from the 
origin of the physical locator. The exact position of the physical locator origin is device depen­
dent. Specific origins are covered later in this entry. 

If a logical locator and a logical display are associated with the same physical device, then the 
logical locator limits must be the same as the logical view surface limits. Specifically, the effects of 
the association with the same physical device are as follows: 

• The logical locator limits are initialized to the same values as the virtual coordinate system. 

• Any call which redefines the virtual coordinate system limits will also redefine the logical 
locator limits. 

• The logical locator limits can not be defined by a call to SET _LOCATOR_LIM. 

By changing the logical locator limits any portion of the graphics locator can be addressed, with 
the restrictions stated above. 

The logical locator limits always map directly to the view surface, therefore, distortion may result 
in the mapping between the logical locator and the display when the logical locator limits and the 
view surface have different aspect ratios. If the distortion is not desired it can be avoided by 
assuring that the logical locator limits maintain the same aspect ratio as that of the view surface. 

SET _LOCATOR_LIM should only be called while the graphics locator is enabled. SET _LOCA­
TOR_LIM sets the locator echo position to the default value (see SET _ECHO_POS). 



A-ISO ,Procedure Library Summary 

Relative Locator Limits (Knob or Mouse) 
The knob may be used as a locator on Series 200/300 computers. The default characteristics 
of the knob on various Series 200/300 computers is listed in the table below. 

Computer Wide Higb Wide Higb Aspect Resolution 
nun nun points points points/nun 

Model 216 160 120 400 300 .75 2.5 

Model 217 230 175, 512 390 .7617 2.226 

Model 220 (HP 82913A) 210 158 400 300 .75 2.632 

Model 220 (HP 82912A) 152 114 400 300 .75 2.632 

Model 226 120 88 400 300 .75 3.333 

Model 236 210 160 512 390 .7617 2.438 

Model 236 Color 217 163 512 390 .7617 2.39 

Model 237 312 234 1024 768 .75 3.282 

HP 98542A 210 164 512 400 .7813 2.433 

HP 98543A 210 164 512 400 .7813 2.433 

HP 98544A 312 234 1024 768 .75 3.282 

HP 98545A 360 270 1024 768 .75 2.844 

HP 98547A 360 270 1024 768 .75 2.844 

HP 98548A 343 274 1280 1024 .7988 3.729 

HP 98549A 360 270 1024 768 .75 2.844 

HP 98550A 343 274 1280 1024 .7988 3.729 

HP 98700A 360 270 1024 768 .75 2.844 

362/382 VGA 290 210 640 480 .75 2.207 

382 Medium Res 300 225 1024 768 .75 3.413 

382 High Res 340 272 1280 1024 .7988 3.765 

The knob uses the current display limits as its locator limits for locator echoes 2 though 8. For all 
other echoes the above limits are used. An example of when the two limits may differ follows: 

The knob locator is initialized on a Model 226. The graphics display is an HP 98627 A color 
output card. The resolution of the locator is 0 through 399 in x dimension, and 0 through 299 
in y dimension. The resolution of the display is 0 through 511 in x dimension, and 0 through 
389 in y dimension. When awaitJocator is used with echo 4, the locator will effectively have 
the HP 98627 A resolution for the duration of the awaitJocator call. However, if echo 1 is used 
with await Jocator , the cursor will appear on the Model 226 and the locator has a resolution 
of 0 x 399 and 0 x 299. Note that all conversion routines, and inquiries will use the Model 
226 limits. 

The physical origin of the locator device is the lower left corner of the display. 

Absolute Locator Limits (HPGL Plotter or Graphics Tablet) 
HPGL plotter and graphics tablets can be used ilS locators. The default characteristics of some 
HPGL devices are listed below. 



Procedure Library Summary 

Wide High Wide High Resolution 
Plotter mm mm points points Aspect points/mm 

7440A 272.5 191.25 10900 7650 .7018 40.0 
7470 257.5 191.25 10300 7650 .7427 40.0 
7475 416 259.125 16640 10365 .6229 40.0 
7550A/B 411.25 254.25 16450 10170 .6182 40.0 
7570A 809.5 524.25 32380 20970 .6476 40.0 
7575A 809.5 524.25 32380 20970 .6476 40.0 
7576A 1182.8 898.1 47312 35924 .7593 40.0 
7580 809.5 524.25 32380 20970 .6476 40.0 
7585 1100 891.75 44000 35670 .8107 40.0 
7586 1182.8 898.1 47312 35924 .7593 40.0 
7595A/B 1100 891.75 44000 35670 .8107 40.0 
7596A/B 1182.8 898.1 47312 35924 .7593 40.0 
7599A 1182.8 898.1 47312 35924 .7593 40.0 
9872 400 285 16000 11400 .7125 40.0 
35723 210.0 164.0 57 43 .7500 470.0 
46087A 297.6 216.5 11904 8660 .7275 40.0 
46088A 432.4 297.6 17296 11904 .6883 40.0 

The 7550B, 7595B, 7596A, and 7599A plotters are only supported in 7550A, 7595A, or 7596A 
emulation mode. 

The maximum physical limits of the locator for a HPGL device not listed above are determined by 
the default settings of PI and P2. The default settings of PI and P2 are the values they have after 
an HPGL 'IN' command. Refer to the specific device manual for additional details. 

The default logical display surface is set equal to the area defined by PI and P2 at the time 
LOCA TOR_IN IT is invoked. 

Note 

If the paper is changed in an HP 7570A, HP 7575A, HP 7576A, 
HP 7580, HP 7585, HP 7586, HP 7595A/B, HP 7596A/B, or HP 7599A 
plotter while the graphics locator is initialized, it should be the same 
size of paper that was In the plotter when DISPLAY _INIT was called. 
If a different size of paper is required, the device should be terminated 
(DISPLAY_TERM) and re-initialized after the new paper has been 
placed in the plotter. 

Error Conditions 
The graphics system must be initialized and a display device enabled or this call will be ignored, 
an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero value. 

HP-HIL Absolute Locator Semantics 

A-lSI 

Ie r r is an error return variable. If i err = 0, the call to 5 e t_l 0 cat 0 L 1 i III successfully set the locator 
limits according to the other parameters. If i err * 0 then the value indicates a DGL error condition, 
and 5 e t _1 0 cat 0 r _1 i III has no effect. I err values used are standard wherever possible, with some 
new values being added to DGL for special HP-HIL conditions. 



A-182 Procedure Library Summary 

SET_LINE_WIDTH 
IMPORT: dgLlib 

This procedure sets the line-width attribute. The number of line-widths possible is device 
dependent. 

Syntax 

~5ET-LINE~IDTH~ line width 
selector 

Item Description/Default 

line-width selector Expression of TYPE INTEGER 

Procedure Headings 
PROCEDURE SET_LINE_WIDTH ( Linewidth INTEGER ); 

Semantics 

Range 
Restrictions 

MININT thru MAXINT 

SET_LINE_WIDTH sets the line-width attribute for lines, polylines and text. The line-width 
attribute does not affect markers which are defined to be always output with the thinnest 
line-width supported on the device. All devices support at least one line-width. The range of 
line-widths is device dependent but line-width 1 is always the thinnest line-width supported. For 
devices that support multiple line-widths, the line-width increases as line-width does until the 
device supported maximum is reached. For example, line-width = 1 specifies the thinnest, 
line-width = 2 specifies the next wider line-width, etc. 

If line-width is greater than the number of line-widths supported by the graphics display or 
line-width is less than 1, then the line-width will be set to the thinnest available width (line-width 
= 1). All subsequent lines and text will then be drawn with the thinnest available line-width. A call 
to INQ_WS with OPCODE equal to 1063 to inquire the value of the line-width will then return a 
1. 

The initial line-width is the thinnest width supported by the device (line-width = 1). 

Note 
All current devices support a single line-width. 

Error Conditions 
The graphics system must be initialized and a display device must be enabled or this call is 
ignored, an ESCAPE ( - 27) will be generated, and GRAPHICS ERROR will return a non-zero 
value. 



IMPORT: seriaL3 
iodeclarations 

Procedure Library Summary A-183 

SET~ARITY 

This procedure sets what parity mode the serial interface will use. 

Syntax 

Item 

interface 
select code 

parity mode 
specifier 

Description/Default 

Expression of TYPE type_isc. This is an 
INTEGER subrange. 

Expression of enumerated TYPE 
type_parity. 

Range 
Restrictions 

o thru 31 

no_parity 
odcLparity 
even_parity 
one_parity 
zero_parity 

Recommended 
Range 

7 thru 31 



A-184 Procedure Library Summary 

IMPORT: dgLlib 
dgLpoly 

This procedure selects the polygon interior color attribute for subsequently generated polygons 
by providing a selector for the color table. 

Syntax 

Item Description/Default 

color selector Expression of TYPE INTEGER 

Procedure Heading 
PROCEDURE SET_PGN_COLOR ( Cindex INTEGER ); 

Semantics 

Range 
Restrictions 

MININT thru 
MAXINT 

Recommended 
Range 

Device 
dependent. 

The color selector is an index into the color table. The contents of the color table are then used to 
specify the color when primitives are drawn. On some devices (HPGL plotters), the color selector 
maps directly to a pen number for the device. On the color mapped displays, the entries in 
the color table can be modified with SET COLOR. TABLE. The color actually used depends 
on the value in a device dependent color table. 

At device initialization a default color table is created by the graphics system. The size and 
contents of the table are device dependent. At least one entry exists for all devices. A call to 
INQ_WS with OPCODE equal to 1053 will return the number of colors available on a given 
graphics device. Some devices allow the color table to be modified with SET_TABLE. 

The default value of the color attribute is 1. If the value of the color selector is not supported on 
the graphics display, the color attribute will be set to 1. 

A color selector of 0 has special effects depending on the graphics display used. For raster 
devices, a color selector of 0 means to draw in the background color. For most plotters, it puts the 
pen away. 

Dithering 
If the device is not capable of reproducing a color in the color table; the closest color which the 
device is capable of reproducing is used instead. For polygon fill (in a device dependent mode) 
this may involve dithering. For example, the HP 98627 A color output interface card is capable of 
a large selection of polygon fill colors, but only 8 line colors. Thus, the fill color could match the 
selected color much more closely than the line color used to outline the polygon. See SET_ 
COLOR_TABLE for details on how colors are matched to the devices. 



Procedure Library Summary A-ISS 

Default Raster Color Map 
The following table shows the default (initial) color table for the black and white displays 
(computer models 216,220, 226, 236, 237, HP 98542A, HP 98544A, and HP 98548A): 

Index # Hue Saturation Luminosity 

0 0 0 0 
1 0 0 1.0000 
2 0 0 0.9375 
3 0 0 0.8750 
4 0 0 0.8125 
5 0 0 0.7500 
6 0 0 0.6875 
7 0 0 0.6250 
8 0 0 0.5625 
9 0 0 0.5000 

10 0 0 0.4375 
11 0 0 0.3750 
12 0 0 0.3125 
13 0 0 0.2500 
14 0 0 0.1875 
15 0 0 0.1250 
16 0 0 0.0625 

Colors 17 though 31 are set to white. 

The following table shows the default (initial) color table for the color displays (computer 
model 236C, HP 98627, HP 98543A, HP 98545A, HP 98547 A, HP 98549A, HP 98550A 
and HP 98700A): 

Index # Color name Red Green Blue 

0 Black 0.000000 0.000000 0.000000 
1 White 1.000000 1.000000 1.000000 
2 Red 1.000000 0.000000 0.000000 
3 Yellow 1.000000 1.000000 0.000000 
4 Green 0.000000 1.000000 0.000000 
5 Cyan 0.000000 1.000000 1.000000 
6 Blue 0.000000 0.000000 1.000000 
7 Magenta 1.000000 0.000000 1.000000 
8 Black 0.000000 0.000000 0.000000 
9 Olive green 0.800000 0.733333 0.200000 

10 Aqua 0.200000 0.400000 0.466667 
11 Royal blue 0.533333 0.400000 0.666667 
12 Violet 0.800000 0.266667 0.400000 
13 Brick red 1.000000 0.400000 0.200000 
14 Burnt orange 1.000000 0.466667 0.000000 
15 Grey brown 0.866667 0.533333 0.266667 

Colors 9 through 15 are a graphic designer's idea of colors for business graphics. Color table 
entries not shown above are set to white. 



'A-186 Procedure Library Summary 

Raster Drawing Modes 
Raster drawing modes have no effect on polygon fill color. 

Plotters 
A Color Selector of 0 selects no pens (the current pen is put away). The supported range of Color 
Selectors for each supported plotter is: 

• 9872A - 0 through 4 

• 9872B - 0 through 4 

• 9872C/S/T - 0 through 8 

• 7550A&B/7570A/7575A/7576A/7580A/7585A/7586B/7595A&B/7596A&B/7599A - 0 
through 8 

• 7470A - 0 through 2 

Error Conditions 
The graphics system must be initialized and a display must be enabled or this call will be ignored, 
an ESCAPE ( - 27) will be generated, and GRAPHICSERROR returns a non-zero value. 



Procedure Library Summary A-187 

IMPORT: dgLlib 
dgLpoly 

This procedure selects the polygon interior line-style attribute for subsequently generated 
polygons by providing a selector for the device dependent line-style table. 

Syntax 

-..( SET..,pGN.J,..S ~ line style 
selector 

Item Description/Default 

line-style selector Expression of TYPE INTEGER 

Procedure Heading 
PROCEDURE SET_PGN_LS ( Lindex I N'TEGER ); 

Semantics 

Range 
Restrictions 

MININT thru 
MAXI NT 

The line style selector is the line style to be used for polygon interiors. 

Line-styles for other primitives are selected using SET_LINE_STYLE. 

Recommended 
Range 

Device 
dependent 

The mapping between the value of the line style attribute and the line style selected is device 
dependent. If a line style attribute is requested that the device cannot perform exactly as 
requested, line style 1 will be performed. 

There are three types of line-styles - start adjusted, continuous, and vector adjusted: 

Start adjusted line-styles always start the cycle at the beginning of the vector. Thus if the current 
line-style starts with a pattern, each vector drawn will start with that pattern. Likewise, if the 
current line-style starts with a space and then a dot, each vector will be drawn starting with a space 
and then a dot. In this case if the vectors are short, they might not appear at all. 

Continuous line styles are generated such that the pattern will be started with the first vector 
drawn. Subsequent vectors will be continuations of the pattern. Thus, it may take several vectors 
to complete one cycle of the pattern. This type of line-style is useful for drawing smooth curves, 
but does not necessarily designate either endpoint of a vector. A side effect of this type of 
line-style is if a vector is small enough it might be composed only of the space between points or 
dashes in the line-style. In that case, the vector may not appear on the graphics display at all. 



A-ISS Procedure Library Summary 

Vector adjusted line-styles treat each vector individually. Individual treatment guarantees that a 
solid component of the dash pattern will be generated at both ends of the vector. Thus, the 
endpoints of each vector will he clearly identifiable. This type of line-style is good for drawing 
rectangles. The integrity of the line-style will degenerate with very small vectors. Since some 
component of the dash pattern must appear at both ends of the vector, the entire vector for a 
short vector will often be drawn as solid. 

The following figure illustrates how one pattern would be displayed using each one of the 
different line-style types: 

11 fTITIl I 
.-_._-

ffr; ... ~ Ji[[Jlll II"rr'~'11 I·· ··1 I@:gml . L!::.::!J . ~. · .. IJ . ~ . ~. 
~.-.~ . __ . 

START ADJUSTED CONTINUOUS VECTOR ADJUSTED 

It should be apparent from the above discussion that drawing to the starting position will generate 
a point (the shortest possible line) only if the line-style is such that the pen is down (or the beam is 
on) at the start of that vector. Likewise, whole vectors may not appear on the graphics display 
surface if the line-style is such that the vector is smaller than the blank space in the line-style. The 
device handlers section of this document details the line-styles available for each device. 

Note 

When using continuous line styles, complement and erase drawing modes (avail­
able on some raster displays e.g., Model 226) may not completely remove lines 
previously drawn. This happens since the line style pattern may not be in sync 
with the first line when the second line is drawn. By setting the line style to solid 
when using complement and erase drawing modes the application program can 
insure that the line is completely removed. 



Procedure Library Summary A-189 

Raster Line Styles 
Eight pre-defined line-styles are supported on the graphics display. All of the line-styles may be 
classified as being "continuous": 

Plotter Line Styles 

8 ....................................................................................................................................... . 
"7 ................................. . 
I 6 _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _.,_ .. _ .. 
5----------------------------------
4 -'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-' 
3-----------------

1 
Raster Line Styles 

The following table describes the line styles available on the supported plotters. 

Number of continuous Number of vector adjusted 
Device line-styles line-styles 

9872 7 0 
7470 7 0 
7475 7 0 
7550 7 6 
7570 7 6 
7575 7 6 
7576 7 6 
7580 7 6 
7585 7 6 
7586 7 6 
7595 7 6 
7596 7 6 
Other 7 0 

7· 
5 ----------------------------------------
5---------------------------
4 _._._._._._._._._._._._._.-

3--------------
2--------------

1 
HP 7440, 7470, 7475, and 9872 Line Styles 

CONTINUOUS 



A-190 Procedure Library Summary 

13 
1 2 ----------------------------------------
11 ---------------------------
10 -'-'-'-'-'-'-'-'-'-'-'-'-'-

9 --------------
8--------------
7 
6 -------------------------------------
5 -------------------------
4 -'-'-'-'-'-'-'-'-'-'-'-'-
3-------------
2-------------
1 

~ ... ~ 

II
' ·rr·=;l· '11 I·· ··1 .IL.-1I. 

. 'L::' c.::J::J , .. II L.._.-J II 
L:: '--'::J 

VECTOR ADJUSTED 

CONTINUOUS 

HP 7550, 7570A, 7575A, 7576A, 7580, 7585, 7586, 7595A/B, 7596A/B, and 7599A Line Styles 

If the line style specified is not supported by the graphics display, the call is completed with 
LINE_STYLE = 1 and no error is reported. 

The graphics system must be enabled and a display device must be enabled or this call will be 
ignored and GRAPHICSERROR will return a non-zero value. 

Error conditions: 
The graphics system must be initialized and a display device must be enabled or this call will be 
ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return an non-zero 
value. 



IMPORT: dgLlib 
dgLpoly 

Procedure Library Summary A-191 

This procedure selects the polygon style attribute for subsequently generated polygons by 
providing a selector for the polygon style table. 

Syntax 

Item 

polygon style 
selector 

Procedure Heading 

polygon style 
selector 

Description/Default 

Expression of TYPE INTEGER 

PROCEDURE SET_PGN_STYLE ( Pindex INTEGER ); 

Semantics 

Range 
Restrictions 

MININT thru 
MAXINT 

Recommended 
Range 

Device 
dependent 

Polygon styles can vary in polygon interior density, polygon interior orientation and polygon 
edge display. See SET_PGN_TABLE for details on default styles, and how the polygon style 
table may be changed. 

Error Conditions 
The graphics system must be initialized and a display device must be enabled or this call will be 
ignored and GRAPHICSERROR will return an non-zero value. 



A-192 Procedure Library Summary 

IMPORT: dgLlib 
dgLpoly 

This procedure defines a polygon style attribute, i. e. an entry in a polygon style table. 

Syntax 

Item Description/Default 

entry selector Expression of TYPE INTEGER 

fill density Expression of TYPE REAL 

fill orientation Expression of TYPE REAL 

edge selector Expression of TYPE INTEGER 

Procedure Heading 
PROCEDURE SET_PGN_TABLE Index 

Denst}' 
Orient 
Edge 

Semantics 

INTEGER; 
REAL; 
REAL; 
INTEGER ); 

Range Recommended 
Restrictions Range 

MININT thru Device 
MAXI NT dependent 

MININT thru -1 thru 1 
MAXINT 

MININT thru -90 thru 90 
MAXI NT 

MININT thru 
MAXI NT 

This routine defines the attribute of polygon style, i. e. it specifies an entry in a polygon style table. 
This entry contains information that specifies polygon interior density, polygon interior orienta­
tion, polygon edge display, and device-independence of polygon display. 

The entry selector specifies the entry in the polygon style table that is to be redefined. 

The fill density determines the density of the polygon interior fill. The magnitude of this value is 
the ratio of filled area to non-filled area. Zero means the polygon interior is not filled. One 
represents a fully filled polygon interior. All non-zero values specify the density of continuous 
lines used to fill the interior. 



Procedure Library Summary A-193 

Positive density values request parallel fill lines in one direction only. Negative values are used to 
specify crosshatching. For a given density, the distance between two adjacent parallel lines is 
greater with cross hatching than in the case of pure parallel filling. Calculations for fill density are 
based on the thinnest line possible on the device and on continuous line-style. 

The distance between fill lines - hence density - does not change with a change of scale caused 
by a viewing transformation. If the interior line-style is not continuous, the actual fill density may 
not match that found in the polygon style table. 

The fill orientation represents the angle (in degrees) between the lines used for filling the 
polygon and the horizontal axis of the display device. The interpretation of fill orientation is 
device-dependent. On devices that require software emulation of polygon styles, the angle 
specified will be adhered to as closely as possible, within the line-drawing capabilities of the 
device. For hardware generated polygon styles, the angle specified will be adhered to as closely 
as is possible given the hardware simulation of the requested density. If crosshatching is specified, 
the fill orientation specifies the angle of orientation of the first set of lines in the crosshatching, and 
the second set of lines is always perpendicular to this. 

The value of the edge selector determines whether the edge of the polygon is displayed. If the 
edge selector is 0, the edges will not be displayed. If the edge selector is 1, display of individual 
edge segments depends on the operation selector in the call that draws the polygon set, 
POLYGON, INT_POLYGON, POLYGON_DEV_DEP, or INT_POLYGON_DD. 

If polygon edges are displayed, they adhere to the current line attributes of color, line-style, and 
line-width, in effect at the time of polygon display. 

A device-dependent number of polygon styles are available. All devices support at least 16 
entries in the polygon table. The polygon styles defined in the default tables are defined to exploit 
the hardware capabilities of the devices they are defined for. 

Polygon interiors can be generated in either a device-dependent or device-independent fashion, 
by calling POL YGON_DEV _DEP or POLYGON respectively. 

Polygons generated in a device-dependent fashion will utilize the available hardware polygon 
generation capabilities of the device to increase the speed and efficiency of polygon generation. 
The output may vary depending on the device. Devices that have no hardware polygon genera­
tion capabilities will only do a minimal representation of the polygon if a device-dependent 
representation of the polygon is requested. If an edge is not requested, an outline of the 
non-clipped boundaries of the polygon interior will be drawn in the current polygon interior color 
and polygon interior line-style if the density of the polygon interior was not zero. 

Polygons generated in a device-independent fashion will adhere strictly to the polygon style 
specification. The polygon interior generated would look similar when generated on different 
devices for a given polygon style specification. However, on raster devices rasterization of the fill 
lines may leave empty pixels when solid fill is requested with an orientation that is not 0 or 90 
degrees. Available hardware would only be used where the polygon style could be generated 
exactly as specified. 



A-194 Procedure Library Summary 

The number of entries in the polygon style table and the default contents of the table are device 
dependent. However, all devices support the following polygon style table: 

Entry Density Angle Edge 

1 0.0 0.0 1 
2 0.125 90.0 1 
3 0.125 0.0 1 
4 -0.125 0.0 1 
5 0.125 45.0 1 
6 0.125 -45.0 1 
7 -0.125 45.0 1 
8 0.25 90.0 1 
9 0.25 0.0 1 

10 -0.25 0.0 1 
11 0.25 45.0 1 
12 0.25 -45.0 1 
13 -0.25 45.0 1 
14 ~0.5 0.0 1 
15 1.0 0.0 0 
16 1.0 0.0 1 

Error Conditions 
The graphics system must be initialized, a display must be enabled, and the parameters must be 
within the specified limits or this call will be ignored, an ESCAPE ( - 27) will be generated, and 
GRAPHICSERROR will return a non-zero value. 



IMPORT: seriaL 
iodeclarations 

Procedure Library Summary A-195 

This procedure will set the specified modem line on the connector. Not all lines are available at 
all times. The use of an Option 1 or Option 2 connector determines which lines are accessible. 

Syntax 

Item Description/Default 
Range Recommended 

Restrictions Range 

interface Expression of TYPE type_isc. This is an o thru 31 7 thru 31 
select code INTEGER subrange. 

serial line Expression of enumerated TYPE rts_line 
specifier type_seriaLline. cts_line 

dcd_line 
dsr_line 
drs_line 
rLline 
dtr_line 

TABLE HERE 
Semantics 
The values of the enumerated TYPE type_seriaLline have the following definitions: 

Name RS-232 line 

rts request to send 
cts clear to send 
dcd data carrier detect 
dsr data set ready 
drs data rate select 
dtr data terminal ready 
ri ring indicator 



A-196 Procedure Library Summary 

IMPORT: seriaL3 
iodeclarations 

This procedure will set the number of stop bits on the serial interface. The valid range of values 
includes 1, 1.5, and 2. 

Syntax 

Item 

interface 
select code 

stop bits 

Description/Default 

Expression of TYPE type_isc. This is 
an INTEGER subrange. 

Expression of TYPE REAL. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 

1, 1.5, 2 



IMPORT: dgl_lib 

This procedure specifies the text direction. 

Syntax 

Item 

x-axis offset 

y-axis offset 

Procedure Heading 

Description/Default 

Expression of TYPE REAL 

Expression of TYPE REAL 

PROCEDURE SET_TEXT_ROT ( DXt Dy REAL ); 

Semantics 

Procedure Library Summary A-197 

SET_TEXT_ROT 

Range 
Restrictions 

The x axis offset and the y axis offset specify the world coordinate components of the text 
directio~ vector relative to the world coordinate origin. These components cannot both be zero. 

This procedure specifies the direction in which graphics text characters are output. The default 
value (X-axis offset = 1.0; Y-axis offset = 0.0) for the text direction vector is such that characters 
are drawn in a horizontal direction left to right. The default value is set during GRAPHICS_INIT 
and DISPLAY_INIT. With X-axis offset = - 1.0 and Y-axis offset = 1.0 a 135 degree rotation 
from the horizontal (in a counter clockwise direction) may be obtained. 

Error Conditions 

y 

X RX1S Offset 
1.0 

--~------------------------x 

Text Rotation Angle 

The graphics system must be initialized, a display must be enabled, and the parameters must be 
within the speCified limits or this call will be ignored, an ESCAPE ( - 27) will be generated, and 
GRAPHICS ERROR will return a non-zero value. 



A-198 Procedure Library Summary 

IMPORT: general_l 
iodeclarations 

This procedure will set up a timeout for all I/O Library input and output operations except 
transfer. 

Syntax 

Item 

interface 
select code 

seconds 

Semantics 

Description/Default 

Expression of TYPE type_isc. This is 
an INTEGER subrange. 

Expression of TYPE REAL. 

Zero (0) is no timeout (infinite). 

The resolution is to 1 millisecond. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 

0, .001 thru 
8192.000, 

inc. by .001 

If the select codes do not respond within the specified time an ESCAPE will be performed. 
Refer to the chapter on Errors and Timeouts. 

Caution Use of SET_TIMEOUT on the same interface that is connected to mass 
storage devices (i.e., disc drives) can lead to data corruption unless care is 
used. If SET _TIMEOUT has been used on an interface, you must reset the 
interface with IORESET or IOUNINITIALIZE before performing any mass 
storage operations on that interface. 

I 

Example: 

IOINITIALlZE; { Set all interfaces to known state} 

SET.TlMEOUT(12. 1000); 
TRY 
READCHAR(12. character); 
RECOVER BEGIN 

IF Escapecode • Ioescapecode AND 
Ioe.result • Ioe.timeout AND 
Ioe.isc • 12 

THEN WRlTELN ('TIMEOUT on Interface 12'); 
END; {end of RECOVER } 

IOUNINITIALIZE; { Set all interfaces to known state } 



IMPORT: dgLlib 

This procedure selects the timing mode for graphics output. 

Syntax 

Item Description/Default 

timing mode selector Expression of TYPE INTEGER 

Procedure Heading 
PROCEDURE SET_TIMING ( Opcode INTEGER ); 

Semantics 
The timing mode selector determines the timing mode used. 

Value 

o 
1 

Meaning 

Immediate visibility mode 

System buffering mode 

Procedure Library Summary A-199 

Range 
Restrictions 

Oar 1 

Graphics library timing modes are provided to control graphics throughput and picture update 
timing. Picture update timing refers to the immediacy of visual changes to the graphics display 
surface. Regardless of the timing mode used, the same final picture is sent to the graphics display. 
SET_TIMING only controls when a picture appears on the graphics display, not what appears. 

The graphics system supports two timing modes: 

• Immediate visibility Requested picture changes will be sent to the graphics display device 
before control is returned to the calling program. Due to operating system delays there may 
be a delay before the picture changes are visible on the graphics display device . 

• System buffering Requested picture changes will be buffered by the graphics system. This 
means that the graphics output will not be immediately sent to the display device. This allows 
the graphics library to send several graphics commands to the graphics display device in one 
data transfer, therefore, reducing the number of transfers. System buffering is the initial 
timing mode. 

The following routines implicitly make the picture current: 

AWAIT_LOCATOR 
LOCATOR_IN IT 

DISPLAY_TERM 
SAMPLE_LOCATOR 

INPUT_ESC 



A-200 Procedure Library Summary 

The immediate visibility mode is less efficient than the system buffering mode. It should only be 
used in those applications that require picture changes to take place as soon as they are defined, 
even if the finished picture takes longer to create. When changing the timing mode to immediate 
visibility the picture is made current. 

An alternative to immediate visibility that will solve many application needs is the use of system 
buffering together with the MAKE_PIC_CURRENT procedure. With this method, an application 
program places graphics commands into the output buffer and flushes the buffer (see MAKE_ 
PIC_CURRENT) only at times when the picture must be fully displayed. 

A call to MAKE_PIC_CURRENT can be made at any time within an application program to insure 
that the image is fully defined. MAKE_PIC_CURRENT flushes the output buffer but does not 
modify the timing mode. 

Before performing any non-graphics system input or output (to a graphics system device) such 
as a Pascal read or write, the output buffer must be empty. If the buffer is not flushed (via 
immediate visibility of MAKEPIC .. CURRENT) prior to non-graphics system I/O, the resulting 
image may contain some 'garbage' such as escape functions or invalid graphics data. 

Note 
Although SET_TIMING can be used with all display devices, only 
HPGL plotters buffer commands. 

Error Conditions 
The graphics system must be initialized and all parameters must be in range or this call will be 
ignored, an ESCAPE ( - 27) will be generated, and GRAPHICSERROR will return a non-zero 
value. 



IMPORT: hpib_l 
iodeclarations 

Note 

Procedure Library Summary A-201 

This function is provided for use by the internal 110 Procedure lib­
rary drivers, only. Unexpected and possible undesirable results may 
occur if it is used. 



A-202 Procedure Library Summary 

Note 

IMPORT: hpib_l 
iodeclarations 

This function is provided for use by the internal 110 Procedure Lib­
rary drivers, only. Unexpected and possible undesirable results may 
occur if it is used. 



Procedure Library Summary A-203 

IMPORT: dgLlib 

This procedure sets the boundaries of the viewport in the virtual coordinate system. 

Syntax 

SET _VIEWPORT 

Item Description/Default 

minimum x value Expression of TYPE REAL 

maximum x value Expression of TYPE REAL 

minimum y value Expression of TYPE REAL 

maximum y value Expression of TYPE REAL 

Procedure Heading 
PROCEDURE SET_VIEWPORT VXfTI i 1"1 t l.JXfTlax t 

lh' fTIi 1"1 t lh' fTI a x 

Semantics 

Range 
Restrictions 

0.0-1.0 

0.0-1.0 

0.0-1.0 

0.0-1.0 

REAL ); 

The minimum x value is the minimum boundary in the X-direction expressed in virtual coordin­
ates. 

The maximum x value is the maximum boundary in the X-direction expressed in virtual 
coordinates. 

The minimum y value is the minimum boundary in the Y -direction expressed in virtual coordin­
ates. 

The maximum y value is the maximum boundary in the Y -direction expressed in virtual 
coordinates. 

SET_VIEWPORT sets the limits of the viewport in the virtual coordinate system. The viewport 
must, be within the limits of the virtual coordinate system; otherwise the call will be ignored. 

The initial viewport is set up with the minimum x and y values set to 0.0 and the maximum X and 
Y values set to 1.0. 



A-204 Procedure Library Summary 

The initial viewport is set by GRAPHICS_INIT and SET ~SPECT. This initial viewport is 
mapped onto the maximum visible square within the logical display limits. This area is called the 
view surface. The placement of the view surface within the logical display limits is dependent 
upon the device being used. It is generally centered on CRT displays and is placed in the lower 
left-hand corner of plotters. 

By changing the limits of the viewport, an application program. can display an image in several 
different positions on the same graphi~s display device. A program can make a call to SET_ 
VIEWPORT 'anytime while the graphics system is initialized. 

The starting position is not altered by this call. Since this call redefines the viewing transformation, 
the starting position may no longer represent a known world coordinate position. A call to MOVE 
or INT _MOVE should be made after this call to update the starting position. 

Error Conditions 
The graphics system must be initialized, all parameters must be within the specified range, the 
minimum X value must be less than the maximum X value and the minimum Y value must be less 
than the maximum Y value and all parameters must be within the current virtual coordinate 
system boundary, or this call will be ignored, an ESCAPE (- 27) will be generated, and 
GRAPHICSERROR will return a non-zero value .. 



IMPORT: dgLlib 

This procedure defines the boundaries of the window. 

Syntax 

SETj4INDOW 

Item Description/Default 

left Expression of TYPE REAL 

right Expression of TYPE REAL 

bottom Expression of TYPE REAL 

top Expression of TYPE REAL 

Procedure Heading 
PROCEDURE SET_WINDOW WXlrli n t WXlrlax t 

WYMint WYMaX : REAL); 

Semantics 

Procedure Library Summary A-205 

Range 
Restrictions 

See below 

See below 

See below 

See below 

The left is the minimum boundary in the X-direction expressed in world coordinates. (i. e., the left 
window border). Must not equal maximum x value. 

The right is the maximum boundary in the X-direction expressed in world coordinates. (i.e. the 
right window border). Must not equal minimum x value. 

The bottom is the minimum boundary in the Y -direction expressed in world coordinates. (i. e. the 
bottom window border). Must not equal maximum y value. 

The top is the maximum boundary in the Y -direction expressed in world coordinates. (i. e. the top 
window border). Must not equal minimum y value. 

SET_WINDOW defines the limits of the window. All positional information sent to and received 
from the graphics system is specified in world coordinate units. This allows the application 
program to specify coordinates in units related to the application. 

If the top value is less than the bottom value, the Y-axis will be inverted. If the right value is less 
than the left boundary, the X-axis will be inverted. 



A-206 Procedure Library Summary 

The window is linearly mapped onto the viewport specified by SET_VIEWPORT. This is done by 
mapping the left boundary to the minimum X-viewport boundary, the right boundary to the 
maximum X-viewport boundary, the bottom boundary to the minimum V-viewport boundary, 
and the top boundary to the maximum Y -viewport boundary. If distortion of the graphics image is 
not desired, the aspect ratio of the window boundaries should be equal to the aspect ratio of the 
viewport. 

The default window limits range from -1.0 to 1.0 on both the X and Y axis. GRAPHICS_INIT is 
the only procedure which sets the window to its default limits. 

The starting position is not altered by this call. Since this call redefines the viewing transformation, 
the starting position may no longer represent a known world coordinate position. A call to MOVE 
or INT _MOVE should therefore be made after this call to update the starting position. 

SET_WINDOW can be called at anytime while the graphics system is initialized. 

Error Conditions 
The graphics system must be initialized, the minimum value for either axis must not equal the 
maximum value for that axis or this call will be ignored, an ESCAPE ( - 27) will be generated, and 
GRAPHICSERROR will return a non-zero value. 



IMPORT: generaL2 
iodeclarations 

Procedure Library Summary A-207 

SKIPFOR 

This procedure will read the specified number of characters from the selected device. The 
characters will be thrown away. 

Syntax 

Item Description/Default 
Range Recommended 

Restrictions Range 

character Expression of TYPE INTEGER. MININT thru 
count MAXINT 

device selector Expression of TYPE type_device. This is o thru 3199 See glossary. 
an INTEGER subrange. 



A-208 Procedure Library Summary 

SPOll 
IMPORT: hpib_3 

iodeclarations 

This INTEGER function will perform a serial poll to the selected device. The serial poll byte is 
returned by the function. 

Syntax 

Item 

device selector 

Semantics 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

Range 
Restrictions 

o thru 3199 

Recommended 
Range 

See glossary. 

The interface must be active controller and the device selector must be a device address (Le. 
701, not 7). The bus sequence will look like: 

System Controller Not System Controller 

Interface Select Primary Addressing Interface Select Primary Addressing 
Code Only Specified Code Only Specified 

ATN ATN 
UNL UNL 
MLA MLA 
TAO TAO 

Active 
Error 

SPE 
Error SPE 

Controller ATN ATN 
Read data Read data 

ATN ATN 
SPO SPO 
UNT UNT 

Not Active 
Error 

Controller 



IMPORT: SYS_BOOT 

This INTEGER function will cause a system reboot or boot. 

Item Description/Default 

name An ASCII string of type STRING12. 

Procedure Library Summary A-20B.l 

SYSBOOT 

Range Recommended 
Restrictions Range 

1 to 10 ASCII 
characters 

msus An ASCII string of type STRING 12 that con- See semantics 
sist of a: device IO, unit number, select code, 
and bus address or alternately a Pascal Work-
station unit number. 

lanid An ASCII string of type STRING12. See semantics -

Semantics 
The boot ROM requires at least two pieces of information to identify a system: 

name is the system file name. 

msus is the mass storage unit specifier. 

When the system file is located across a LAN, a 12 hex digit station id (Ianid) is also required. 

After booting, the boot ROM leaves this information for the current system in high memory. 
The boot/reboot operation is accomplished by changing this information then jumping to a 
special address in the boot ROM. 

When the SYSBOOT function is called, it checks the validity of its parameters before altering any 
information left by the boot ROM. The SYSBOOT function can only check that the parameters 
look correct and have no obvious errors. If SYSBOOT rejects a parameter, it returns with a 
value that indicates the problem parameter. Otherwise, SYSBOOT will never return. 



A-20S.2 Procedure Library Summary 

If the SYSBOOT function accepts the parameters, it is not guaranteed that the system requested 
will actually boot. If the boot ROM cannot boot from the given parameters, it stops. To recover, 
press the (Reset) key which will cause the boot ROM to restart and boot as if power had just 
been cycled. 

If a SYSBOOT parameter is an empty string (has a length of zero), then the value for that 
parameter left by the ROM at the original boot time will be used. A call to reboot the current 
system would be coded as: 

Note 

If the current system was booted from a ROM or EPROM, the above 
convention will not work because the boot ROM will set the MSUS value 
in high memory to a physical mass storage device rather than the ROM 
or EPROM value. The name value, however, will be left as the ROM or 
EPROM name. (Setting the msus value to $ E ~J ~=H=H=i;:) CHJ will force a ROM 
boot and $ 1. 4 Cil ;J Cn::i ~=i will force an EPROM boot. The MSUS is completely 
defined below.} 

Parameter Definition for name 
The name parameter is one to ten ASCII characters long and should contain the name of a 
boot file (boot file names seen by the ROM at power up can be displayed by pressing any key 
after the ROM has seen the keyboard). 

If the first, and perhaps only, character in the name is a NUL (coded #O) then the boot ROM will 
ignore the other values and operate as it does when performing a power on unattended boot 
(this has the same effect as the using the sb command with no parameters in the DEBUGGER). 
For example: 

.:::,,::::.:::.::: :''': '1' ( :!± 

If the name is an empty string, then the boot file name used in the last boot will be re-used. 

For a ROM or EPROM system, the name must be a single character. 



Procedure Library Summary A-20~.3 

Parameter Definition for msus 
The msus is an acronym for Mass Storage Unit Specifier, although current systems can also 
boot from devices such as ROM· or Local Area Networks (LAN) which are not thought of as 
mass storage devices. 

The msus string may be one of three forms: 

• An empty string, if so, the msus used in the last boot will be used. 

• A file system unit number. Code the unit number as you would anywhere else in the 
Pascal Workstation system. For example, if you want to boot from the disc which is unit 
number 11, code the msus string as .. ' # 11'" (do not include a trailing colon). Only unit 
numbers are allowed: a volume name would be an error. 

• An 8 hex-digit number (32 bits) which wHi replace the boot ROM supplied 32 bit msus. 
This msus contains four fields of 2 hex digits (8 bits) each. If the "MSUS" parameter were 
coded .. ' $110(107~30"', it would mean: 

Device ID Unit Number Select Code Bus Address 
$11 (CS80 device) $00 (Volume 0, Unit 0) $i37 $tH~l 



A-20B.4 Procedure Library Summary 

The following table provides the values for the device id of your msus. Note that the device id 
is the first number of your msus. 

Note 

The presence of a device type in the following list does not imply Pascal 
Workstation support for the device, nor does it imply the support of all 
boot ROM revisions for the device. 

id Device 
$ ~3 ~~i Series 200 internal 5.25in mini-floppy 

Hi4 HP 9895 8in floppy or HP 913x 5.25in micro-winchester (HP-IB) 

$05 HP 82900 series 5.25in mini-floppy (HP-IB) 

$06 HP 9885 8in floppy (GPIO) 

Hi? HP 913xA 5 megabyte 5.25in micro-winchester (HP-IB) 
$~3::: HP 913xB 10 megabyte 5.25in micro-winchester (HP-IB) 
$ri9 HP 913xC 15 megabyte 5.25in micro-winchester (HP-IB) 
$(1A HP 7905 hard disc (HP-IB) 
$(1E! HP 7906 hard disc (HP-IB) 
$~~1C HP 7920 hard disc (HP-IB) 

$0D HP 7925 hard disc (HP-IB) 
$~~1E SCSI Direct Access Devices 
$H1 CS/80 and SS/80 devices with 256-byte blocks (HPIB) 
$11 All other C5/80 and 55/80 devices (HP-IB) 

$14 EPROM card (HP 98255) 

$16 BUBBLES (HP 98259) 
,$E~) ROM (no other msus fields apply) 

$El SRM 

$E2 LAN (only the msus select code field applies) 



Procedure Library Summary A-20B.5 

The second number of your msus is the unit number. This number is dependent on the value 
in the device id field. 

f'or A Device ID of Unit Number 

$~JO 0~~j is the right-hand drive, and 01 is the left-hand drive. 

$10 and.$ i i First digit of unit number is a volume number and the second digit is 
the unit number. 

$14 This field indicates the device's position relative to other EPROM 
devices. For instance, ~31 is the lowest EPROM device, 02 is the second 
lowest EPROM device, etc. 

$E~~i, $E2, arid $16 No unit number exists, therefore this number is treated as a don't care. 

All Other device ids Are encoded with the unit number associated with the physical device. 

The third number of the msus is the select code associated with the physical device. Note that 
msus values with device ids of $~~H), $E~~i, and $14 do not use a select code (code as ~)0). The 
internal HP-IB is coded as $ ~3 7 . 

The final number of the msus is the bus address. This field contains the bus address associated 
with the physical device for device id's $E1, $07, or $OE. 

Parameter· Definition for lanid 
A lanid is required only when the device id in the msus indicates a LAN ($E2). It contains a 12 
digit HEX string that identifies the target boot system across the LAN. 

Error Reporting 
Error reporting is done via the function value. 

Function Value Description 

1 name argument is too long 

2 Error in the msus argument: 

• first character not # or $ 
• inva"lid number/digit 
• file system unit specified is not associated with a device 

or the device cannot be used to boot from (fo! instance, 
it is a printer or a CRT). 

• msus argument is the wrong size 

3 Error in the lanid argument 

• incorrect number of digits 
• some digit is not hex 
• it is a BROADCAST or MULTICAST 10 



A-20B.6 Procedure Library Summary 



Procedure Library Summary A-209 

SYSTEMLCONTROLLER 
IMPORT: hpib_l 

iodeclarations 

This BOOLEAN function returns TRUE if the specified interface is the system controller. 

Syntax 

SYSTEM_CONTROLLER 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is 
an INTEGER subrange. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 



A-210 Procedure Library Summary 

TALK 
IMPORT: hpib_2 

iodeclarations 

This procedure will send a talk address over the bus. The interface must be active controller. 

Syntax 

Item 

interface 
select code 

device address 

Description/Default 

Expression of TYPE type_isc. This is 
an INTEGER subrange. 

Expression of TYPE type_hpib_address. 
This is an INTEGER subrange. 

Range 
Restrictions 

o thru 31 

o thru 3 

Recommended 
Range 

7 thru 31 

Interface 
dependent 



IMPORT: hpib_3 
iodeclarations 

Procedure Library Summary A-211 

TALKER 

This BOOLEAN function will return TRUE if the specified interface is currently addressed as a 
talker. 

Syntax 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is 
an INTEGER subrange. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 



A-212 Procedure Library Summary 

TRANSFER 
IMPORT: generaL4 

iodeclarations 

This procedure will transfer the specified number of bytes to or from the buffer space using the 
specified transfer type. 

Syntax 

Item Description/Default 
Range Recommended 

Restrictions Range 

device selector Expression of TYPE type_device. This is o thru 3199 See glossary 
an INTEGER subrange. 

transfer type Expression of the enumerated TYPE seriaLdma 
user _tfr _type. seriaLfhs 

seriaLfastest 
overlap_intr 
overlap_dma 
overlap_fhs 
overla p_fastest 
overlap 

direction Expression of the enumerated TYPE to_memory 
diLoLtfr. from_memory 

buffer name Variable of TYPE buLinfo_type. See glossary 

character Expression of TYPE INTEGER. MININT thru 
count MAXINT 



IMPORT: general_4 
iodeclarations 

This procedure will transfer data to or from the buffer. 

Syntax 

Item 

device selector 

transfer type 

direction 

buffer name 

Semantics 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

Expression of the enumerated TYPE 
user _tfr _type. 

Expression of the enumerated TYPE 
dir_oLtfr. 

Variable of TYPE buLinfo_type. 

Procedure Library Summary A-213 

TRANSFEILEND 

Range 
Restrictions 

o thru 3199 

seriaLdma 
seriaLfhs 
seriaLfastest 
overlap_intr 
overlap_dma 
overlap_fhs 
overlap_fastest 
overlap 

to_memory 
from_memory 

See glossary 

Recommended 
Range 

See glossary 

If the transfer is into the computer then the transfer will terminate when an END condition ( like 
EOI ) comes true or the buffer is filled. If The transfer is out of the computer then the transfer 
will send all of the available data with the END condition sent with the last byte. 



A-214 Procedure Library Summary 

TRANSFE~SETUP 

Note 

IMPORT: generaL4 
iodeclarations 

This function is provided for use by the internal 110 Procedure Lib­
rary drivers, only. Unexpected and possible undesirable results may 
occur if it is used. 



IMPORT: generaL4 
iodeclarations 

Procedure Library Summary A-215 

TRANSFE~UNTIL 

This procedure will transfer bytes into the buffer until the buffer is full or the termination 
character was received. ( The DMA transfer type is not allowed ). 

Syntax 

TRANSFER_UNTIL 

Item Description/Default 
Range Recommended 

Restrictions Range 

terminating Expression of TYPE CHAR. 
character 

device selector Expression of TYPE type_device. This is a thru 3199 See glossary 
an INTEGER subrange. 

transfer type Expression of the enumerated TYPE seriaLdma 
user_tEr_type. seriaLfhs 

seriaLfastest 
overlap_intr 
overlap_dma 
overlap_fhs 
overlap_fastest 
overlap 

direction Expression of the enumerated TYPE to_memory 
dir_oLtEr. from_memory 

buffer name Variable of TYPE buLinfo_type. See glossary 



A-216 Procedure Library Summary 

TRANSFEILWORD 
IMPORT: general_4 

iodeclarations 

This procedure will transfer the specified number of words into the buffer. This transfer will 
only work with 16-bit interfaces. 

Syntax 

TRANSFER-WORD 

Item Description/Default 
Range Recommended 

Restrictions Range 

device selector Expression of TYPE type_device. This is o thru 3199 See glossary 
an INTEGER subrange. 

transfer type Expression of the enumerated TYPE seriaLdma 
usectfr_type. seriaLfhs 

seriaLfastest 
overlap_intr 
overlap_dma 
overlap_fhs 
overlap_fastest 
overlap 

direction Expression of the enumerated TYPE to_memory 
dir_oLtfr. from_memory 

buffer name Variable of TYPE buLinfo_type. See glossary 

word count Expression of TYPE INTEGER. MININT thru 
MAXINT 



IMPORT: hpib_2 
iodeclarations 

Procedure Library Summary A-217 

TRIGGER 

This procedure sends a trigger command to the specified device(s). 

Syntax 

Item 

device selector 

Semantics 

Active 
Controller 

Not Active 
Controller 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

System Controller 

Interface Select Primary Addressing 
Code Only Specified 

ATN 
ATN UNL 
GET LAG 

GET 

Error 

Range 
Restrictions 

a thru 3199 

Recommended 
Range 

See glossary 

Not System Controller 

Interface Select Primary Addressing 
Code Only Specified 

ATN 

ATN MTA 

GET UNL 
LAG 
GET 



A-218 Procedure Library Summary 

UNLISTEN 
IMPORT: hpib_2 

iodeclarations 

This procedure will send an unlisten command on the bus. The interface must be active 
controller. 

Syntax 

--f. ~( interface ~) 
",UNLISTEN~ select code ~ 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is 
an INTEGER subrange. 

Range 
Restrictions 

a thru 31 

Recommended 
Range 

7 thru 31 



IMPORT: hpib_2 
iodeclarations 

Procedure Library Summary A-218.01 

UNTALK 

This procedure will send an untalk command on the bus. The interface must be active con­
troller. 

Syntax 

Item 

interface 
select code 

Description/Default 

Expression of TYPE type_isc. This is 
an INTEGER subrange. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7thru 31 



A-218.02 Procedure Library Summary 

VME_BLOCKREAD 
IMPORT: vme_driver 

iodeclarations 

This procedure reads a sequence of bytes or words (transfer _rilode) from the given VME address 
(sour ce and .=:iddr _filod) into the address pointed at by da t.:i. 

Syntax 

VME_ BLOCKREAO 

Item 

sc 

data 

numofbytes 

transfer _mode 

addr_mod 

source 

Description 

Expression of type T \' P E _ I ~:; C 

Variable of type A tf"i' P T F.: 

Expression of type I t-l T E G E F.: 

Expression of .type t'l,:, d e _ t I~ P e 

Expression of type Addr _m,:,d_ t I~pe 

Expression of type VME_Addr 

Procedure Heading 
PROCEDURE VME_BLOCKREAD( sc 

I,} A F.: da t·EI 

t"lIJrilO f b'~ t es 
t r ·Elt"lS f er _rIP:,de 
.Elddr _m,)d 

: n"PE_ I SC.: 
: At·~'"('PTF.:.: 
: I tHEGEF.:.: 
: Node _ T'~pe.: 

Range 

8 through 30 

o through 231 -1 

B'~ tel r!l:, ~'~or d Inc, 
B'~ t eF::-::d, or l'~or dF::-::d 

o through 63 

o through 16777215 

: Addr _m':II:L t I~pe.: 
: ',}t'lE_Addr).: 



Procedure Library Summary A-218.03 

Semantics 
The s c (select code) is an even integer between 8 and 30 that is set on the HP 98646A VMEbus 
Interface card. The type TYPEJSC is exported by the module IODECLARATIONS. 

The variable da t·~ can be a pointer to any type except a STRING or FILE. For example, the 
variable da t.:t can be a pointer to an array of CHAR, INTEGER or REAL, or a pointer to a 
record. D.:t t a points to the first location to be filled with information read from the VMEbus. 

Special care should be taken with the parameter m~ m 0 f b 1::1 t e s since the user can easily pass 
over the variable boundaries if the parameter is too large. The safest way to handle this 
is to let the operating system find out the size of d.:t t·:1 for the user by using the compiler 
directive $SYSPROG ON$ and s i zeof function which always returns the size of the variable in 
bytes as required for the nl.~mofb'::l tes parameter. A negative nl.Ht"JI:lftll::ltes parameter results in 
escape(803). 

The transfer _mode expression has four values that can be used for this transfer: B'::Itelnc, 

L·Jordlnc, B'::IteF::-::d, or L·JordF::-::d. l·Jordlnc and HN·dF::·::d are used for word transfers. L·Jordlnc will 
increase the VMEbus address by two bytes after every handshake and L·Jc,r dF::.::d will not increase 
the VMEbus address. 

Escape(805) occurs if the user attempts to transfer an odd number of bytes in the 1.',lor d mode 
(tr,~t"tsfer_mode = L·JordlrJl: or L·JordF::·::d). 

The addr _mcllj expression will have a range from 0 through 63. Verify in the manual for the 
VMEbus device which address modifier you should use to communicate with it. 

The sClw·ce expression represents the VMEbus address (range 0 through 16777215) from which 
the data is read. Any attempt to transfer words (tr.:tnsfer _fI'Iclije = ~41:'rdlnc or ~.k,t"dF::·::d) using 
an odd sOI.~r ce parameter results in escape{-ll) (CPU word access to odd address). 



A-218.04 Procedure Library Summary 

VME_BLOCKWRITE 
IMPORT: vme_driver 

iodeclarations 

This procedure writes a sequence of bytes or words (t r- ans f er- _f!!ode) to the given VME address 
(des t i n·3 t i on and .3ddr _mod) from the address pointed at by da t .=:. 

Syntax 

VME_ BLOCKWRITE 

Item 

sc 

data 

numofbytes 

transfer _mode 

addr_mod 

destination 

Description 

Expression of type TV P E _ I ::; C 

A variable parameter of type A try' P T F.: 

Expression of type IN T E G E F.: 

E~pression of type t'll:, d e _ t 1:;1 P e 

Expression of type Addr _rIIc,d_ t I:::IPI? 

Expression of type VME_Addr 

Procedure Heading 
PROCEDURE VME_BLOCKWRITE( sc 

I.} A F.: d.3 t·3 

.3ddr _r11I:,d 
destirtatiort 

: TYPE_ISC.: 
: At·n··PTR.: 
: ItHEGER; 

Range 

8 through 30 

o through 231 -1 

B':;I tel ne, ~.JI:lr d I rtl:, 
B':::I t eF::-::d, or Weir dF::-::d 

o through 63 

o through 16777215 

: t'l I:"::! e _ T':;Ipe.: 
: Addr _f(IIJd_ t l::Ipe.: 
: Vt'lE_Addr ) ; 



Procedure Library Summary A-218.05 

Semantics 
The sc (select code) is an even integer between 8 and 30 that is set on the HP 98646A VMEbus 
Interface card. The type TYPEJSC is exported by the module IODECLARATIONS. 

The variable d.:J t·:J can be a pointer of any type except STRING or FILE. For example, the 
variable da t.:J can be a pointer to an array of CHAR, INTEGER or REAL, or a pointer to a 
record. CIa t·;:: points to the first byte of information to be written to the VMEbus. 

Special care should be taken with the parameter n WII (I f b i::l t e s since the user can easily pass 
over the variable boundaries if the parameter is too large. The safest way to handle this 
is to let the operating system find out the size of d.~ t·:J for the user by using the compiler 
directive $SYSPROG ON$ and sizeof function which always returns the size of the variable in 
bytes as required for the ntu!lofb'::ltes parameter. A negative nWIIOfb'::ltes parameter results in 
escape(803). 

The tr.~nsfer _fllc,de expression has four values that can be used for this transfer: B'::Itelnc, 

~·Jor d Inc, t:1::I t eF::-::d, or ~·l':'r dF::-::d. ~·Jor'~ I nc and ~·Jor dF::·::d are used for word transfers. ~·Jor d I nc will 
increase the VMEbus address by two bytes after every handshake and ~.J 0 r d F;.:: d will not increase 
the VMEbus address. 

Escape(805) occurs if the user attempts to transfer an odd number of bytes in the 1 .. .Ior d mode 
(tr.:;.nsfE:·r _mode = l·Jordln,: or l'Jc,rdF::-::d). 

The .:Jddr _ml:"j expression will have a range from 0 through 63. Verify in the manual for the 
YMEbus device which address modifier you should use to communicate with it. 

The des tin.:;. t i ,:,n expression represents the VMEbus address (range 0 through 16777215) to 
which the data is written. Any attempt to transfer words (t r ansf er _mode = l·Jor d I tK or l·Jor dF::·::d) 

using an odd destin.:.t ion parameter results in escape(-11) (CPU word access to odd address). 



A-218.06 Procedure Library Summary 

IMPORT: vme_driver 
iodeclarations 

Disables the VMEbus Interface Card from accepting interrupts from VME devices. 

Syntax 

Item Description Range 

sc Expression of type T 'r' P E _ I S C 8 through 30 

Procedure Heading 
PROCEDURE VME_DISABLE_INTR( sc :TYPE ISC); 

Semantics 
The s c (select code) is an even integer between 8 and 30 that is set on the HP 98646A VMEbus 

. Interface card. The type TYPEJSC is exported by the module IODECLARATIONS. 



Procedure Library Summary A-218.07 

IMPORT: vme_driver 
iodeclarations 

This procedure enables the HP 98646A VMEbus Interface Card at select code sc (select code) 
to accept interrupts from VME devices. When an interrupt occurs, the user supplied procedure 
is called and it executes at the interrupt level set on the HP 98646A VMEbus Interface card 
card. 

Syntax 

~E_ENA8LE_INT userproc ~ 

Item 

sc 

userproc 

Description 

Expression of type T'l P E _ I S C 

Variable of type User _pr oc 

Procedure Heading 
PROCEDURE VME_ENA8LE_INTR( sc 

Semantics 

: TYPE_ I SC.: 
: User _Pr oc) .: 

Range 

8 through 30 

The sc (select code) is an even integer between 8 and 30 that is set on the HP 98646A V~· 
Interface card. The type TYPEJSC is exported by the module IODECLARATIONS. 

The expression User Pr 0': is the user written procedure to be called when an interrupt occurs. 
The User _Pr oc is defined as: 

::; t·:l t ,-~s_ I d is an integer parameter containing the status word of the interrupting device. 
In t 1 e .... ·e 1 is also an integer containing the Interrupt Level used by the interrupting device. 
Both parameters are passed by the VMELIBRARY to the user's procedure (1.4Serpr"c,c) to allow 
user access. 



A-218.0B Procedure library Summary 

IMPORT: vme_driver 
iodeclarations 

This procedure initializes the VMEbus Interface. It must be called before any other VME 
procedures are used. VMEJNIT calls VME_RESET. 

Syntax 

Item Description Range 

sc Expression of type TYPE_ISC 8 through 30 

Procedure Heading 
PROCEDURE VME_INIT( sc :TYPE ISC); 

Semantics 
The $1: (select code) is an even integer between 8 and 30 that is set on the HP 98646A VMEbus 
Interface card. The type TYPEJSC is exported by the module IODECLARATIONS. 

The HP VMEbus Interface card must be initialized before any communications between the 
Series 200/300 computer and the VMEbus can occur. 



Procedure Library Summary A-218.09 

IMPORT: vme_driver 
iodeclarations 

This procedure reads one byte or one word (tr.~nsfer _mode) from the given VME address (sOi.lrCe 

and addr _mod) into the variable parameter da t a, which is of type Shor t _ i n t. 

Syntax 

Item 

sc 

data 

transfer _mode 

addr_mod 

source 

Description 

Expression of type TYPE_ISC 

Variable parameter of type S h 0 r t _ I n t 

Expression of type t'l 0 d e _ T I:J P e 

Expression of type Rddr _filod_ t l:Jpe 

Expression of type i.} t'1 E _ R d d r 

Procedure Heading 
PROCEDURE VME_RERD( se 

Semantics 

i.} R F.: d.~ t.~ 

t r ·~ns f er _mode 
.~ddr _fflod 
sow' ee 

: T'y'PE_ I SC.: 
:Short_Int.: 
: t'1ode _ T':Jpe.: 
: Rddr _fliCI(C t l:Jpe r 
: '.}t·lE_Rddr) .: 

Range 

8 through 30 

-32768 through 32767 

B':J tel nc,l·~or d I tK, 

B':J t eF::-::d, or ~'~or dF::-::d 

o through 63 

o through 16777215 

The S e (select code) is an even integer between 8 and 30 that is set on the HP 98646A VMEbus 
Interface card. The type TYPEJSC is exported by the module IODECLARATIONS. 

After VME_READ returns, the variable d.~ t a will contain the value read from the VMEbus. 

The t ran S fer _ m CI d e expression is of type t'l 0 d e _ t '::I P e. The values B I:J tel n e, ~·l 0 r dIn e, B!:J t e F ::-:: d, 

and J·lor dF::·::d are allowed. If t r .:ins f I?r _mode is B':J tel ne, or B':J t eF::·::d, a byte (8 bits) is transferred, 
and if t r ansf er _mode is ~·Jor dIne or ~·Jor dF::·::d a word (16 bits) transfer takes place. 

When using a byte transfer mode (B'P e I tK or B':J t e F::·:: d), only integers between 0 and 255 can 
be read. When using a word transfer mode (~'k'r dIne or ~·Jor dF::.::d), integers between -32768 
and +32767 can be read. 

The addr _mod expression has a range from 0 through 63. Verify in the manual for the VMEbus 
device which address modifier you should use to communicate with it. 

The SCliJrce expression represents the VMEbus address (range 0 through 16777215) from 
which the byte or word is read. Any attempt to read a word using an odd address will result 
in escape(-11) (CPU word access to odd address). 



A-21B.I0 Procedure Library Summary 

IMPORT: vme_driver 
iodeclarations 

This procedure resets the HP 98646A VMEbus Interface card by disabling interrupts, resetting 
the lACK signal, and releasing the bus. 

Syntax 

Item Description Range 

sc Expression of type TYPE_ISC 8 through 30 

Procedure Heading 
PROCEDURE VME_RESET( sc TYPE_ISC); 

Semantics 
The sc (select code) is an even integer between 8 and 30 that is set on the HP 98646A VMEbus 
Interface card. The type TYPEJSC is exported by the module IODECLARATIONS. 

The following actions take place during an execution of VME_RESET: 

• Interrupts are disabled 

• lACK· is reset 

• BRx· is reset 

• BBSY· is reset. 



Procedure Library Summary A-21S.11 

IMPORT: vme_driver 
iodeclara tions 

This procedure reads a sequence (nwfllJf ,:h.:H-) of bytes from the given VME address (:::clur ce and 
addr _mod) into the variable parameter .:;J.:it.:t which is of type STRING. 

Syntax 

Item 

sc 

data 

numofchar 

transfer _mode 

Description 

Expression of type T Y P E _ I S C 

Variable of type ST~: I NG 

Expression of type S h 0 r t _ I n t 

Expression of type t'll) d e _ t I:J P e 

Range 

8 through 30 

::;T~: I HGC 1 ] through 
STF.: I t·iGC 255]' 

-32768 through 32767 

By tel nc, l·Jor d I riC, 
B':J t eFxd, or l·klr dF>::d 

addr_mod 

source 

Expression of type Addr _rflod_ t I~pe 

Expression of type I.} t1 E _ Add r 

o through 63 

o through 16777215 

Procedure Heading 
PROCEDURE VME_STRREAD( sc 

I,} A F.: da t a 
rtlJrfI(1 f ,:h.:tr 
t r ansf er _rfllJde 
.:tddr _mod 
sow- ce 

: T'lPE_ISC.: 
: ST~:HjG.: 
: Sh(,t" t_Int.: 
: t'1clde _ T':Jpe.: 
: Addr _rflocL t l:Jpe.: 
: '}j'lE_Aeldr ) .: 



A-218.12 Procedure Library Summary 

Semantics 
The 5>: (select code) is an even integer between 8 and 30 that is set on the HP 98646A VMEbus 
Interface card. The type TYPEJSC is exported by the module IODECLARATIONS. 

The da t a parameter is a variable of type STF.: I t·iG[ 1 J through STF.: I t·lG[ 255 J. The information read 
from the VMEbus is stored in da t .:=!. After VME_STRREAD returns, the length of da t a will be 
set to the number of bytes read. 

The n!.jfflofch.:H- expression indicates the number oLcharacters to be read. If the value is negative 
or greater than the number of characters the variable da t a can store, then escape(803} occurs. 

Due to the nature of a string, only byte-mode transfer is possible. 

The VME_STRREAD operation is terminated when the counter numofchar is exhausted. 

The t r .~n5f €or _mode expression uses only BI~ t €' I nc or BI~ t eF::·::d. ~,Jor dIne and ~'Jor dF::-::d are not 
used;' however, if they are used they will not generate an error message. The VMELIBRARY 
will convert ~'Jor d I tK to BI~ tel nc and ~'Jor dF::·::d to BI~ t eF::-::d. 

BI~ tel nc increments the VMEbus address after every byte transfer (handshake) by one (also 
~,Jor d I nc after it is converted to BI~ tel nc) but BI~ t eF::·::d (also ~'Jor dF::·::d after it is converted to 
BI~ t eF::.::d) will not increment the VMEbus address after every byte transfer. 

The .~ddr _flll:llj expression will have a range from 0 through 63. Verify in the manual for I 

VMEbus device which address modifier you should use to communicate with it. 

The 50W-C€' expression represents the VMEbus address (range 0 through 16777215) from whic .. 
the string is read. 



Procedure Library Summary A-218.13 

IMPORT: vme_driver 
iodeclarations 

This procedure writes a sequence of bytes (d.~ 't .~) to the given VME address (des't ina t i on and 
addr _mod). 

Syntax 

VME_STRWRITE 

Item 

sc 

data 

transfer _mode 

addr_mod 

destination 

Description 

Expression of type T \' P E _ I S C 

Variable of type S T F.: I t·~ G 

Expression of type t'l 0 d e _ t I~ P e 

Expression of type Addr _rilc,d_ 't I~pe 

Expression of type VME_Addr 

Procedure Heading 
PROCEDURE VME STRWRITE( sc 

!,}AR d.~ 't.:;i 

addr _f!l!:.d 
des'tina'tion 

Semantics 

: T'r'PE_ I SC.: 
: STRHlG.: 
: i'lode _ T';:Ipe.: 

Range 

8 through 30 

STF.: I NG[ 1 ] through 
STF.: I t·iG[ 255 ] 

B';:I 't e I nc, ~'~or·d Inc, 
B';:I 't eF::-::d, or ~,Jor dF::-::d 

o through 63 

o through 16777215 

: Addr _rilod_ 't ';:IF'e.: 
: !,}t'lE_Addr ).: 

The sc (select code) is an even integer between 8 and 30 that is set on the HP 98646A VMEbus 
Interface card.· The type TYPEJSC is exported by the module IODECLARATIONS. 

The d.~ t·:;i parameter is a variable of type STF.: I t·iG[ 1 ] through STF.: I t·iG[ 255 J. The contents of d.~ t·~ 
is written to the VMEbus. 

The tr .~r!sf er _mode expression uses only B';:I1: e I nc or B';:I 't eF::·::d. ~'Jor d I nc and ~kir dF::-::d are not used; 
however, they will not generate an error escape. The VMELIBRARY will convert ~'J')rdlnc to 
B';:I tel nc and ~'Jc'r dF::<d to B':;I 't eF::<d. 

BI:;I tel nc increments the VMEbus address after every byte transfer (handshake) by one byte 
(also ~.Jor d I tK after it is converted to BI;:I1: e I nc) but E;';:It eF::·::d (a]so ~,Jor dF::·::d after it is converted 
to BI;:I t eF::·::d) will not increment the VMEbus address after every byte transfer. The expression 
t r ·~ns f er _rilCII]e should be BI;:I t eF::·::d if the destination address is constant (e.g., a printer), and 
B'::I1: e I rIC if the address changes (e.g., RAM). 



A-218.14 Procedure Library Summary 

The ':Jddr _mod expression will have a range from 0 through 63. Verify in the manual for the 
VMEbus device which address modifier you should use to communicate with it. 

The des t i n':J t i on expression represents the VMEbus address (range 0 through 16777215) to 
which the string is written. 



Procedure Library Summary A-218.15 

VME_WRITE 
IMPORT: vme_driver 

iodeclarations 

This procedure writes one byte or one word (tr.:lnSfer_fllode) to the given VME address 
(des t i t"!a t i on and .~ddr _mod) from the parameter d.~ t .~, which is of type Shor t _ I n t. 

Syntax 

Item 

sc 

data 

transfer _mode 

addr_mod 

destination 

Description 

Expression of type T 'y' P E _ I S C 

Expression of type S h 0 r t _ I n t 

Expression of type t'1 0 d e _ T ':;.l p e 

Expression of type Rddr _mod_ t ':;.lpe 

Expression of type I,} t'l E _ R d d r 

Procedure Heading 
PROCEDURE VME_WRITE( 

d .. ~ t a 

.:tddr _mod 
destin.;tion 

Semantics 

: T'y'PE I SC.: 
: Sf-il:n- t _ In t .: 
: i'lode _ hiPe.: 

: i}t'1E_Rddr).: 

Range 

8 through 30 

-32768 through 32767 

B':;.l tel nc, ~'lot- d Inc, 
B':;.l1: eF::-::d, or ~l('r dF::-::d 

o through 63 

o through 16777215 

The sc (select code) is an even integer between 8 and 30 that is set on the HP 98646A VMEbus 
Interface card. The type TYPEJSC is exported by the module IODECLARATIONS. 

The d.:l t·:l expression contains the value to be written to the VMEbus. 

The t r .:lnsf er _mode expression is of type t'lode _1: ':;.lpe. The values B':;.l1: e I nc, ~,ior d Inc, B':;I1: eF::·::d, 

and ~'lordF::·::d are allowed. If transfer _mode is B'::!1:elnc, or B':;IteF::.::d, a byte (8 bits) is transferred, 
and if tr·; nsf e r _ mod e is f'~,:, r dIn c or ~,lo r d F ::.:: d a word (16 bits) transfer takes place. 

If ',}f'IE_~,jF.:ITE is used with a byte transfer mode (B':;I1:elnc or B':.4teF::.::d), only the least significant 
byte of da t·:l is transferred. 

The addr _mod expression has a range from 0 through 63. Verify in the manual for the VMEbus 
device which address modifier you should use to communicate with it. 



A-218.16 Procedure Library Summary 

The dest in:;\ ion expression represents the VMEbus address (range 0 through 16777215) to 
which the byte or word is written. Any attempt to write a word using an odd address will result 
in escape(-11} (CPU word access to odd address). 



Procedure Library Summary A-219 



A-220 Procedure Library Summary 

WRITEBUFFER 
IMPORT: general_4 

iodeclarations 

This procedure will write a single byte into the buffer space and update the fill pointer in the 
buf_info record. 

Syntax 

-+{ WRITEBUFFER ~ 

Item 

buffer name 

character 

buffer 
name ~ character ~ 

Description/Default 

Variable of TYPE buLinfo_type. 

Expression of TYPE CHAR. 

Range 
Restrictions 

See the 
Advanced Transfer 
Techniques chapter 



IMPORT: generaL4 
iodeclarations 

Procedure Library Summary A-221 

WRITEBUFFEILSTRING 

This procedure will take the specified string and place it in the buffer and update the fill pointer. 
An error will occur if there is insufficient space. 

Syntax 

WRITE BUFFER_STRING 

Item 

buffer name 

source string 

Description/Default 

Variable of TYPE buLinfo_type. 

Expression of TYPE io_string. This is 
STRING[255]. 

Range 
Restrictions 

See the 
Advanced Transfer 
Techniques chapter 



A-222 Procedure Library Summary 

WRITE CHAR 
IMPORT: generaLl 

iodeclarations 

This procedure will send a single byte as data over the interface path (writechar will drop the 
"ATN" line on an HP-IB interface). 

Syntax 

Item 

interface 
select code 

source 
character 

Semantics 

Description/Default 

Expression of TYPE type_isc. This is 
an INTEGER subrange. 

Expression of TYPE CHAR. 

Range 
Restrictions 

o thru 31 

Recommended 
Range 

7 thru 31 

An HPIB interface must be addressed as a talker before performing a WRITECHAR, or an error 
will be generated. To avoid this, use the following sequence: 

LISTEN (7,2£1); 
TALK (7, MY_ADDRESS(7»; 
WRITECHAR (7, Character); 



IMPORT: generaL2 
iodeclarations 

Procedure Library Summary A-223 

WRITENUMBER 

This procedure outputs a free field number to the specified device. The format rules follow the 
HP Pascal standard for WRITE. No additional characters are sent after the number. 

Syntax 

Item 

device selector 

number 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

Expression of TYPE REAL 

Range 
Restrictions 

a thru 3199 

Recommended 
Range 

See glossary 



A-224 Procedure Library Summary 

WRITENUMBERLN 
IMPORT: general_2 

iodeclarations 

This procedure will output the number and a carriage return/ linefeed. 

Syntax 

WRITENUMBERLN 

Item 

device selector 

number 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

Expression of TYPE REAL 

Range 
Restrictions 

o thru 3199 

Recommended 
Range 

See glossary 



IMPORT: generaL2 
iodeclarations 

Procedure Library Summary A-225 

WRITESTRING 

This procedure will send the specified string to the specified device. No additional characters 
are sent. 

Syntax 

Item 

device selector 

string 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

Expression of TYPE STRING 

Range 
Restrictions 

a thru 3199 

Recommended 
Range 

See glossary 



A-226 Procedure Library Summary 

WRITESTRINGLN 
IMPORT: generaL2 

iodeclarations 

This procedure will write out the string followed by a carriage return/line feed. 

Syntax 

Item 

device selector 

string 

Description/Default 

Expression of TYPE type_device. This is 
an INTEGER subrange. 

Expression of TYPE STRING 

Range 
Restrictions 

a thru 3199 

Recommended 
Range 

See glossary 



IMPORT: generaLl 
iodeclarations 

Procedure Library Summary A-227 

WRITEWORD 

This procedure will write 2 consecutive bytes (most significant byte first) to a byte-oriented 
interface. A word oriented interface will write a single 16-bit quantity. 

Syntax 

Item 

interface 
select code 

control word 

Description/Default 

Expression of TYPE type_isc. This is 
an INTEGER subrange. 

Expression of TYPE INTEGER. 

Range 
Restrictions 

o thru 31 

MININT thru 
MAXINT 

Recommended 
Range 

7 thru 31 



A-228 Procedure Library Summary 

Module Dependency Table 
The Module Dependency Table shows which modules are imported by the standard LIBRARY, 
10, GRAPHICS, SEGMENTER, SYS ..... BOOT, and VME ..... DRIVER modules. 

Module to 
Be Imported 
LIBRARY Modules: 

RND 
HPM 
UIO 
LOCKMODULE 

10 Modules: 
IODECLARA TIONS 
10COMASM 
GENERAL_O 
GENERALI 
GENERAL2 
GENERAL3 
GENERAL4 
HPIB_O 
HPIB_I 
HPIR..2 
HPIB_3 
SERIALO 
SERIAL3 
PARALLEL_3 

Module(s) Upon 
Which It Depends 

SYSGLOBALS 

SYSGLOBALS 

SYSGLOBALS 
SYSGLOBALS, IODECLARA TIONS 
SYSGLOBALS, 10DECLARATIONS 
SYSGLOBALS, 10DECLARATIONS 
SYSGLOBALS, 10DECLARA TIONS, GENERAL_I, HPIB_I 
SYSGLOBALS, 10DECLARA TIONS 
SYSGLOBALS,IODECLARATIONS, HPIB_I 
SYSGLOBALS, 10DECLARA TIONS 
SYSGLOBALS, IODECLARA TIONS 
SYSGLOBALS,IODECLARATIONS, HPIB_O, HPIB_I 
SYSGLOBALS,IODECLARATIONS, GENERAL_I, HPIB_O, HPIB_I 
SYSGLOBALS, 10DECLARATIONS 
SYSGLOBALS, 10DECLARATIONS 
IODECLARATIONS 

GRAPHICS, FGRAPHICS, and FGRAPH20 Modules: 
DGLLIB ASM, IODECLARATIONS, SYSGLOBALS, MINI, ISR, MISC, FS, 

SYSDEVS, and all GRAPHICS modules except DGL_INQ and 
DGLPOLY 

DGLPOLY 

DGLINQ 

SEGMENTER Modules: 
SEGMENTER 

SYS_BOOT 

VME_DRIVER 

SYSGLOBALS, SYSDEVS, and all GRAPHICS modules except 
DGLINQ 

ASM, SYSGLOBALS, A804XDVR, DGL_TYPES, DGL_VARS 
DGLGEN,GLE_TYPES,GLE_GEN ' 

LOADER, LDR, SYSGLOBALS, MISC 

IODECLARATIONS, SYSGLOBALS, VME_ASM_DRIVER 

SCSILIB SYSGLOBALS, IODECLARATIONS, ASM 

Some Are Needed at Compile Time, Some Aren't 
From the table, you can see that several Procedure Library modules depend upon various Operat­
ing System modules (such as SYSGLOBALS, IODECLARATIONS, SYSDEVS, and A804XDVR). 
However, the table does not show that some of the Procedure Library modules need these 
Operating System module(s) only at load time and not at compile time (some also need them at 
both times). 

Modules such as SYSGLOBALS, SYSDEVS, and A804XDVR are part of the Operating System 
that is automatically loaded during the booting process (because they are in the standard INITLIB 
file.) Thus, you don't ever need to be concerned about making them accessible to the loader 
(unless you somehow remove them from the INITLIB file) . 

• The GRAPHICS, FGRAPHICS, and FGRAPH20 libraries require the specified Operating 
System modules only at load time (not at compile time). 

• The LIBRARY, 10, and SEGMENTER libraries require the specified modules at both 
compile time and at load time. You can make these Operating System modules accessible 
to the Compiler by specifying the INTERFACE file in a SEARCH Compiler option or by 
adding them to the System Library. 



Procedure Library Summary A-229 

Glossary 
aspect ratio - The ratio of the height to width of an area (e. g. the area of a display surface). 

attribute - See primitive attribute. 

buffer name - A structured variable of TYPE but_into_type. 

complement drawing mode - A device dependent drawing mode for raster graphic displays in 
which a line is drawn by inverting bits in the display memory. 

character cell - An imaginary rectangle placed around a character which defines its dimen­
sions. The character size attribute determines the size of the character cell. 

clipping - The elimination from view of all visible primitives or parts of primitives which lie 
outside the clipping limits (see window clipping). 

default - See initial value. 

device selector - An INTEGER expression used to specify the source or destination of an 110 
transfer. A device selector can use either an interface select code or a combination of 
an interface select code and a primary address. To construct a device selector with a 
primary address, ll1ultiply the interface select code by 100 and add the primary 
address. 

echoing - A mechanism for reflecting the status of an input function. Echoing is manifested in 
several ways as a function of the different input functions and the different physical 
devices being used. 

erase drawing mode - A device dependent drawing mode for raster graphic displays in which a 
line is drawn by setting bits in the display memory to zero (off). 

escape function - A facility within the graphics system which allows access to device dependent 
functions of a graphics display device. 

graphics display device - A device which displays graphics output. 

initial value - The value of an attribute, viewing component, or characteristic of a work station 
which is in effect when the graphics system is initialized. 

inquiry - User request for the current status, value, or characteristics of the graphics environ­
ment. 

line - A vector drawn from the current position to a specified point. 

Iinestyle - An output primitive attribute which controls the pattern with which lines and text 
primitives are drawn. 



A-230 Procedure Library Summary 

locator device - An input device which returns a world coordinate point. 

locator input function - An input function which returns a world coordinate point correspond­
ing to a location on a locator device. 

logical device - An abstraction of a typical graphics device, defined in terms of the type of data 
input or output. The logical devices supported by the graphics system are locator and 
graphics display. 

logical display limits - The bounds of the logical display surface. 

logical display surface - The portion of a graphics display device within which all output will 
appear. 

mapping - The transformation of data from one coordinate system to another. 

move - Moving the starting position to a specified point without generating a line. 

object - The conceptual graphics entity in the application program. Objects are defined in terms 
of output primitives and primitive attributes. Their units are the units of the world 
coordinate system. 

output primitive - The basic element of an object. The output primitives which the graphics 
system supports are: move, draw and text. Values of the primitive attributes deter­
mine aspects of the appearance of output primitives. 

picture - A collective reference to all the images on a display device. 

primary address - An INTEGER in the range a thru 31 that spedfies an individual device on an 
interface which is capable of supporting more than one device. The HP-IB interace 
can support more than one, device. (Also see "device selector.") 

primitive - See output primitive. 

primitive attribute - A characteristic of an output primitive, such as color, linestyle, character 
size, etc. 

raster display - A type of graphics display in which all vectors are defined by turning on dots 
across a screen. TV is an example of a raster display. 

sampled input - An input operation which does not require operator intervention; the routine 
returns with the current value as soon as the input device can respond. 

viewing operation - See viewing transformation. 

viewing transformation - An operation which maps positions in the world coordinate system to 
positions in device coordinates, thereby transforming objects into images. 

viewport - The rectangular region of the view surface onto which the window will be mapped. 

view surface - The largest rectangle within the logical display limits having the same aspect ratio 
as the virtual coordinate system. 

virtual coordinate system - A two-dimensional coordinate system representing an idealized 
display device. Virtual coordinates are always in the range 0.0 to 1.0. 

window - A rectangular region in the viewplane which may delimit the portion of the prOjected 
image which will be output. 

world coordinate system - The two dimensional left handed cartesian coordinate system in 
which objects are described by the user program (user units). 



I/O System Errors 
Th€se are the values found in the system variable 10RESULT and 
the corresponding error message which the system prints out auto­
matically for you. 

o No 1/0 error reported 
1 Parity (CRC) wrong I/O driver Will do several retnes 
2 Illegal unit number - valid range IS 1 50 
3 Illegal 1.'0 request (e g . read from printer) 
4 Device Itmeout 
5 Volume went off-line 
6 File lost In directory 
7 Bad hie name 
8 No room on volume 
9 Volume not found 

10 File not found 
11 Duplicate directory entry 
12 File already open 
13 F lie not open 
14 Bad Input format 
15 D,sc block out of range 
16 Device absent or Inaccessible 
17 Media Inltlaltzatlor: failed 
18 Media IS write-protected 
19 Unexpected Interrupt 
20 Hardware/media failure 
21 Unrecognized error state 
22 DMA absent or unavailable 
23 File size not compaltble With type 
24 File not opened for reading 
25 File not opened tor writing 
26 File not opened tor direct access 
27 No room In directory 
28 String subSCript out at range 
29 Bad strlno parameter on close of hie 
30 Attempt t'O read past end-ot-hle mark 
31 Media not Initialized 
32 BlOCk not found 
33 Device not ready or media absent 
34 Media absent 
35 No directory on volume 
36 File type Illegal or does not match request 
37 Parameter Illega: or out at range 
38 File cannot be extended 
39 Undeftned operation tor hie 
40 File not lockable 
41 File already locked 
42 File not locked 
43 Directory not empty 
44 Too ma'ly hies open on deVice 
45 Access to tile not allowed 
46 Invalid password 
47 File IS not a directory 
48 Operation not allowed on a directory 
49 Cannot create /WORKSTATIONS/TEMP _FILES 
50 Unrecognized SRM error 
51 Medium may have been changed 
52 File system corrupt 
53 File or file system too big 
54 No permiSSion for requesled action 
55 Drtver cache full 
56 Dnver configuration failed 
57 10RESULT was 57 

Graphics System Errors 
When writing graphics programs, it will be helpful to enclose the main 
body of the program in a TRY block. In the RECOVER block, testthe 
value of ESCAPECODE. If ESCAPECODE==-27, invoke a graphics 
function called GRAPHICSERROR. This will return a number which 
can be cross-referenced with the following list of error messages. 

o No errors Since last call to GRAPHICSERROR or INIT GRAPHICS 
1 GraphiCS system not ,nllial,zed 
2 GraphiCS display IS not enabled 
3 Locator deVice not enabled 
4 ECHO value requlfes a graphiC display to be enabled. 
5 GraphiCS system IS already enabled 
6 Illegal aspect ratio speCified 
7 Illegal parameters speCified 
8 Parameters specified are outSide physical display limits 
9 Parameters speCified are outSide limits of window 

10 Logical locator and logical display use same device 
11 Parameters speCified are outSide Virtual coordinate system boundary 
12 Escape function requestl?d not supported by display device 
13 Parameters speCified are outSide physical locator limits 

Loader/SEGMENTER Errors 
Here is a list of errors that can be generated by the loader or by a 
program that uses the SEGMENTER module. 

100 105 
110 
111 
112 
116 
117 
118 

-119/119 
120 
121 
122 

Field overflow trying to link or relocate something 
Circular or too deeply nested symbol definttlons 
Improper link Information format 
Not enough memory 
File was not a code file 
Not enough space In the expliCit global area 
Incorrect verSion number 
Unresolved external references 
Generated by the dummy procedure returned by FIND_PROC 
UNLOAD_SEGMENT called when there are no more segments to unload 
Not enough space In the expliCit code area 

I/O Library Errors 
These are the values and corresponding error messages that may 
develop when using the I/O library. A call to 10ERROR_MESSAGE 
will generate the appropriate message. 

o No error 
1 No card at select code 
2 Interface should be HP-IB 
3 Not active controller/commands not supported 
4 Should be deVice address. not select code 
5 No space left In buffer 
6 Nc data left In buffer 
7 Improper transfer attempted 
8 The select code IS busy 
9 The buffer IS busy 

10 Improper transfer count 
11 Bad timeout value/timeout not supported 
12 No driver for thiS card 
13 No DMA 
1 4 Word operations not allowed 
15 Not addressed as talker/Write not allowed 
16 Not addressed as listener /read not allowed 
17 A timeout has occurred/no deVice 
18 Not system controller 
19 Bad status or contrOl 
20 Bad set/clear/test operation 
21 Interface card IS dead 
22 End/eod has occurred 
23 Miscellaneous-value of parameter error 

306 Datacomm Interface failure 
313 USART receive buffer overflow 
314 Receive buffer overflow 
315 Missing clock 
316 CTS false too long 
317 Lost carner disconnect 
318 No activity disconnect 
319 Connection not established 
325 Bad data bits/parity combination 
326 Bad status/control register 
327 ContrOl value out 01 range 

Operating System Runtime Error Messages 
Errors detected by the operating system during the execution of a 
program generate one of the following error messages. The numbers 
correspond to the value of ESCAPECODE. 

o Normal termination 
-1 Abnormal termination 
-2 Not enough memory 
-3 Reference to NIL pointer 
-4 Integer overflow 
-5 DIVide by zero 
-6 Real math overflow The number was too large 
-7 Real math underflow The number was too small 
-8 Value range error 
-9 Case value range error 

-lONon-zero 10RESUL T (See "1/0 System Errors 
-11 CPU word access to odd address 
-12 CPU bus error 
-13 Illegal CPU Instruction 
-14 CPU priVilege Violation 
-15 Bad argument - SIN/COS 
-16 Bad argument - LN (natural log) 
-17 Bad argument - SORT (square root) 
-18 Bad argument - real/BCD conversion 
-19 Bad argument - BCD/real converSion 
-20 Stopped by user 
-21 UnaSSigned CPU trap 
-22 Reserved 
-23 Reserved 
-24 Macro parameter not 0 .9 or a z 
-25 Undefined macro parameter. 
-26 Non-zero 10E-RESULT. (See "I/O Library Errors' ) 
-27 Non-zero GRAPHICSERROR (See'Graphlcs System Errors 
-28 Parity error in memory 
-29 Miscellaneous hardware floaling-polnt error 

-30 Bad argument - arcsine/arccosine Argument> 1 
-31 Illegal real number 

VMELIBRARY Errors 
When a VME error occurs while using the VME_DRIVER module 
procedures, you can determine which has occurred by using a 
TRY ... RECOVER construct and calling the ESCAPECODE function 
in the RECOVER block. 

800 Range error select code <7 or >31. 
801 Tried to access the HP VMEbus Interface using an odd Select Code 
802 Timeout error. the VMEbus System Controller does not grant the bus to 

the HP VMEbus Interface Within the amount of seconds speCified In the 
last 'SET TIMEOUT call 

803 NumOfCh~r < 0 or > declared size of 'Data In VME StrRead 
NumOfBytes <0 VME_BlockRead or VME_BlockWrrte 

805 Odd NumOfBytes when using Transfer mode Wordlnc or WordFxd 
806 The VMEbus Interface Card IS not an HP 98646A VMEbus Interface Card 

o 

o 

o 



o 

o 

() 

1 
2 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
50 
51 
52 
53 
54 
55 
56 
58 
59 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
110 
111 
113 
115 
117 
121 
123 
125 
126 
127 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
147 
149 
150 
152 
154 
156 
158 
160 
163 
164 
165 
166 
167 
168 
169 
171 
177 
181 
182 
183 
184 
185 
190 
300 
301 
302 
303 
304 
400 
401 

403-409 

Pascal Compiler Syntax Errors 
ANSI/ISO Pascal Errors 

Erroneous declaration of Simple type. 
Expected an Identifier. 
Expected a nght parentheSIS ·T. 
Expected a colon .. : .. 
Symbol is not valid in this context. 
Error In parameter list. 
Expected the keyword OF. 
Expected a left parentheSIS ·r· 
Erroneous type declaration. 
Expected a left bracketf 
Expected a right bracket .-r 
Expected the keyword END 
Expected a semicolon .. ; ... 
Expected an Integer. 
Expected an equal sign .. = ... 
Expected the keyword BEGIN. 
Expected a digit follOWing . 
Error In field list of a record declaration. 
Expected a comma·.·· 
Expected a penod ... 
Expected a range speCification symbol·· 
Expected an end-of-comment delimiter. 
Expected a dollar Slgn·$·· 
Error in constant speCification 
Expected an assignment operator ... _ .. 
Expected the keyword THEN. 
Expected the keyword UNTIL. 
Expected the keyword DO. 
Expected the keyword TO or DOWNTO. 
Variable expected. 
Erroneous factGr In expression 
Erroneous symbol follOWing a variable. 
Illegal character In source text 
End of source text reached before end of program. 
End of program reached before end of source text. 
Identifier was already declared. 
Low bound greater than high bound in range of constants. 
Identifier is not of the appropnate class. 
Identifier was not declared. 
Non-numenc expressions cannot be signed. 
Expected a numenc constant here. 
Endpoint values of range must be compatible and ordinal. 
NIL may not be redeclared. 
Tagfield type In a variant record is not ordinal. 
Vanant case label is not compalible with tagfield. 
Array dimension type IS not ordinal. 
Set base type IS not ordinal 
An unsatisfied forward reference remains. 
Pass by value parameter cannot be type FILE. 
Type of function result is missing from declaration. 
Erroneous type of argument for built-in routine 
Number of arguments different from number of formal parameters. 
Argument IS not compatible with corresponding parameter. 
Operands In expression are not compatible. 
Second operand of IN IS not a set. 

Only equality tests (= and < » allowed on thiS type. 
Tests for stnct Inclusion « or » not allowed on sets 
Relational companson not allowed on thiS type 
Operand(s) are not proper type for this operation. 
Expression does not evaluate to a boolean result. 
Set elements are not of ordinal type 
Set elements are not compatible with set base type. 
Vanable is not an ARRAY structure. 
Array Index IS not compatible with declared subscript. 
Vanable IS not a RECORD structure 
Vanable is not a pOinter or FILE structure. 
Packing allowed only' on last dimenSion of conformant array. 
FOR loop control vanable IS not of ordinal type. 
CASE selector IS not of ordinal type 
Limit values not compatible with lOOp control vanable 
Case label IS not compatible with selector 
Array dimenSion IS not bounded. 
Illegal to assign value to bUilt-In function Identifier 
No field of that name !n the pertinent record 
illegal argument to match pass-by-reference parameter 
Case label has already been used 
Structure IS not a vanant record. 
PrevIous declaration was not FORWARD. 
Statement label not In range 0 .. 9999. 
Target of nonlocal GOTO not In outermost compound statement. 
Statement label has already been uSed. 
Statement label was already declared. 
Statement label was not declared. 
Undefined statement label. 
Set base type IS not bounded. 
Parameter list conflicts with forward declaration. 
Cannot assign value to functIOn outside ItS body. 
Function must contain assignment to function result. 
Set element IS not In range of set base type. 
File has Illegal element type. 
File parameter must be of type TEXT. 
Undeclared external file or no file parameter. 
Attempt to use type Identifier In Its own declaration 
DiVISion by zero. 
Overflow In constant expression. 
Index expression out of bounds. 
Value out of range. 
Element expression out of range. 
Unable to open list file. 
File or volume not found. 
Compiler errors. 

Compiler Options 
600 Directive IS not at beginning of the program. 
601 Indentation too large for PAGEWIDTH. 
602 Directive not valid in executable code. 
604 Too many parameters to SEARCH. 
605 Conditional compilation directives out of order 
606 Feature not In standard Pascal flagged by ANSI ON. 
607 Feature only allowed when UCSD enabled. 
608 INCLUDE exceeds maximum allowed depth of files. 
609 Cannot access thiS INCLUDE file. 
610 INCLUDE or IMPORT nesting too deep. 
611 Error in accessing library file. 
612 Language extenSion not enabled. 
613 Imported module does not have interface text. 
614 lINENUM must be In the range 0.65535. 
620 Only first Instance of rouline may have ALIAS. 
621 ALIAS not In procedure or function header. 
646 Directive not allowed In EXPORT Section 
647 Illegal file name. 
648 Illegal operand in compiler directive. 
649 Unrecognized compiler directive. 

Implementation Restrictions 
651 Reference to a standard routine that IS not Implemented. 
652 Illegal aSSignment or CALL InvolVing a standard procedure 
653 CONST. TYPE. VAR. or MODULE cannot follow routine. 
655 Record or array constructor not allowed In executable statement. 
657 Loop control variable must be local vanable. 
658 Sets are restricted to the ordinal range O .. 8175 (default) or O .. 261999 (max). 
659 Cannot blank pad literal to more than 255 characters 
660 Stnng constant cannot extend past text line. 
661 Integer constant exceeds the range implemented 
662 Nesting level of Identifier scopes exceeds maximum (20). 
663 Nesting level of declared routines exceeds maximum (15). 
665 CASE statement must have non-OTHERWISE clause 
667 Routine was already declared FORWARD. 
668 FORWARD rouline may not be EXTERNAL. 
671 Procedure too long. 
672 Structure is too large to be allocated 
673 File component size must be In range 1 .. 32766 
674 Field In record constructor Improper or missing. 
676 Structured constant has been discarded (cf SAVE_CONST). 
677 Constant overflow 
678 Allowable stnng length IS 1.255 characters 
679 Range of case labels too large 
680 Real constant has too many digits 
681 Real number not allowed. 
682 Error In structured constant. 
683 More than 32767 bytes of data 
684 ExpreSSion too complex. 
685 Variable in READ or WRITE list exceeds 32 767 bytes. 
686 Field width parameter must be In range 0 .255. 
687 Cannot IMPORT module name In ItS EXPORT section 
688 Structured constant not allowed In FORWARD module. 
689 Module name may not exceed 15 characters. 
696 Array elements are not packed. 
697 Array lower bound is too large. 
698 File parameter reqUired 
699 32-bIt arithmetiC overflow. 

Non-ISO Language Features 
701 Cannot dereference variable of type ANYPTR 
702 Cannot make an assignment to thiS type of vanable. 
704 Illegal use of module name 
705 Too many concrete modules. 
706 Concrete or external Instance reqUired 
707 Variable IS of type not allowed in vanant records. 
708 Integer follOWing .. #. is greater than 255. 
709 Illegal character In a·#·· stnng 
710 Illegal Item In EXPORT section 
711 Expected the keyword IMPLEMENT 
712 Expected the keyword RECOVER 
714 Expected the keyword EXPORT 
715 Expected the keyword MODULE 
716 Structured constant has erroneous type. 
717 Illegal Item In IMPORT section. 
718 CALL to other than a procedural vanable 
719 Module already Implemented (duplicate module) 
720 Concrete module not allowed here. 
730 Structured constant component Incompatible With corresponding type. 
731 Array constant has Incorrect number of elements. 
732 Length speCification reqUifed 
733 Type Identifier reqUired. 
750 Error In constant expression. 
751 Function result type must be aSSignable 
900 InsuffiCient space to open code file. 
901 Insufficient space to open REF file. 
902 InsuffiCient space to open DEF file. 
903 Error in opening code file 
904 Error in opening REF file. 
905 Error In opening DEF file: 
906 Code file full. 
907 REF file full 
908 DEF file full. 



Subject Index 1 

Subject Index 

a 
Abort (HP-IB) ...................................................... 10-10 
Active controller (HP-IB) ......................................... 10-2, 10-7 
Address (HP-IB) .................................................... 10-7 
Addressed to listen state (HP-IB) .............. . . . . . . . . . . . . . . . . . . . . . . . .. 10-13 
Addressed to talk state (HP-IB) ........................................ 10-13 
Addresses (HP-IB) .................................................. 10-2 
Advanced bus management (HP-IB) ............ . . . . . . . . . . . . . . . . . . . . . . . .. 10-18 
ALLOCATE module. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. 1-17 
Asynchronous protocol (Datacomm) ............................... 11-2, 11-13 
Attention line (HP-IB) ............................................... 10-15 
Attention message (HP-IB) ............................................ 10-4 
Auto-dialing (Datacomm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-20 
Auto-poll (Datacomm) ............................................... 11-25 
Auxiliary command register (HP-IB) .................................... 10-33 

b 
Backplane ......................................................... 2-2 
Battery features (System devices) ...................................... 14-75 
Baud rate (Datacomm) ......................................... 11-7, 11-14 
Baud rate (Serial) .............................................. 12-3, 12-6 
Beeper (System devices) .............................................. 14-9 
Bit ............................................................... 2-7 
Block size (Datacomm) .............................................. 11-19 
Break messages (Serial) ............................................. 12-11 
Break timing (Datacomm) ............................................ 11-1 7 
Buffers: 

BUF _INFO_TYPE . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-1 
Control of ....................................................... 9-2 
END condition transfers ............................................. 9-8 
Feeding of ....................................................... 9-3 
General ......................................................... 9-1 
Match character transfers ............................................ 9-8 
Overlap transfers ................................................... 9-6 
Reading data. from ................................................. 9-2 
Serial transfers .................................................... 9-4 
Special transfers ................................................... 9-8 
Terminating transfers ............................................... 9-6 
Word transfers .................................................... 9-8 
Writing data to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-3 



2 Subject Index 

SUF _INFO_TYPE .................................... ,. . . . . . . . . . . . . . .. 9-1 
Bus .............................................................. 2-2 
Bus address ........................................................ 4-2 
Bus description, parallel interface .................... ;.................. 17-2 
Bus line states (HP-IB) .............................................. 10-16 
Bus sequences (HP-IB) ............................................... 10-5 
Byte ..................................... c •••••••••••••••••••••••• 2-7 

C 
Cable options (Datacomm) ........................................... 11-27 
Cable options (Serial) ............................................... 12-23 
Call-back mechanism, SCSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18-18 
CARD_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-7, 3-8, 3-9 
CARD_TYPE ............................................... 3-7,3-8,3-9 
Chapter previews .................................................... 1-2 
Character format (Datacomm) ......................................... 11-1 7 
Character format (Serial) ................................... 12-2, 12-4, 12-7 
Character length (Datacomm) .......................................... 11-7 
Characters (internal representation of) ........................... '. . . . . . . . .. 2-9 
Clear (HP-IB) ..................................................... 10-10 
Clock (System devices) .............................................. 14-11 
Commands table (HP-IB) ............................................. 10-20 
Compatibility (of interfaces) ............................................ 2-4 
Compile strategy (for modules) .......................................... 1-6 
Compiler intrinsics .................................................. 1-13 
Compiler options: 

FLOAT_HDW ................................................... 1-15 
HEAP_DISPOSE ................................................. 1-13 
RANGE ON ...................................................... 3-7 
SEARCH ......................................................•. 1-6 
SYSPROG ....................................................... 8-2 

Computer (block diagram) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-2 
Computer resource. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-1 
Control blocks (Datacomm) ................................ 11-4, 11-13, 11-18 
Control characters (System devices) .................................... 14-28 
CRT information .................................................. 14-30 
CRT interface (select code 1) ........................................... 4-1 
Cursor control (System devices) ....................................... 14-32 

d 
Data compatibility ................................................... 2-4 
Data flow, directing .................................................. 4-1 
Data input: 

Datacomm ...................................................... 11-4 
General ..... " . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 6-1 
GPIO ......................................................... 13-15 
HP-IB ......... . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . ... . . .. 10-3 



Subject Index 3 

Serial .......................................................... 12-9 
Data lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17-3 
Data link connections (Datacomm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-20 
Data link options (Datacomm) ......................................... 11-1 7 
Data link protocol (Datacomm) ......................................... 11-3 
Data messages (Datacomm) ........................................... 11-6 
Data messages (HP-IB) ............................................... 10-5 
Data output: 

Datacomm ...................................................... 11-4 
General ......................................................... 5-1 
GPIO ......................................................... 13-15 
HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-3 
Serial .......................................................... 12-8 

Data representations: 
Bits and bytes ..................................... :.............. 2-7 
Characters ....................................................... 2-9 
GPIO ......................................................... 13-15 
Numbers ........................................................ 2-8 
Real numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-11 
Signed integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-9 

Data types: 
I/O ........................................... 3-6,3-7,3-8,3-9,3-10 
Supported for input ................................................ 6-1 
Supported for output ............................................... 5-1 

Datacomm: 
Asynchronous .................................................. 11-13 
Asynchronous protocol ............................................. 11-2 
Auto-dialing .................................................... 11-20 
Auto-poll ...................................................... 11-25 
Baud rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-7, 11-14 
Block size ..................................................... 11-19 
Break timing ................................................... 11-1 7 
Cable adapter options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-27 
Character format ................................................ 11-1 7 
Character length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-7 
Connecting to the line ............................................ 11-19 
Connection procedures ............................................ 11-20 
Control blocks ....................................... 11-4, 11-13, 11-18 
Data Communication Basics (98046-90005) ............................. 11-1 
Data link connections ............................................. 11-20 
Data link options ................................................ 11-1 7 
Data link protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-3 
Data messages ................................................... 11-6 
DCE andDTE cable options ........................................ 11-27 
Defaults ....................................................... 11-11 
Dialing procedures ............................................... 11-20 
Direct connection links ............................................ 11-19 
Driver/receiver circuits ............................................ 11-28 
End-of-Iine recognition ............................................ 11-16 



4 Subject Index 

Errors and recovery 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11-22 
Establishing the connection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 11-10 
Example terminal emulator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o. 11-8 
Half-duplex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 •• 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 o. 11-26 
Handshake 00 0 0 • 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o. 0 0 0 0 0 0 • 0 00 0 • 0 • 0 • 0 11-15, 11-18 
Handshake characters 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 11-16 
Initiating connection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 •• 11-21 
Introduction 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 11-1 
10STATUS and 10CONTROL registers 000000. 0 • 0 0 .0.0000. 0 0 0 • 0 0 0 0 0 0 0 • 0 11-29 
Line timeouts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 11-14 
Non-data characters 0 0 0 0 0 0 0 •• 0 0 0 0 0 • 0 0 • 0 •• 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11-16 
Operating parameters 0 0 • • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 •• 0 • 0 11-10 
Overview of programming 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 • 0 0 0 0 0 0 11-7 
Parity 000000000000000000. 0 0 0 0 0 0 •• 0 0 0000.0000000000000 11-2, 11-7, 11-19 
Preventing data loss 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 •• 0 0 0 0 0 0 0 • 0 11-24 
Private links 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 • • 0 0 0 0 0 • 0 0 0 11-19 
. Programming helps 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 11-24 
Prompt recognition 0 0 0 0 0 0 0 0 0 0 0 0 0 o· 0 0 0 0 0 0 0 0 0 • 0 0 0 0 , 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 11-16 
Protocol 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 11-2, 11-12 
Reset 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 00 00 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11-12 
RS-232C cable signals 0 0 0 •• 0 0 0 0 0 •• 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 • 0 0 •• 0 o. 11-27 
Secondary channel 0 0 0 0 • 0 ••• 0 • 0 • 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 •• 0 0 11-26 
Start bit .... 0 • 00 ••••• 0 • 0 •• 0 0 • 0 0 • 0 0 0 0 0 • 0 • 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 11-2 
Stop bits 0 •• 0 0 0 0 • 0 0 • o. 0 • 0 • 0 0 • 0 • 0 0 • 0 00 •• 0 0 0 0 • 0 • 0 0 0 • 0 • 0 0 0 • 0 0 0 11-2, 11-7 
Telephone links 0 0 • 0 •• 0 •• 0 •• 0 0 •••• 0 0 0 0 0 • 0 • 0 0 0 0 0 • 0 0 0 0 • 0 0 0 • 0 0 0 0 0 • 0 0 11-19 
Terminal identification . 0 0 0 • 0 0 0 0 0 0 0 0 0 0 •• 0 • 0 • 0 • 0 ••• 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 11-18 
Terminal prompt messages .. 0 • 0 0 0 0 0 • 0 0 • 0 0 • 0 • 0 • 0 ••• 0 • 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 11-24 

Date and time (System devices) 0 0 • • • 0 0 0 0 •• 0 0 0 •• 0 • 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 • 0 o. 14-11 
DCE and DTE cables (Datacomm) . 0 •• 0 0 • 0 •• 0 0 000 0 • 0 0 0 • 0 0 0 0 •• 0 0 000 0 0 • 0 0 0 11-27 
DCE cable (Serial) o. 0 ••• 0 0 •• 0 • 0 •• 0 • 0 0 0 0 0 0 • 0 • 0 • 0 ••• 0 0 0 0 • 0 0 • 0 • 0 0 0 0 0 o. 12-24 
Debugger window (System devices) 0 0 0 0 0 •• 0 0 0 0 • 0 • 0 • 0 0 0 • 0 0 0 0 • 0 • 0 0 0 0 0 • 0 0 0 0 14-37 
Defaults: 

Datacomm .. 00.000 •• 0 0 • 0 • 0 •• 0 0 0 0 ••• 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0000. 0000000. 11-11 
GPIO 0 0 0 • 0 0 0 0 0 0 •••• 0 0 • 0 •• 0 0 • 0 0 0 0 0 0 ••• 0 • 0 • 0 0 •• 0 0 0 0 • 0 0 0 • 0 0 • 0 13-3, 13-4 
HP-IB .0.00000.0 •• o. 0 •• 0 0 • 0 • 0 0 0 0 ••• 0.00 ••• 0 0 •• 0 • 0 0 0 0 0 0 0 0 0 0000.00 10-2 
Serial . 0 0 0 •• 0 ••• 0 0 0 0 0 0 •••• 0 0 • 0 0 0 0 0 0 0 0 • 0 • 0 0 • 0 0 • 0 0 0 0 • 0 • 0 0 0 0 0 0 12-3, 12-4 

Dependency of modules (table) 0 0 • 0 • 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 ••• 0 0 •• 0 0 • 0 0 0 0 0 •• 0 0 • 0 1-21 
Destination (of I/O operations) 0 •• 0 • 0 0 0 0 0 •• 0 0 0 0 0 0 .' 0 • 0 • 0 0 0 0 0 0 • 0 0 0 0 • 0 • 0 0 0 • 0 2-2 
Device selectors: 

General 0 0 0 0 0 0 0 • 0 0 0 0 0 •• 0 0 • 0 0 0 • 0 0 0 0 0 0 •• 0 0 0 • 0 • 0 0 0 0 • 0 0 0 0 0 •• 0 3-6, 4-1, 4-2 
HP-IB ... 0 • 0 0 0 0 0 • 0 0 0 0 0 .0.00000 •• 0 0 0 00. 0 • 0 • 0 0 0 0 0000 •••• 0 0 0 • 0 0 0 0 0 0 10-3 

Device-independent Graphics (DGL) .. 0 0 0 • 0 • 0 0 0 0 • • • 0 0 0 0 0 • 0 • 0 0 ••• 0 0 0 •• 0 0 0 0 1-16 
Dialing procedures (Datacomm) . 0 0 0 • 0 • 0 0 0 0 •• 0 • 0 0 0 0 0 0 •• 0 0 0 ••• 0 0 0 0 0 0 0 0 0 o. 11-20 
Direct connection links (Datacomm) 0 0 • 0 0 • • 0 0 0 o· 0 0 • 0 0 0 0 0 0 • 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 11-19 
Directing data flow 0 0 0 0 •• 0 0 • 0 • 0 • 0 • 0 0 •• 0 • 0 0 0 0 ••• 0 • 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 0 0 • 0 4-1 
Display control characters (System devices) 0 0 0 • 0 • 0 •••••••••••••••• 0 • 0 0 • 0 •• 14-28 
DISPOSE(procedur~ .. 00000.000 ••• 000. 0 0 0 0 •• 0.00.000000.000 •• 00 •• 000 1-13 
Driver /receiver circuits (Datacomm) 0 ••••• 0 0 0 0 ••• 0 0 •• 0 0 0 0 •• 0 • 0 0 0 ••• 0 0 0 0 0 11-28 
DTE cable (Serial) 0 0 0 • 0 •• 0 •• 0 0 0 • 0 • 0 0 0 0 0 0 • 0 0 • 0 • 0 0 0 0 • 0 •• 0 0 0 0 • 0 0 0 0 0 0 0 0 12-23 



Subject Index 5 

e 
Electrical compatibility ................................................ 2-4 
END condition transfers ............................................... 9-8 
End or Identify (HP-IB) .............................................. 10-15 
End-of-line recognition (Datacomm) ..................................... 11-16 
Error lines ........................................................ 17-4 
Errors: 

Datacomm ..................................................... 11-22 
General ......................................................... 8-1 
I/O ............................................................ 8-3 
I/O (table) ....................................................... 8-7 
Segmentation ......................... ~ . . . . . . . . . . . . . . . . . . . . . . . .. 15-10 
Serial (Serial) .................................................... 12-9 

ESCAPE .......................................................... 8-3 
ESCAPE CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-3 
Establishing the connection (Datacomm) ................................. 11-10 
Events (errors and time outs) ............................................ 8-1 
Example modules ... .................... '. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-3 
Example terminal emulator (Datacomm) .................................. 11-8 
Explicit commands (HP-IB) ........................................... 10-22 

f 
FGRAPHICS modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-15 
FLOAT _HDW (Compiler option) ................................... 1-15, 14-5 
Floating-point math card (HP 98635) .................................... 1-15 
Formatted input ..................................................... 6-6 
Formatted output ................................................ 5-6, 5-7 
Free-field input .......................................... 6-2, 6-3, 6-4, 6-5 
Free-field output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-1, 5-2, 5-3, 5-4, 5-5, 5-6 
Full-mode handshakes (GPIO) .......................................... 13-5 

g 
General bus management (HP-IB) ....................................... 10-8 
GENERAL_O ..................................................... 17-16 
GENERAL_4 ..................................................... 17-16 
GENERAL modules .............................................. 3-2, 3-5 
Go to local (HP-IB) .................................................. 10-9 
GPIO interface (select code 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-6, 4-2 
GPIO: 

Configuration .................................................... 13-3 
Data input ..................................................... 13-15 
Data output .................................................... 13-15 
Data representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13-15 
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13-2 
Examples of I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13-16, 13-17 
Full-mode handshakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13-5 
Handshake lines .................................................. 13-4 



6 Subject Index 

Handshakes ..................................................... 13-3 
Interface reset .................................................. 13-14 
Interrupt priority ................................................. 13-3 
Introduction ..................................................... 13-1 
IOREAD_BYTE and IOWRITE_BYTE registers .......................... 13-21 
IOSTATUS and IOCONTROL registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13-20 
Logic sense ..................................................... 13-3 
Peripheral status line .............................................. 13-4 
Pulse-mode handshakes .....................................•...... 13-7 
Select code ..................................................... 13-3 
Special purpose lines ............................................. 13-18 

GRAPHICS modules ................................................ 1-15 
Graphics programming ............................................... 1-15 

h 
Half-duplex (Datacomm) ............................................. 11-26 
Handshake characters (Datacomm) ..................................... 11-16 
Handshake: 

Datacomm ............................................... 11-15, 11-18 
General ......................................................... 2-4 
GPIO .......................................................... 13-3 
HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-5, 10-14 
Serial .................................................... 12-4, 12-12 

Handshake lines .................................................... 17-4 
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-1 
HEAP_DISPOSE (Compiler option) ...................................... 1-13 
HP 98265A SCSI interface ........................................... 18-1 
HP 98635 Floating-point math card ..................................... 1-15 
HP 98644 differences (Serial) ......................................... 12-27 
HP 98658A SCSI interface ........................................... 18-1 
HP-HIL relative locator ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14-18, 15-8 
HP-IB address ...................................................... 4-2 
HP-IB interface, built-in (select code 7) .................................... 4-1 
HP-IB interface description ............................................. 2-5 
HP-IB interface, optional (select code 8) ................................... 4-2 
HP-IB: 

Abort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-10 
Active controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-4, 10-7 
Address of interface .......................................... 10-2, 10-7 
Addressed to listen state .......................................... 10-13 
Addressed to talk state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-13 
Addressing to listen .......................................... 10-5, 10-6 
Addressing to talk ................................................ 10-5 
Advanced bus management ........................................ 10-18 
Attention line ................................................... 10-15 
Attention message ................................................ 10-4 
Auxiliary command register ........................................ 10-33 
Bus line states .................................................. 10-16 



Subject Index 7 

Clear ......................................................... 10-10 
Commands (table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-20 
Control thru Pascal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-7 
Data messages ................................................... 10-5 
Device selectors .................................................. 10-3 
End or Identify .................................................. 10-15 
Example bus sequences ............................................ 10-5 
Explicit commands ............................................... 10-22 
General bus management ........................................... 10-8 
General I/O operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-3 
General rules .................................................... 10-3 
Go to local ............................................... . . . . . . .. 10-9 
Handshake ....................................................... 10-5 
Handshake lines ................................................. 10-14 
Installation ...................................................... 10-2 
Interface clear .................................................. 10-15 
Interface conditions .............................................. 10-13 
Introduction ..................................................... 10-1 
10CONTROL and 10STATUS registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-23 
10READ_BYTE and lOW RITE_BYTE registers .......................... 10-27 
Listen and talk messages ........................................... 10-5 
Local lockout .................................................... 10-9 
Local lockout state ............................................... 10-13 
Messages ...................................................... 10-18 
Multiple listeners ................................................. 10-6 
Non-active controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-6 
Pass control .................................................... 10-11 
Polling ........................................................ 10-11 
Remote enable .................................................. 10-15 
Remote message ................................................. 10-8 
Remote state ................................................... 10-13 
Secondary addresses .............................................. 10-8 
Send command ................................................. 10-22 
Service request ................................................. 10-16 
Service requested state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-13 
Status ....................................... ' . . . . . . . . . . . . . . . . .. 10-7 
Summary of bus sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-37 
System controller ............................................ 10-4, 10-7 
System controller jumper/switch ........ . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. 10-2 
Triggering ..................................................... 10-10 
Unlisten and untalk messages ........................................ 10-7 

HPIB modules ................................................... 3-2, 3-5 
HPM module ...................................................... 1-13 
HP parallel interface handshake protocol .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 -28 

• 
I 

Initialization (I/O) .................................................... 3-3 
Initializing the HP parallel interface ..................................... 17-18 



8 Subject Index 

Initiating connection: 
Datacomm ..................................................... 11-21 
Serial .......................................................... 12-6 

INITLIB modules .................................................... 1-7 
Input (defined) ...................................................... 2-2 
Input: 

Characters ....................................................... 6-4 
Formatted ....................................................... 6-6 
Free-field ............................................ 6-2, 6-3, 6-4, 6-5 
Real numbers ..................................................... 6-2 
Skipping data ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-5 
Strings .......................................................... 6-3 
Termination ...................................................... 6-2 
Words .......................................................... 6-4 

Integers (internal representation of) ....................................... 2-9 
Interface clear (HP-IB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-15 
Interface conditions (HP-IB) ........................................... 10-13 
INTERFACE modules ................................................ 1-14 
Interface reset: 

Datacomm ..................................................... 11-12 
GPIO ......................................................... 13-14 
HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-23 
Serial .......................................................... 12-6 

Interface text .................................................. 1-6, 1-14 
Interfaces: 

Additional functions ................................................ 2-4 
Datacomm ...................................................... 11-1 
Functional diagram ................................................. 2-3 
GPIO ........................................................... 2-6 
HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-5, 10-1 
OVfarview ........................................................ 2-5 
Registers ........................................................ 7 -1 
Select codes ............................... . . . . . . . . . . . . . . . . . . .. 3-6, 4-1 
Serial ........................................................... 2-6 
Why needed? ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-3 

Interfacing concepts .................................................. 2-1 
Interrupt priority (GPIO) .............................................. 13-3 
Interrupt processing overview (System devices) .............................. 14--'5 
10 data types ...................................... 3-6, 3-7, 3-8, 3-9, 3-10 
I/O (definition of) .................................................... 2-2 
I/O error handling ................................................... 8-3 
I/O errors ......................................................... 8-1 
I/O events (errors and timeouts) ......................................... 8-1 
10 modules ....................................................... 1-14 
I/O Procedure Library: 

GENERAL modules ............................................ 3-2, 3-4 
HPIB modules ................................................ 3-2,3-5 
Initialization ....................................................... 3-3 
Introduction ...................................................... 3-1 



Subject Index 9 

10DECLARATIONS module .......................................... 3-6 
Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-2 
SERIAL modules .............................................. 3-3,3-6 

I/O terminology ..................................................... 2-1 
I/O timeouts ................................................... 8-1, 8-5 
10DECLARATIONS modules ........................................... 3-6 
10E_ISC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-4 
10E_RESULT ....................................................... 8-3 
10ERROR_MESSAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-4 
10ESCAPECODE .................................................... 8-3 
lORE AD _BYTE and 10WRITE_BYTE registers: 

General ......................................................... 7-1 
GPIO ......................................................... 13-21 
HP~IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-27 
Serial ................................................... 12-14, 12-19 

IOSTATUS and 10CONTROL registers: 
Datacomm ..................................................... 11-29 
General ......................................................... 7-1 
GPIO ......................................................... 13-20 
HP-IB ....................................................... ',' 10-23 
Serial ......................................................... 12-15 

ISC_TABLE ........................................................ 3-7 

k 
Key buffer (System devices) .......................................... 14-48 
Key codes (System devices) .......................................... 14-59 
Keyboard interface (select code 2) ....................................... 4-1 
Keyboard hooks ................................. 14-43,14-44,14-45,14-46 
Keyboard (System devices) ........................................... 14-42 
Knob (System devices) .............................................. 14-56 

I 
Librarian: 

Main prompt ..................................................... 1-9 
Purpose of ....................................................... 1-3 
Using ........................................................... 1-9 

Libraries: 
Creating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-8 
Overview ........................................................ 1-3 

LIBRARY ..................................................... 1-6, 1-9 
LIBRARY modules .................................................. 1-12 
Library overview .................................................... 1-3 
Last line operations ................................................ 14-33 
Line timeouts (Datacomm) ........................................... 11-14 
Listen addresses (HP-IB) ......................................... 10-5, 10-6 
Local lockout (HP-IB) ................................................ 10-9 
Local lockout state (HP-IB) ........................................... 10-13 



10 Subject Index 

LOCKMODULE .................................................... 1-13 
Logic sense (GPIO) .................................................. 13-3 
Loopback (Serial) .................................................. 12-13 

m 
Manual organization .................................................. 1-1 
MARK (procedure) .................................................. 1-13 
Mass storage ....................................................... 1-8 
Match character transfers .............................................. 9-8 
Menus (System devices) ............................................. 14-34 
Messages (HP-IB) .................................................. 10-18 
Models 216 and 217 differences (Serial) ................................. 12-30 
Modem handshake (Serial) ............................................ 12-7 
Modem line control (Serial) ........................................... 12-12 
Modem status and control (Serial) ....................................... 12-3 
Modem-line handshakes (Serial) ........................................ 12-12 
Modules: 

Adding to the System Library ...... '.' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-9 
ALLOCATE ..................................................... 1-17 
Compiling ....................................................... 1-6 
Dependency table ................................................. 1-20 
Directory ........................................................ 1-3 
Examples (on DOC disc) ............................................. 1-3 
FGRAPHICS .................................................... 1-15 
File sizes ........................................................ 1-8 
GENERAL ................................................... 3-2, 3-4 
GRAPHICS ..................................................... 1-15 
How the Compiler finds them ......................................... 1-6 
How the loader finds them ........................................... 1-7 
HPIB ....................................................... 3-2,3-5 
HPM .......................................................... 1-13 
Importing ........................................................ 1-4 
INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-14 
10 ........................................................ 1-14, 3-2 
IODECLARATIONS ................................................ 3-6 
LIBRARY ...................................................... 1-12 
LOCKMODULE .................................................. 1-13 
Making them accessible ............................... 1-6, 1-7, 1-18, 1-19 
Overview ........................................................ 1-3 
RND .......................................................... 1-12 
SEGMENTER .............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-17 
SERIAL ..................................................... 3-3,3-6 
Standard ....................................................... 1-12 
SYS_BOOT ..................................................... 1-17 
SYSDEVS ...................................................... 14-3 
SYSGLOBALS ................................................... 14-3 
UIO ........................................................... 1-13 
VME_DRIVER ................................................... 1-18 



Subject Index 11 

VME_ASM_Driver ................................................ 1-18 
Multiple listeners (HP-IB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-6 

n 
NEW (procedure) ................................................... 1-13 
Non-active controller (HP-IB) ........................................... 10-6 
Non-data characters (Datacomm) ....................................... 11-16 
Numbers (internal representation of) ...................................... 2-8 

o 
Object file ..................................................... 1-3, 1-7 
Operating parameters (Datacomm) ..................................... 11-10 
Output: 

Characters ............................................ .......... ,. : 5-4 
Data types supported ............................................... 5-1 
Definition of ...................................................... 2-2 
Formatted ................................................... 5-6, 5-7 
Free-field .................................... 5-1, 5-2, 5-3, 5-4, 5-5, 5-6 
General ......................................................... 5-1 
Real numbers ..................................................... 5-2 
Strings .......................................................... 5-3 
Words .......................................................... 5-4 

Overlap transfers .................................................... 9-6 
Overlapped session, aborting ......................................... 18-20 
Overlapped session, checking for errors ................................. 18-20 
Overlapped sessions ................................................ 18-1 7 
Overview of manual .................................................. 1-1 

p 
P-Ioad (modules) ..................................................... 1-7 
PARALLEL_3 interface declarations .................................... 17-31 
Parallel bus protocols ................................................ 17-5 
Parallel interface bus description ........................................ 1 7 -2 
Parallel interface driver parameters ..................................... 17-18 
Parallel interface, initializing .......................................... 17-18 
Parallel interface, lORE AD _BYTE/IOWRITE_BYTE . . . . . . . . . . . . . . . . . . . . . . . .. 17-45 
Parallel interface, IOSTATUS/IOCONTROL registers ....................... 17-36 
Parallel interface programming techniques ................................ 1 7-1 7 
Parallel interface support ............................................ 17-16 
Parity (Datacomm) ....................................... 11-2, 11-7, 11-19 
Parity (Serial) ............................................ 12-2, 12-4, 12-7 
Pascal Graphics Techniques manual ..................................... 1-15 
Pass control (HP-IB) ................................................ 10-11 
Peripheral status line (GPIO) ........................................... 13-4 
Polling (HP-IB) .................................................... 10-11 
Powerfail (System devices) ........................................... 14-75 
Preventing data loss (Datacomm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-24 



12 Subject Index 

Private links (Datacomm) ............................................ 11-19 
Procedure Library .................................................. 1-12 
Programming helps (Datacomm) ....................................... 11-24 
Programming techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-5 
Prompt recognition (Datacomm) ....................................... 11-16 
Protocol (Datacomm) .......................................... 11-2, 11-12 
Protocol (Serial) ........... .......... "............................... 12-4 
Pulse-mode handshakes (GPIO) ......................................... 13-7 

r 
RAND (function) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-12 
RANDOM (procedure) ............................................... 1-12 
Range of device selectors .............................................. 3-7 
Range of select codes ................................................. 3-6 
Reading buffers ..................................................... 9-2 
Real numbers (internal representation of) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-9 
RECOVER ......................................................... 8-2 
Registers: 

Common definitions ................................................ 7-2 
Datacomm ..................................................... 11-29 
General ......................................................... 7-1 
GPIO ......................................................... 13-20 
Hardware vs. I/O System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-1 
HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-23 
Serial ......................................................... 12-15 

RELEASE (procedure) ............................................... 1-13 
Remote enable (HP-IB) .............................................. 10-15 
Remote message (HP-IB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-8 
Remote state (HP-IB) ............................................... 10-13 
Reset: 

Datacomm ..................................................... 11-12 
GPIO ......................................................... 13-14 
HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-23 
Serial .......................................................... 12-6 

Reset line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17-4 
Resource ............. ............ "................................. 4-1 
RND module ...................................................... 1-12 
RS-232 Serial: 

98626 interface .................................................. 12-1 
98644 interface ............................................ 12-1, 12-27 
Built-in (Models 216 and 217) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-30 
Introduction ..................................................... 12-1 
UART ......................................................... 12-1 

RS-232C cable signals (Datacomm) ..................................... 11-27 
Run light (System devices) ........................................... 14-36 



Subject Index 13 

S 
SCSI bus ......................................................... 18-1 
SCSI bus, resetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18-20 
SCSI call-back mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18-18 
SCSI command support, built-in ....................................... 18-16 
SCSIDVR ......................................................... 18-2 
ScsiHandleSession, calling ........................................... 18-12 
SCSILIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18-2 
SCSI programmer's interface .......................................... 18-1 
SCSI programmer's interface summary .................................. 18-21 
SCSI session ...................................................... 18-3 
ScsiSessionComplete function ......................................... 18-18 
SCSI session errors, handling ......................................... 18-13 
SCSI session, requesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18-8 
SEARCH Compiler option ............................................. 1-6 
Secondary addresses (HP-IB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-8 
Secondary channel (Datacomm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-26 
Segmentation: 

Call-back mechanism, SCSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18-18 
Calling a procedure ............................................... IS-S 
Calling a program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IS-3 
Checking a procedure variable ....................................... IS-6 
Errors ........................................................ IS-10 
Free space ...................................................... IS-3 
Initialization ..................................................... IS-3 
Introduction ..................................................... IS-1 
Searching for a procedure name ...................................... IS-6 
Unloading segments ............................................... IS-9 
Using the explicit code area ......................................... IS-7 
Using the heap ........................ . . . . . . . . . . . . . . . . . . . . . . . . . .. IS-8 
Using the stack .................................................. IS-3 
WARNING - You're on your own ..................................... IS-3 

SEGMENTER module .............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-17 
Select codes .............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-6, 4-1 
Self-test (Serial) ................................................... 12-13 
Send command (HP-IB) ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-22 
Serial interfaces ................................................. 2 -6, 4-2 
SERIAL modules ................................................ 3-3, 3-6 
Serial transfers ...................................................... 9-4 
Serial: 

98626 interface .................................................. 12-1 
98644 interface ............................................ 12-1, 12-27 
Baud rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-3, 12-6 
Break messages ................................................. 12-11 
Built-in (Models 216 and 217) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-30 
Cable options ................................................... 12-23 
Character format ....................................... 12-2, 12-4, 12-7 
Data input ...................................................... 12-9 



14 Subject Index 

Data output ..................................................... 12-8 
DCE cable ..................................................... 12-24 
DTE cable ..................................................... 12-23 
Error handling ................................................... 12-9 
Handshake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-4, 12-12 
HP 98644 differences ............................................ 12-27 
Initializing the connection ........................................... 12-6 
Interface reset ................................................... 12-6 
Introduction ..................................................... 12-1 
10READ_BYTE and 10WRITE_BYTE registers .................... 12-14, 12-19 
10STATUS and 10CONTROL registers ................................ 12-15 
Loopback ...................................................... 12-13 
Models 216 and 217 differences ..................................... 12-30 
Modem handshake ................................................ 12-7 
Modem line control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-12 
Modem status and control .......................................... 12-3 
Modem-line handshakes ........................................... 12-12 
Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-4, 12-7 
Parity bit ....................................................... 12-2 
Programming techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-5 
Self-test ....................................................... 12 -13 
Signal functions ................................................. 12-23 
Software handshake .................................... 12-4, 12-7, 12-11 
Special applications .............................................. 12-11 
Special characters ............................................... 12-11 
Start bit ........................................................ 12-2 
Status-Line Disconnect switches ...................................... 12-3 
Stop bits ....................................................... 12-2 
Transferring data ................................................. 12-8 

Service request (HP-IB) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-16 
SessionBlock ...................................................... 18-4 
SessionBlock, acquiring memory .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18-8 
SessionBlock, initializing .............................................. 18-9 
SessionBlock record ................................................. 18-6 
SessionBlock, setting up ............................................. 18-10 
SessionState field ................................................. 18-17 
Signal functions: 

Datacomm ..................................................... 11-27 
Serial ......................................................... 12-23 

Skipping data (during input) ............................................ 6-5 
Software .......................................................... 2-1 
Software handshake: 

Datacomm ..................................................... 11-15 
Serial ............................................... 12-4, 12-7, 12-11 

Source file ......................................................... 1-3 
Source (of I/O operations) ............................................. 2-2 
Source text ........................................................ 1-6 
Special purpose lines (GPIO) .......................................... 13-18 
Special transfers ..................................................... 9-8 



Subject Index 15 

Stacking sessions .................................................. 18-19 
Standard modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-12 
Status lines ....................................................... 17-4 
Start bit: 

Datacomm ......... ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-2 
Serial .......................................................... 12-2 

Status (HP-IB) ..................................................... 10-7 
Status-Line Disconnect switches (Serial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-3 
Stop bits: 

Datacomm ...... :............................................... 11-7 
Serial .......................................................... 12-2 

Summary of bus sequences (HP-IB) ..................................... 10-37 
Supported features (System devices) ..................................... 14-2 
SYS_BOOT module ................................................. 1-18 
SYSGLOBALS ........................................ " ........... 14-3 
SYSPROG (Compiler option) ........................................... 8-2 
System controller (HP-IB) ........................................ 10-2, 10-7 
System devices: 

Battery commands ............................................... 14-78 
Battery features ................................................. 14-75 
Beeper. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14-9 
Bit-mapped display parameters ...................................... 14-31 
Changing display parameters ....................................... 14-31 
Clock ......................................................... 14-11 
Cursor control .................................................. 14-32 
Date and time ................... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14-11 
Debugger window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14-37 
Direct clock access ............................................... 14-16 
Display ................................... ~ . . . . . . . . . . . . . . . . . . .. 14-28 
Display control characters ........................................ .. 14-28 
Display parameters ............................................... 14-30 
Display status area ............................................... 14-35 
Display types ................................................... 14-28 
Dumping the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14-32 
Example programs ................................................ 14-3 
Hooks ......................................................... 14-5 
Interrupt masks .................................................. 14-7 
Interrupt processing overview ........................................ 14-5 
Interrupts (enabling) ............................................... 14-7 
Introduction ..................................................... 14-1 
ISR ........................................................... 14-6 
Key actions .................................................... 14-62 
Key buffer ..................................................... 14-48 
Key buffer I/O hooks ............................................. 14-49 
Key codes ..... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14-59 
Key translation hook ............................................. 14-51 
Keyboard ....................................................... 14-42 
Keyboard ISR hook .............................................. 14-45 
Keyboard poll hook .............................................. 14-46 



16 Subject Index 

Keyboard request hook ........................................... 14-43 
Keyboard types ................................................. 14-42 
Keyboards ..................................................... 14-58 
Knob ......................................................... 14-56 
Language table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14-54 
Language types ................................................. 14-42 
Last line of display ............................................... 14-32 
Menus ........................................................ 14-34 
Missed timer interrupts ............................................ 14-22 
Module ........................................................ 14-3 
Periodic timer .................................................. 14-24 
Powerfail ....................................................... 14-7 5 
Run light ...................................................... 14-36 
Simplified debugger window ........................................ 14-41 
Supported features ................................................ 14-2 
SYSDEVS source listing ........................................... 14-81 
System timer example ............................................ 14-26 
Timer ISR ..................................................... 14-21 
Timer operations ................................................ 14-19 
Timers ........................................................ 14-18 
Toggle alpha/graphics ............................................ 14-29 
Tone generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14-9 
Typing aids program ............................................. 14-66 
WARNING-You're on your own. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14-1 

System Library: 
Adding modules to it ............................................... 1-9 
Building your own ................................................ 1-19 
Defined ......................................................... 1-6 
Volume size considerations ...................................... 1-8, 1-19 
When used by Compiler ............................................. 1-6 
When used by loader ............................................... 1-7 

t 
Talk addresses (HP-IB) ............................................... 10-5 
Telephone links (Datacomm) .......................................... 11-19 
Terminal identification (Datacomm) ..................................... 11-18 
Terminal prompt messages (Datacomm) ................................. 11-24 
Terminating transfers ................................................. 9-6 
Terminology ........................................................ 2-1 
Timeouts ...................................................... 8-1, 8-5 
Timeouts (Datacomm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. 11-14 
Timers (System devices) ............................................. 14-18 
Timing compatibility .................................................. 2-4 
Tone generator (System devices) ....................... . . . . . . . . . . . . . . . .. 14-9 
Transfers: 

END condition .................................................... 9-8 
Introduction ...................................................... 9-1 
Match character ................................................... 9-8 



Subject Index 17 

Overlap ......................................................... 9-6 
Serial ........................................................... 9-4 
Special . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-8 
Termination of .................................................... 9-6 
Word ........................................................... 9-8 

Triggering (HP-IB) ................................................. 10-10 
TRY ............................................................. 8-2 
TRY/RECOVER blocks ....................................... 8-1,8-2,8-3 
Typing aids program (System devices) .................................. 14-66 

U 
UART (RS-232 interface) ............................................. 12-1 
UCSD Unit I/O operations ............................................ 1-13 
UIO module ....................................................... 1-13 
Unit I/O operations ................................................. 1-13 
UNITBUSY (function) ................................................ 1-13 
UNITCLEAR (procedure) ............................................. 1-13 
UNIT READ (procedure) .............................................. 1-13 
UNITWAIT (procedure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-13 
UNITWRITE (procedure) ............................................. 1-13 
Unlisten and untalk messages (HP-IB) .................................... 10-7 
User ISR ........................................................ 17-22 
User ISR, cleaning ................................................. 17-25 
User ISR conditions, enabling ......................................... 17-24 

v 
VMEbus: 

initialization procedures ............................................ 16-4 
interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16-1 
interrupt handling procedures ........................................ 16-8 
read/write procedures ............................................. 16-5 

VMELIBRARY errors ................................................ 16-9 
VMELIBRARY procedures ............................................ 16-2 
VME_DRIVER procedures ............................................ 16-4 
VME_DRIVER types ........................ '. . . . . . . . . . . . . . . . . . . . . . . .. 16-4 
Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-8 

W 
What command ................................................. 1-6, 1-9 
Word ............................................................. 2-7 
Word transfers ...................................................... 9-8 
Words ........................................................ 5-4, 6-4 
Writing data .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-1 
Writing to buffers .................................................... 9-3 





READER COMMENT CARD 
Pascal 3.2 Procedure Library 

Manual Part Number 98615-90032 December 1991 

Please use this Reader Comment Card to evaluate this document and tell us of problems or 
suggest improvements. SERIOUS ERRORS rendering a product or device inoperative should 
be entered in STARS (Software Tracking and Reporting System) by the HP Response Center 
or your Support Engineer. 

Please rate the quality of each item below in terms of your expectations: 

Far Below Below Meets Exceeds Far Exceeds 
Expectations Expectations Expectations Expectations Expectations 

Retrievability: 1 2 3 4 5 
Manual Title: 1 2 3 4 5 
Table of Contents: 1 2 3 4 5 
Tabs: 1 2 3 4 5 
Headings in Chapters: 1 2 3 4 5 
Cross-References: 1 2 3 4 5 
Task References: 1 2 3 4 5 
Index: 1 2 3 4 5 

Organization: 1 2 3 4 5 
Completeness: 1 2 3 4 5 
Accuracy: 1 2 3 4 5 
Readability: 1 2 3 4 5 

Language Usage: 1 2 3 4 5 
Layout: 1 2 3 4 5 

Recommended improvements (attach additional information if needed): 

Name: Company: __________________________ __ 

Job Title: ________________ _ Address: 

Phone: 

Please enter the series number of your HP 9000 system, e.g. 700 or 800: _____ _ 

Hewlett-Packard has the right to use submitted suggestions without obligation, with all such 
ideas becoming property of Hewlett- Packard. 



BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 37 LOVELAND,COLORADO 

POSTAGE WILL BE PAID BY ADDRESSEE 

Hewlett-Packard Company 
Attn: Learning Products Center 
3404 East Harmony Road 
Fort Collins, Colorado 80525-9988 

11 •• 1.11 •••• 1.111.1.1.1.1.1.1 •• 1.1 •• 1 •• 1.1 •• 1 •• 11 •• 1 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



Manual Part N 
98615-90032 o. 

~opyright © 1991 
ewlett-Pack 

Printed in US~d1f$rpany 


